


















































































































































































































































£(x)-£(x - oY) I

f(xety)-flx)  f(x 4 qppy)-fx)
[l § ———F— s —% i

Hence

£ (x+ty) = f(x)' ¢ M g = vl -

Ir 'fyll < 5“,‘ the value ore may be substituted for t. The
inequality obtained 1s obviocusly also valld when 'ly” > §
provided x + y € D". , o

_ The inequality in 21 shows that f satisfies & uni-
form Lipschitz condition in D', Hence a uniformly bounded
family of convex functions over the domain D" 1s equicontinu-
ous in D'. From this follows '

22, If a set of couvex functions
over & relatlvely open convex set D 18-
uniformly bourided in every compact sub-
set of D, a sequence c¢f functions may
be selected from thls set sc that the
sequence converges 1n D to a convex
function. Mcreover, thils aonvergence‘
is uniform ir any compact subset of D.

An immediate consequerce of 21 is
23. If f£(x) 18 convex 1u D,
1t 1s contilruous 1n the relative 1ln-

terlior of D.

The behavior of a convex funcztlon at the boundary of
its domain is essentlally described by

24, If f(x) 1s eonvex in D
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" “4nd y 1s a relative boundary point of D

1im f£(x) > - oo .
x —> ¥

If y&bD

1m  £(x) ¢ £(y).
X —> ¥ -

The first statement follows from Property 10 and the

second 1s true because

1im  f(x) § 1lim £((1-0)x° + oy)
X —> ¥ 06 —> 1 _

¢ 1m  ((1-0)£(x°) + ef(y))

e —>1
= £(y)

1s valid for any fixed x° € D.
Let
2, .2
X7 + X5

» 1
f(xl’x2) = 2%,

for x, > 0 and define f£(0,0) to be an arbitrary nbn-negative
number. Then f 1s convex over the half-plane X, > 0 plus

the origin. Now 1im f(x) = 0 'while 1im f(x) = +00.
X —>» 0 x —> 0 o

This example shows that "lim" in 24 cannot be replaced by
"14m" and that the inequality cannot be strengthened.

25. Let f£(x) be convex in a rela-
tively open convex set D. Denote by D
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the set obtained by adding to D
all relative boundary points y
for which 1im f£(x) < oo ,

X —> y
Define

£f(y) = 1im  f£(x)
X —>ry
‘ -
for y In D but not iIn D
and x in D. With these defi-
nitions D 1s convex and f(x)
is a convex function in D,

If y° and yl are any two points of D, there

are sequences x°% and xli, 1=1,2,..., of points from D
such that x°% —> y°, x11 5 1 ang
1m £(x°Y) = 1im o £(x),
1 oo x T y

11m £(x™) = 1im L £(x).
1 > 00 X -

Now for O e e < 1
£((1-0)x°% + ex!l) < (1-0)£(x°1) + or(x!l).

Hence

1im £(x) ¢ lim £((1-0)x°t + oxt)
x —> (1-0)y° + Gyl 1 —=>oo

s (1-0)£(y°) + ef(yl) < oo.

This shows that (1-6)y° + @y'€ D and that

£((1-6)7° + oyl) < (1-0)£(y°) + of(yt) .

-
-~



- A functilon obtained in the way described in 25 has
the propertles glven in the

DEFINITION: A convex function f(x)
defined in a convex set D 1s called

closed if 1im f(x) = po for every
X —> Y :
relative boundary point y of D which

is not in D, and 1im f(x) = £(y)
_ X —>73y
for every relative boundary point y of

D which 1s in D.

A closed convex function may be obtained from any con-
vex function by removing the relative boundary pointsof 1its
domain and then extending the function in the way described in
25. ‘

26, If f(x) 1n D 1is a closed

convex function 1im f£(x) = f(y) where
X —> y
y 1s any point in D and x approaches

y along a segment belonging to D.

Letting x approach y along the ségment from xov
to y 18 the same as allowing © to approach one from below
in the expression (1-6)x° + 6y. Since

£((1-6)x° + 6y) ¢ (1-0)£(x°) + of(y),

1im  £((1-0)x° + 6y) & £(¥).
6 —> 1

On the other hand, f(y) = 1im f(x). This proves the
X —> ¥ o
statement.

27. A convex function f(x) 1in D
1s closed if and only if the set [D,f]

of A™' 15 closed.
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~ Suppose the set [D,f] in AL 45 closed. 1et
y ©be a relative boundary point of D and xié D a sequence

of points converging to y such that  1im f£(x 1) -
1 —>co

Clim f(x). If this 1im is finite, the sequence of points
X —> ¥y .
(xi,f(xi)) in [D,f] converges to the point (y, 1im - £(x))
; , x-——4>
in [D,f]. This means that y € D and £(y) s %i)
X ———9
From 24 it now follows that f£(y) = 1im f£(x). Conversely,

S

suppose the function is closed. Consider any sequence of

points (x . 1) in [D,f] which converges to a point

(y,z). Since 1z, 2 r(xi), z 3 1im f£(x). This implies
’ X —> Yy ‘

yeD and z p £(y), that 1s (y,z) € [D,r].

4., DIRECTIONAL DERIVATIVES AND
DIFFERENTIABILITY PROPERTIES

28. If f(x) 1s convex in D,
the "directional derivative"

t—>+0

exists and 1s either finite or - oo
for any x 1in D and any vector y
such that x + y 1is in the projecting
cone Px(D). For a fixed x,

f1(x3y) 1s either finite for all ¥y

in the translate Px(D) X of the
projecting cone, or it i1s -oco for all
relative interior vectors y of

PX(D) - X. When f'(x3y) 1s finite

in P (D) - x, f'(x3y) 1s a positive-
ly homogeneous, convex function in
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Px(D) - x., If x 18 relative interior to
D, the cone P (D) - x 1s a subspace and
£1(x;y). is finite for 8ll y 1in this sub-
space.

The above limit 1s the right hand derivative at t =0
of the function f(x+ty) of t which is defined and convex
at least in some interval 0 { t < b. Thus the limit exists
and 18 <oo (Property 17). If x 1s relative interior to
D, f(x+ty) 1s defined and convex in some Interval containing
t =0 4n its interior and, hence, f'(x3;y) 1s finite.

It A>O,

P(xrAty) - £(x) . ) L{xtAty) - f(x)
t At ’

Hence
(*) £1r(x; Ay) = Af'(x;y)

for A > 0. This equation is clearly also valid for A\ = 0.
If f£'(x3y) = - 0o for a particular y, 1t must be infinite
on the ray generated by y 1n Px(D) - x. If y° and yl
are 1in Px(D) - X, '

T~

£(x+t (y%471)) - £(x) | ri{z(x+ety®) + %{x+2tyl)) - £(x)
£ g

o

< £ (x42ty°) - £(x) + £ (x+otyt) = £(x)
2 2t 2t

If £ (x3y) 18 - 00 on any ray (vy°), 1t now follows that
1t must be - 00 on every ray which is strictly between (¥°)
and any other ray (yl) of Px(D) - x. In particular
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£iixzy) = - 00 in the whole relative interior of Px(D)~- b
If ft(x3y) for the x considered 18 - 0o for no 7y, the
above inequality gives f’(x;yo+y1) < £y (x;¥°) + f'(x}yl).‘
This combined wlth #equality (*) shows that f'(x3y) 1s a -
positively homogeneous, convex function of ¥ in the cone
Px(D) - x (Property 15). o _ |
, That £'(x;y) need not be - oo on all relative
boundary rays of PX(D) -X when 1t 1s -o0o0 on the relative
interlor rays 1s shown by the following example: Iet D be
a closed strip of a plane and let f£(x) be a convex function
over D with its graph halfl of a circular cylinder. If X
is a boundary point of D, f£'(x3;y) = -00 1in any direction
from x into the interior of D but 1s finite in the two
directions along the edge of D.

29. If f(x) 48 convex in D

£{x) 2+ 1 (x%;x-x°)

HiAd

(%
for all x and x° in D. If f(x)
1s positively homogeneous and convex
in & convex cope D

tly) ¢ £/ (x3y)
for all x end y dn  D.
. o) ‘ : 0 o ‘ o
If %" and x are in D, f(x +t(x-x")) 18 a con~

vex function of t in an interval including © gt g1.
Hence for t > 0O

£ () = £G0) 5 g1 (40,%0)

4

becaupe the left hand side decreases as t decreases (Property
16). Substitution of one for t glves
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£(x%+(x-x°)) - £(x°) 3 £1(x°5x-x°),
that i1s the first statement of 29. If f(x) 4is positively
homogeneous

£(x°) + £(xx°) 3 £(x° + (x-x°)).

- This and substitution of y for x =~ x° gives the second
statement from the first.

30. If f(x) 41s convex in D, the
supporting hyperplanes of the set [D,f(x)]
which contain a fixed point (x°,f(x°)) are

~1dentical with the supporting hyperplanes
of the corresponding set
, [Pxo(D), £(x°) + £7(x%x-x°)] for the

function f£(x°) + £7(x%;x-x°) of x.

The set [P (D), £(x°) + £1(x%;x-x°)] 1s a convex
X - » ‘ v
cone in A™1 ywith vertex (x°,£(x°)). This follows easily
from the facts that P (D) 1s a convex cone and that
f'(xo;y) is positivel§ homogeneous in y. Hence every
supporting hyperplane of this set goes through (x°,f(x°)).
Furthermore ‘ .
[D,£(x)1 C [P (D), £(x°) + £7(x%5x-x7)]

;o \ e ee 4

because of Property 29, and the inclusion D C P o(D). Every
_ , x

supporting hyperplane of the set [P O(D), £(x°) + £ (x%;x-x°)1]

. p 4
is thus a supporting hyperplane of [D,f(x)] through
(xo, f(xo) ) .
To prove the converse consider a supporting hyperplane
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of [D,f(x)] which 1s not parallel to the z-axis and which
contains (x°,£(x°)). 1Its equation may be written

z = £(x°) + (x-x°)'u
with some vector u # 0 in A™. Now
£(x) 2 r(x°) + (x-x°)'u  for all x € D.

Hence, replacement of x by x° + t(x-x°) &€ D for 0 < t <1
glves ’

f(x°+t(x—x°)) > £(x°) + t(x—xo)'u,

f(x°+t(x-x°é) -}f(xol > (x-x%)ru

£(x%) + £1(x%x-x") 2 £(x") + (2ex"j"u.

Since f'(xo;y) 1s positively homogeneous in y, the last
inéquality holds for all x € P O(D). This means that a

X
supporting hyperplane of [D,f(x)] through (x°,£(x°)) and
not parallel to the z-axis is also a supporting hyperplane

of [P O(D), £(x°) + £1(x%;x-x°) ].
X
A supporting hyperplane of [D,f(x)] through

(x°,£(x°)) which is parallel to the z-axis has an eguation
of the form (x-xo)'u = 0. For this u

(x-x°)'u < 0 for all x €D
Clearly this inequality also holds for all x € P (D)

X
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because every x € P (D) may be written x = x° + ‘A(xl-xo)
x co
with x'€ D, A » 0. This means that the given hyperplane

parallel to the z-axls is a supporting hyperplane of
P (D), £(x%) + £1(x%x-x°)].
x

A 31. et f£(x) be convex in D, and
let x° be an arbitrary point of D. Then
there is a supporting hyperplane to [D,f(x)]
which contains the point (x°,£(x°)) and
which 1is not'parallel to the z-axls i1f and
only 1f f£'(x°;y) 1s finite for all y 1in
P O(D) - x°.

X
_ o .1 _o , 1 ..
| Suppose f'(x 3X7=x") 18 finite for some X~ rela-
tive interior to o(D). The ray in An+l with initigl

point (x°,£(x")) and direction determined by the vector
(xl~xo, f'(xo;xl—x )) 18 a relative boundary ray of the con-
~vex cone (C = [P O(D), £(x°) + £9(x%;x-x°)]. Hence, 1n the

X
minimal flat S(C) containing this cone there is a support-
ing hyperplane H of C which contains this ray. If H
were parallel to the z-axls, 1ts intersectlon with the hyperf

plane z = 0 would be a supporting flat of P o(D)' On the
v £°
other hand 1t would contain the relative interior point xl

of P (D), but this 1s impossible. Now H can be extended
x

to a supporting hyperplane in An+l of € not parallel to

the z-axls. From 30 1t follows that H alsoc supports
[D,f(x)]. The converse follows from the inequality
£1(x°;x-x°) > (x-xo)'u> - 0O

obtalned in the proof of 30 for any supporting hyperplane

z = £(x°) + (x-x°)'u

84



of [D,f(x)] which is not parallel to the z-axis.

Now let f(x) be convex in an n-dimensional convex Bet
D, and let x°  Dpe a fixed interior point of D. Consider
the function on the 1ine x = x° 4 ty where y 1s an ar-
pitrary fixed vector in A". In some interval £(x°+ty) 1s
a convex function of t whose right nad derivative at t = 0
18 £1(x°,y) and whose left hand derivative at t = 0 1is
—f'(xo;—y). Hence f(x°+ty) 1s differentiable at ¢t = 0
1f and only 1f -£7(x%-y) = £'(x%;y) that 1s if

£ (x5 Ay) = ALt (x"sy)

for arbitrary real A . Therefore the partial derivatiwes
of f(x) exist if and only if for all real A

£1(x%; Aul) = A £e(x%ut)

where the ui, i=1,...,n, denote the unit vectors

(0,...,0,1,0,...0). The partial derivatives have the wakaes

or _ o, 1
-—a—‘*if;ﬂ Py (x su).

If they exist, £'(x°;y) 1s linear on every coordinate axis. '
From Property 14 1t then follows that £1(x%;y) 1s linear
over the whole y-space. Hence

n

o EBf
sdx) = = dx
’ 421 0%y 1

is the total differentlal of £(x).

32, let f(x) be convex in an
n-dimensional convex set D. Iet x°
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be an interior point of D and suppose that
£7(x°;y) 18 a linear function of y. Then
£(x) 1s differentiable at x = x°.

This stdatement 1s equivalent with the following: To
every £ > 0 there 1s & §> 0 such that '

'f(xo+tu) - £(x°) - tf‘(xo;u)l < éft

for all unit vectors u and 0 < t ¢ § . From Property 29 and
the definition of £'(x°;y), 1t follows that for each fixed
vector y there 1s a & (y) such that

(*) , 0 < £(x%ty) - £(x°) - £ (x%5y) $ £

for 0<t < §(y). Apply this to the vectors v 1 =1,...,2%,
all of whose coordinates have the value + 1 and put

§ = min S(yi). Then (*) 1s valid for each y = ;sr:L and
1 o
0 <t <£é& . Now for any flxed t 1in this interval

£(x%+ty) - £(x%) - £ (x%y) 1is a convex function of y since
£1(x;y) 1s linear in y. Hence (%) 1s valld for all y 1in
the convex hull of the polnts y*  (Properties 4 and 29), in
particular for all unit vectors u. This proves the statement.

33. ILet f(x) be convex in a relative-
ly open convex set D of dimension d, and
let y be a fixed vector parallel with the
minimal flat containing D. Then ff(x;y)

15 an upper semicontinucus function of x
in D. The ordinary derivative of f(x)
in the direction y exists everywhere in
D with the possible exception of a Bubset
of d-measure zero. Where 1t exists the
derivative 1s a continuoug functlon of X.
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In every compact subget of D the function £!(x;3y)

of x 1is the limit of a decreasing seguence of continuous
f(x+tiy) - £(x)

ta
£7(x3y) 18 upper semicontinuous. The ordinary derivative off‘
f£(x) in the direction y exists at a polnt x if and only
it £i{xgy) = -0 (x5-y) . Now £V(x;y) + £7(x3-y) 2 0, since
£+(x3y) 1s positively homogenecus ard zonvex in  y.  Hence
the set of points at which the derivative does not exigt 1s
the set of x at which f'(x;y) + £'(x;~y) > 0. Thus this
set 1la measurable. Tfs Intersection with a line parallel to

y contalns at most a denumerable number of peints, (Property
17). Therefore the set has d-measure zero. Since f£t(x;y)
18 upper semicontinuous for every fixed y, ~£i(x;-y) 18
lower semlcontinucus and, hence, f£:{x;y) 1is continuous in
the get at which f£'(x3y) + ft(x3-y) = 0.

functions where t, > 0, t, —> 0. Hence

34, If f£(x) 1s convex 1n an open
convex get D, it 1is differentiable with
contlinuocus partial derivatives everywhere
In D except for a seft of measure zern,

Apply 33 to each of the unit vectors ui =‘(O,,,.,0,
1,0,...,0) on the coordinate axes lnstead of to y. For
each 1 = 1,...,n, there 1s a set of measure zero at which

f§§}~ doeg not exist. The unlon U of these sets has
1

neasure zero. Ay every x ia D but outslde U all partial
derivatives exist, that is f'(x;y) is linear in y and F£(x)
differentlable (Property 32). The sonbiaulty of the partial
derlvatlves 1s an lmmedlate coansequence of 33,

35. 1f f£{x) 4is a twice differ-
entlable function in an open donvex set
D, f(x) dis convex in D if and only
1f the guadratic form



n N '
£, (x fo.(x) ==2E
1,§m1 iJ( _)yiyj’ 1‘-’( ) axi a 'xj s
1s positive semidefinite for every x 1in D.

From the fact that f(x) 18 convex if and only ifiiﬁ
1s convex on every straight segment in D and from Properties
19 end-19 1t follows that f£(x) 1s convex if and only if

T2
d™f t
[-—-—-M} = z fij(x)yiyj

[}
dt‘— tzo i)

for all x € D and all y. . ,
A sufficient condition that a function £(x), twice

differentiable in an open convex set D, 1is strictly convex

in D is that z:f1 (x)yiyJ 1s pomitive definlte. It is even

sufficlent that the form 1s positive semidefinite for all x

in D and the determinant det f J(x) 1s not identically zero

on any segment in D, .

5. CONJUGATE CONVEX FUNCTIONS

In Chapter II, Section 8, polarity with respect to
the paraboloid

in An+1(x ...,xn,z) was described. This polarity will now
be uged to definre an involutory correspondence hetween closed
convex fun«*tionsn

For the sake of brevity, a flat in An+l wlll be
called vertical or non-vertical according as 1t is or is not
parallel with the z-axis. The polar hyperplane to a point
(x,z) of AL pag the equation T + z = x'& , where
(§ ,5) are variables in the space .An+l( Eis00058 .5 8).
Let f(x) 1In C be a closed convex function. To each point
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(x,2) 4in [¢,f] let correspund the closed upper half-space -
G 2x'E - bounded by the pclar hyperplane to the po.’mt.‘ ‘
The intersection of all these half-sp «es for - (x,2) dm
[c,£] 18 & closed convex set [6,f]" 1n A", Since =
X' E - £(x) >2x'Z -z forall (x, z) e [c, f] 1t ia_ |
sufficient to consider the half- ﬂpa 68 .

C 2x'& - fix), xe€C.
. * ) » .; . .
Hence, [C,f]  1s the set [/7, @] for the furction

T = 99(5;) sup ﬁ"E - f(x))

defined in the projection I in the g ~direction of .
[¢,r ] on the hyperplane & = 0. This function 1s convex
- and closed sirnce [C,f‘]* is sonvex azd closed. A point &
is in [ 1if and only 1f the funstion x! E - r(x) is bounds
ed above for x € C
. The set [f’ @] way als~ be cbtailned from [C £l
In a dual way. A ncn-vertical Lyperplaze has an equation of ;
the form 2z = x*§ ~ & with (x,z) variable. Its pole 1s - |
the polnt (§&,Z). If and eoly if this hyperplaze is a |
barrier to [C,f], we bave f(x) » x'¥ -Z for all
xeC, that 1s (E,5)e [, @l. Thus, [I",®] 1s the
set of the poles of all nor-vertical barrlers to [C,f]. -
Since there exist such barriers (Prop: sltleng 28 and 31),.
[7,®] 18 not empty. ~

If g(x) 1B a closed concave function defined in
the convex set D, let [D,z] dexote tre closed convex set
of all points (x,z) in AL gueh that x € D and
z $ g(x). To a point (x,z) 1in [D,g] 1let correspond the
closed lower balf-spas;:e' L 5 x'E - 7 bourded by the polar
hyperplane of the polnt. The ivtersecticn of all these half-
spaces 1s the set [A, Y] fur tre clomed concave furstiorn ]
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C ( Aufr (€ - g(x))
- pE) Jaf, 8 -k
defrmed In the set A of all poluts £ For we tich X7 E < g\x)k
baunded below e Do A in the codvex sase, [(8,W] is the
set af the pales of all n0n~Vert4631 &arriers to [D,g] »

DEFIMETI(Rs Let f‘(x} in € be comvex
and sleged, Then the clemed cogver fuwaction

{ ') = sup (x*& - £{x))
A x€e & : :

defined im the set [7 ef all peints § for
which x¢ E = £{x) 1s bewnded above for x
in ¢ salled the vqmddgatp fun~tion of
Gﬂf(x) A -
et gix) in D be gsoncave and c¢losed, -
Then the ¢lesed voncave Dumotion |

(E) = imf (xVZ - £ x)\
» F}ﬁ E % & D g
defined im the set 4 of all points g for
which %' E - g{x) 1s bouguded below for x
in D ig w~alled the v Jugate functlon of -
D,g{%). |

From what has been sald it follows that equivalent
defirdtions «f the conjugate funstions are ’

p{g) = ? U” § -z}, WiE) =  su ](-x";’+z
Rt % £ |

(X,2) & LD;E

e..

Y

Thege show that (Z) 1s the support functlonm of thekpoint
set [¢,f] for the argument (&, -1} and that —jé(g) is
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" the support quLtiﬂn of fD,g] for (-&,1). .

Fromw the above remarks the following genmﬁtrical
Interpretations of the conjJugates of convex and concave func~“
tlons are lmmedlately deriyved: ' |

36. Let f(x) in C be convex
(or concave) and closed, and let ® (&)
in /7 be its conJugate. Then [7 con=
slatp of all € such thav [¢,f] 1s
bounded 1n the direction of the vector
(E‘s"l) (or (“EI‘:L)).‘J and *?(E)
1a the z-intercept of the suppurting
hyperplane of [C,f] with the normal
vector (% ,-1) (or (-&,1))

As already mentioned, the correspondence defined
above between closed convex or concave functlons 1s involutory:

37. It @(g) in [T is the
conJugate of the cloged couvex (or con-
cave) function f£(x) 4n ¢, then
f{x) in € is the sonjugate of

g7(§ ) in /7.

Let f%{x) in ¢ be the sunjugate of 99( E ;
From the preceding statements it follows that [C ,E *1 1s the
Intersection of all supports to (C,f] whose boundirg hyper-
planes are rnoa-vertical. Thus the statement [C*,f*] = [C,F]
folleows from the

LEMMA: A clesed couvex get M in
A having supports bounded by norn-
vertical hyperplares is the intersecztion

n+1

of all these supports.



Since M is the interaection of all its supporta, K
the statement is that the supports bounded by vertical hyper— o
planes may be omitted withcut changing the intevsection. v |
point (5%, Z_ ) mnot tn M is outside some bound or Suppart
of M. It has to be shown that there 1s such a bound or
support bounded by a non-vertical hyperplane. let H be a
barrier of M such that (E°, Cb) is peparated from M by
H but (§°,Z,) isnot on H. If H 1 non-yertical
there 1s nothing to prove. &uppose H 18 vertical and let
Ht. be a non-vertical barrier of M. The hyperplanes H and
H!' divide the space antl into four wedges, one of which
containg M but not (E; C ; Now turm H about the inter- N
mection of H and H! away from the wedge contalning M, but
so 1little that H remains in the wedges adjacent to that wedge B
contalning M and that (Z°, &) 1s still separated from
M. The hyperplane obtalned bounds a bound or Bupport with the
requlired properties. :

38. Let f£(x) in C and @(Z)
In /7 be conjugate closed convex functions.
- Then
x'E < t(x)+ P(E) torxec, Eel .
To every x € ¢ for which f£¢(x,y) 18
finite for all y for which it is defined,
there 13 at least one £ &€ /7 puch that

equality 1s valild, and dually. For concave
functlens the 1lnequality is reversged.

172N

The inequallty follows immediately from-the definition
of the conJugate function. The statement concerning the equality
8ign 18 a conBequence of Propositions 31 and 36.
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In gereral there 1s r¥ simple relation betweern the

propertlies of the domalns € and [ of two cenjugate fung~ - o

‘tions. To a point x in € correspoud all pulms g
7 with the property that through the poixt (x,£(x)) o
there 18 a supporting hyperplane to [C,£] .with the xorsmal
direction (& ,-1), and duslly. Thus, the correspenderce
between the sets depends strougly on the behavicr of ’éhe‘
furetion f(x). But there ix ome very simple dlrect rela-
tior between € and /7 which will play a role in the
following: '

| If cre cf the sets iz bounded In the direc*tim N,
the asymptotic come of the otrer cre vwntalns the ray with
the divecticm e v : ‘ |

This 1s meen 1 the f‘ollmwirg way: Suppose that

C 1s bounded in the direction 7. Then [C,F] 41s bounded
in the directien (77,0) and like every set [C,f], In
gome directien (& ,-1). Since the directlons In which &
set ip bouzded form a convex core, [¢,f] 18 bounded in
all directions (§ +p% ,-1), Py 0. Hence [ contains
the half-lize § +p%, pP 0. | |

In the remaining part of this mectie:, only convex
functions are corsidered. The worregpoyniing results for con-
cave furctlors are obtained by rat;he:rv' chylous changes fal.lowg
ing from the fact that C,~-f and -~ - @ are conjJugate
if ¢, and [, @ are conjugate. Mrw:rﬂe generallys

39. Let f£{x) 1u C be a closed
convex function and @ (&) in [ 1ts
corJugate furcblon. Tasn for asy real
A # 0 the conjugate fuz:tt*n of
MAE(x) in © is /\¢? in AC.

Thig folloews from the relabinng



s (218 - Ar()) = X sup (B xE ),
XK EC ;xe ~ . Co

r,;/\>0,g§'e}\/—' and -
sup (x'E—/\f(x))'z A Anf (~—~—~§- f(x

1 x€C | X€EC
mr A<m,Ee,kF,

Other obvious conpequences. of the de‘fin:lt:icm"xT ofe‘cmn
Jugate functions are the following: | =

bo. Let f(x) in C be a closed
convex function and 50(%) in [7 1ts
conJugate function. Then the conJugate
function of f£(x) +k in €, k & cofn-
stant, 18 (&) - k in [7. 'The con~
jugate funstion of f£(x-v ) In € + v,
v a constant vector, is ?J(E) + v! 5

i [,

The first stateme vt 1s ¢lear and the gsecond follows

sup  (x15 ~£(x-v )) = sup ((x-v)?§ - £(x~v) + v'E.
X € C+v x-v &G : - -

Now let f;(x) inm C; and f,{x) in C, de closed
convex functlens, where €4 and €, have polnts In copmion.
Then f£y(x) + £,(x) 1s a convex fvmction defined in clﬂ Cpe
It 1s easily seen that this function is closed. To prove 1t,
let y be a relatlive boundary point of le'\ Cpe If
y € C; N Cy5 we have fl(x) —> £y}, £,(x) —> fg(y) as x
approaches y on any segment in €y N ¢, (Proposition 26).
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Henice rl(x) + £, (x) —> i‘l(y) + £,(y) under the pame -

condition. This 1mplies that  1im (£1(x) + fz(x)) < Gt>»wa
a8 x approaches y arbitrarily and (again by Propmsitio'n )

 26) that this 1im 1s £1(¥) + £, (y). If ¥y is not in

Clﬂ C,, we have elther fl(x) —> 00 or f,(x) —> 0O
a8 X —-—> ¥y, and hence fl(x) + fe( ) —~>00 , since fl
and f2 gre bounded below 1n a neighborhood of y.

1. ILet fy(x) 1n ¢, and f,(x)
in €, be closed qonvex functions with
the conjugates 991 in /'--'1 and
P(E) 1 [T, Asaume that C; N C,
is not empty. Denote by ﬁ(E) 1n f7
the conjugate of the funct*nn fl(x) + fa(x)
in C ﬂc Then

(%) [_F',?] = [, P+ [/-’2, ?2],
. g )
I+ /QC./_'C M +7y
and, for & n the M@ttw imbeviov a{ + f'l 5
PE) - me (PUED + HER).
€le /N, % € [,
EL v g2 =8
To prove the firgt statement, 1t willl be shown that
the conjugate of the function ¢ on the et /[’ defined by
(*) 18 fl(x) + fg(x) in lel C,. According to an obserya-

tlion made 1n connectlon with the definitlon of the conjugate
function, f,(x) and £,(x) are the support functions of
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" the mets [‘F ?,1 and o9 PZI with (x,-1) . 2= argmrrh -
Now, the set L’nl’ 791] + [f’g, ?2 and therefore its clﬁm, |
is bounded in all directions (x,_—l) in which both [ ", P4l
[/72, 9921 rare bounded, and conversely.  Hence, the - support

function of [/-'1, C?l] + [/72, 592] taken for (x,-1) 18 def’v -
fined in Clﬂ C, and equals fy(x) + f’,&(x) ‘(see‘the'e.nd'c‘.af '
Section 1 of this Chapter). The two lasgt ztatements of 41

follow from the fact that [ Pl’ Pl + 1 [_.'g’ ‘P ] consists

of all points (§ ; for which Z =¥ + 5,2, g e s
:25/7 and ?*Q’m'?{l ‘791(5 '
So 2z PlED). |

For the application of this result which will be made .
in Sectlion 6 it 1s Important to have sufficient conditions in |
order that the inf in the statement of Proposition U1 may be
replaced by min. This may obviously be done if | P s 5”1] +

»» Po] 1s closed, which will be the cege 1f C; and Cy
have points .in common which are relative interior to both
setss that 1s, if C; and C, cannot be meparated by & hyper-
plane of S(Cl L 02) in the senge of the Separation Theorem
28, Chapter II, Section 6. However, this conditlon 1s not
necessary. Necessary and sufficlent conditions in terms of |
Cl,f1 and C,,f, are rather compllicated and will not he
formulated here. To the extent that the question is of
importance it will be discussed in Sectlion 6 1in a sl}ightly
different and more intultive formulation. '

Let Gy »fy {x) where o runs through any set, Vbek
closed convex functlons. Let € C () 0, be the set of those
‘points x at which sup £ (x) 1s finlte and define
£(x) = sup ‘£, (x) for x € ¢. According to Proposition 7
¢ 1s convex, and f(x) 1s a convex function in €. This
follows also from the relation

[C,fﬂ' c';f 2
1= 0 oy 5 )
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which shows in addition that £(x) 1s closed in C.

the non-vertical barrlers of .

2. Let Cy s f,, (x) Dbe closed
convex functions and [ , B(x) their .
conjugates. Assume that the set ¢ 1in

- which syp fo (x) < 00 18 not empty and

put f(x) = sup fy (x) for-x e€C. De-

“note by I, ¢(§) the conJugate of
C,f(x). Then ‘

(r.pl= UTEEIT
W ier ciyny ,

o
and, for & &n"ﬂgf/ Felative jt'ntt-ﬂ'or‘v/ {.g’:f,
P(E) = int z Ay f’o( E

where

of : n:
£l M20 B A=t B AET-F s

1=0 1:

that is, for a given & the inf has to
be taken over all representatlons of £
as a centroid of n + 1 peints taken
from any n+l of the sets KZ .

First observe that [C,f] (W [C, ,fo 1. Thus the
polar hyperplanes of the points of [C f] are on the one hand

the common non-vertical barriers of the sets [ ﬂ;, Pl
(7,9 ] and g [ /77, P, ] have the same supports

the sgets

bounded by non-vertical hyperplanes.

[r, @] and on the other hand

Hence,

From the above Lemma it

now follows that [/, @] 1s the closure of the convex hull
of | &/l:[}, P, l. From Proposition 6, ChaptervII, Section 2,
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we have that every point (%, C,) of ig [ 92(]? is a

o,
centroid of at most n + .2 polnts %’ E e C(

C& p3 50;(1(5“1), 1 =0,1,...,n41. Thus
% - |

S _, n+1 o .
: 1
, gl} = 1‘20 )‘ig ’ }CO 2 ﬁ(i E )‘ S
wlth )-‘i 2 0, 2;;(:; )\ . This shows that [ry D? - f"Cf,(‘J/:.'(f ,

and that ;v(f) 1s an inf of the form in 42, but where &

i1s the centrold of n + 2 points. That n + 1 points are -

sufficient is seen in the following way: The n + 2 polnts
g i are the vertices of a (possibly degenerate) simplex

in An+1. The vertical line ‘through the point (g, ZO) Anter-
sects the simplex 1n a segment contalning this polint. That

point (&, & ;. ) of this segment for which Z 1s minimum is
on some face of the simp]ex and, hence 1s a centroid of at most

i
n+1 of the points (& Zo(i Since Cmin < CO, in
the expression for 99(5) the original representation of &
may be replaced by the new one as the centrold of n + 1
points. This completes the proof of 42.

43, With the notations of 42
agsume that the set C 1s bounded and
that f(x) >a in C, where a 1s a
congtant. Then if &£ > 0 1s gilven,
n+ 1 functions fxi(x), 1 = 0,1,s00s0,
‘may be chosen from the functlons f (x)

such that
5 A (x) N
z f X a - £ C
1=0 1% | 1 %Xy



. | Since [C,f]  1s clomed, € 1= bounded, and £ u
bowmded below, it follows that f£(x) hes & winfoom %, . Then
2 =%, 1s & supporting hyperplane of [C ,£], and so -
P(0) = - z,. The apswmption that C 1is bounded implies
further that /7 is the whole ¥ -space &nd that conseqnient~

1y, M= fU I } In particular, the expression for 79(5 )
in 142 way be applied for & =0, glving

gv(o = inf z Ai 990(1 §A = = Z,

, o1 | g1
where & G/Z(i, )\igo, 120/\ 1, 1§0A1§

Hence there are n + 1 points & 4 € /70( and
. 1 .

; 0, 1#0 i = 1 puch thAt

n of, n ¢
A Et=0, T AP (5N <~z +E.

1=0 1=0 | 1
For the corresponding functions 0{ (x), X € ﬂ c oy’

Px'oposition 38 gives

1§0A o, (x);xvz)\ g% z/\ 73((?;' | -£__>;a-

which 1s the desired result. :
If closed convex functlons CD( » £, (x) are giyen,
the question arises under which conditlons f£(x) = Bup £, (x)
does exist, 1.e. 18 finite for some x. This 1s the cage if
and only if the sets [Cy ,f, ] have a comson point, which
In turn is the case 1f and only 1f the sets [ /3, @] have.
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" & common non-vertical barrier. 'J.'here will be such a @mhio'n_
non-vertical barrier if j’ y ,c s P 1?5 i1s not the whole i
space A" wntle {y 13 1s the whole A", d4.e., if

f SJ /:"} has no barrier. The latter part ef the -'condi.t,10n~is-

' satisfied i the asymptotic cones A (€x ) of the sets Oy
have no common ray, for the existence of a common barrier to .
the sets [ implies the existence of a common ray of the =
cones A (C‘o( ). (Compare the remark following 38.,) To en-
sure that | L) [ /%, #1} 15 not the whole space 1t is
gufficient to assume that there is a fixed hyperplane

z=x'E° - & such that any .n+ 1  of the sets [Cy ,fo 1
have a common polnt below this hyperplane. Then the point

L (£°,Z,) camot belong to {{J [ [}, A Zd. If 1t did, 1t
would be the centroid of n + 1l points Z :d ) taken

from certaln n + 1 sets [/ ) 79“ Iy 1 = Q 1,...,n. In etlmr

words there would be numbers )\1 % 0y x Ay =1, such that
- i=0

n ofy n : n oy
EO:;:: A )\i% 5 Zowiio)\ico(i>iio)\i?«i(s.

1=0

From 42 applied to the n + 1 functlons € ,f (x),
: i 71

1 =0,1,.e00.,0, 1t would now follow that z = x' Eo - co o
is a barrier to O [Co( ,fo( ] which contradicts the assumption. |
1 1 1 o R

Thus the following theorem 1s proved:

44, Let £, 1n O, Dbe closed con-
vex functions. Assume that the asymptotic
"cones of the sets C, have no common ray
and that there 1s a fixed non-vertical
hyperplane below which any n + 1 of the
sets [C, ,f ] have at least one point in
common. Then all the sets [C_ ,f, ] have’
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. o f‘hws/ .
a commcn point, axd. gyp f (x)’_ig

finite for at least one il

In the special case where a1l £, are 1dentica11yff "
gero (and herce the sets Gy are closed) the ‘existenice of a

nyperplane with the required property is obviocus (any hyper- )
plane z =z, > 0 willl sufi‘ice) and 44 becomel Helly's

Theorem:

45. Let Cy be closed convex sets
in A". Assume that the asymptotic cones
of the sets C, have no common ray &nd S
that any n + 1 of the mets have & common
point. Then all sets have & common point. -

Obviously the assumption that the asy‘mi;totic cones
of the C, have no common ray may‘be replaced by the usual -
onie: There are sets amorg the C, which have a non-empty,
bounded intergectlon. -

, Finally some speclal cames and a.pplications of con—
Jugate convex functions willl be mer:tioned., o
Let f(x) be identically zero in a cloued conVex

get C. The conjJugate funstion.

P (&) = Bup X! E = hy(§)

is the support function of ¢, and /7 1s the cone of those
directions § in which C 1s bounded. This implies that
every support function is closed. Comversely, let (&)
be deflned, positively homogeneous, convex, and closed I &
convex cone /. Then [/[7,9] 1s a cone with the origin -
as vertex, andi hence all non-vertical supporting hyperplanes
to [[7,$] pass through the origir. This means that the
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conjugate f(x) of @ (5) is identically zero 1n some con~ |
vex set € (which must be closed 5ince r(:x) is clused in
¢). Hence .

k6., A function 79(5') ‘defined in a
convex cone [’ 1ip the support furction of
some polnt set if and only if 1t is positive-
1y homogeneous, convex, awd closed in /7 .

In the panticular case 'f, (x) = 0 the @ (&)
of Proposition 42 is the suppert furiction of the Intersection
C = n C, expressed in terms of the support functions gﬂc((f )
of the sets C, . Because of the homogeneity of the functions

%  the expresslon may here be written

ha! & ) = inf z he, (& %)
¢ E’— 1=0 V(g 3

| . 1 & . : v '
where %1 € /i, zz@i 1. %, that is, the iInf has to be

taken over all representaticns of £ ap & sum of 1+ 1 points
taken from any n + 1 «of the gets T’“ .

Consider again an arbitrary sonvex fuvctior f£(x)
elosed 1n a wonvex set (. Denocte ite vonjJugate by [ 79 %')
The supporting hyperplane z = x' E” SD E% to [C‘ 2] ‘
with nermal direction (§°,~~1 Y, EO e, intersects ‘-[G,f_]

1. & (possibly empty) closed convex ret. Let ¢{E°) denote
the projection of this set ou the hyperplame z = 0. Thus,

x is in C(Z°) Af and only if (x,£(x)) 1s in the hyper~
plane z = x' £° - ¢(§'G); that is, if

P(x) = x1EC - P(E°).

Interpreted dually, x 4s in @ § c’,‘) AP axd ouly if there is
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~a supporting hyperplane to [/’ 79] having normal direction B
(x,-1) and passing through g P §' . In partiuular, ;i
(oA ECU i1s empty if and only 1f there 1s no non—verti al ‘
supporting hyperplane to [ [7, @1 through (EC‘ ;
This 18 the case only if §'O 1is a relative boundary p@in$

of M at which the directional derivat,ive 90'(%’0 72; is
infinite. Dually, to a given x° € C there corresponds & N
Sﬁbset of [ with the analogous properties. This set will

be denoted by /7 (x°). Obviously, x° & ¢(E°) 1mplie5 -

E° € ["(x°), and conversely. ' -

The directional derivative r1{x°;y) as a fanntion
of y 18 convex but not necessarlly closed in its domain
PXO(C) - x°.° But if 1t 1s not closed 1t may be made so by -
the unessentlal changes described in connection with Propo-

- 8itlon 25. Then we may speak of its conjJugate function, which
is ldentically zero since f'(xo;y) is positively*homogenequs. 
To find the domaln of the conjugate, conslder first the aoh-
vex function f£(x°) + £1{x%x-x°), xerp O(C),. or, if nec-
espary, the function obtained by closing it. From Proposition

30 1t follows that the conjugate of this functlon is the
linear functionl

PE) =x""E - £(x°), ¥ emx").

Application «f Propcsition 40 now shows that the Wonjugate of
£1(x%y) (or of the function - ~btalned by closing it) is de-
fined in [7{x").

Let x° €& C be such that £7(x°;y) 1s finite.
‘Denote by Z{r1,x") the lineality of the cone
M =[p S(C) - xg,f”(x;y)]; that 1s, the maxirum number of

linearly independent directions in which f(x) 1s differ—
entiable at x°. Then ‘



‘/Z}(kf':xvo)g + d‘/-’(xa)) = N, ‘

where d([(x°)) 1s the dimension of ['(x°). To prove this, .
obmerve that if the cone M 1s lald off from the point (e 1),, -

its normul cone M Intergects the hyperplang z =0 in
M(x°). Hence d(m ) =1+ d(["(x°)) and, by the corollar’y
to Theore_m 5, Chapter I Section &, 2(1‘!) + d(M ) = 4 l._ '
Suppose uow that € 1is open and that f(x) is
differentiable in (. Then for every x- € Gy N (xO) con=
slsts of ome polnt & “ whose coordinates are the partial
derivatlives of f at the poiut x°. Hemoe there 18 & one-
valued mappimg.f' X E of € ounto B determined by '

(‘x) ) El = ‘;“i—i 3 ‘ iz: lgé}'-l}x].ﬁ.

If, moreover, QD(E) satisfies the same conditions as f(x),
l.e. 1f f(x) 1is strictly convex, the mapping 1s one-to-one
and, because of the Iinvclutory character of the conjugate re-

lation, the inverse mapping must be given by Xy = 5—%’—9—— ’
1

~

tation of the conjugate of a smcoth cemvex function: Let

f(x) be strictly convex, c¢losed, and differertiable 1n an
ppen convex set . Then the domain [7 of the conjugate
function ¢ 1s determired as the image of € by the ma.ppirlg
(*). By solving (¥}, the x, are found as functions of the
§1 and substituted in

1

PE) =x1§ - £(x

to give P in terms of § .
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6. A GENERALIZED PROGRAMMING PROBLEM

let f (x) in C be a closed convex furction and-
g(x) in D a closed concave function. Consider the follow- "~
»'ing extremum problem: : ' S

PROBLEM I:  To find & point x°
In CND such that g(x) - f(x) as
a function in C /D has a maximum
o
at x .

If g(x) - £(x) >0 in CND this problem, stated
geometrically 1s to find the maxlmum vertiecal chord of the con-_
vex set [C,£1N [D,g) in A™. 1r f£(x) =0 1n ¢, Prob-
lem I reduces to a programming problem, viz. to nmximize g(x)

under the condition x & C. , ‘
~Denoting by @(¥) 1in [T and ’}b ( §) in A the -

~conjugates of C,f(x) and D,g(x) respectively, consider the

gimilar problem: -

PROBLEM II: To find a pOint E°

i 'NA  such that P E) - W(E)
as a function in - FﬁA has a minimum

at EO"
. ,(;D(g)_)p(g)z‘o 1n MTNA this stated

geometrically ig to find the minimum vertical segment Joining o
the sets [[7, 90] and [A y] 1n AL, L

These two problems are cornected by

k7. Iet the fumction Ff(x) in ©
be convex &nd cleosed, ¢(E ) in [ 1ts
conjugate. Let further g(x) in D be
comncave and closed, y( £) in A its
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conjugate. If the sets €N D and F’/')A
~ are non-empty, then g(x) - f(x) 18
bounded above, ? ,E) is bound-
ed belows and if the o'ﬂi (w (n ufat‘wa imtevioy
to owe o{ Hie aeta C+ D) amd T’+(~A) thew, T
sup  (g(x)-f(x)) = .'m_f 79 E)-pEN.
Non . ‘ g € v R

- xeC

: We shall give two proofs. The first and more formal
proof 1is pased on Proposition 41 appliled to the functions  f |
and -g (instead of £1 é.nd £5). Let X(?); be the con-~ -
Jugate of f£(x) + (-g(x))- ¢ ND. From 41 and 39 it follows
that X (&) 1s defined in a set contalning [+ (-4). Since
SW{mP and A have points in comnon, I-' Z\ contains the orﬁ».gkin.‘ .

Muh,\,,, X 1s defined and, again by 41 and 39,
Tl SO - e (PN -y s
| 1+§2 =0

i gef’/m?gg %E)'-

On the other hand, the very definition of the corxjugate of
£(x) - g(x), taken for § =0, yilelds

Y(0) = sup_ (g(x) - £(x)). ,

x€CND

This proveg the statement.

- A second proof, more geometrical and more elementary,
is based on the interpretation given in Propositlon 36 of the
conjugate of a convex function. Fb-geem-rebmgivechi—trrldipnfull
Germral bbb r—an-tho-abherhand, It allows an intuitive dis-

cugssion of the existence of the extremum values in gquestlon.
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. Ir E & N4, there exist supports z g x'? ¢(§ }
. and z < x*¥ E 7&(5 of [&,f] and [p,g] reapectivelyﬁ
Since -@(E) and }#’(E) are the z-intercepts of the =
| supporting hyperplanes, ¢ (3) - »( §) 1s the vertical ‘uidth |
of the strip bounded by these hyperplanes, taken uith 8 sign L S
In the usual way. Now, fnr g & I" /)A ‘ '

f(x) 2 x' 5 - P(F), xec,
s ¢ % E-%(E), xeb,
which gives, | |
&) - £(x) § PIE) - % (E), xecnD.

(1r g(x) - £(x) >0 1in C/ND, this simply meaﬁs that
[c,£]N [D,g] 1s contained in the strip.) Hence, the left
slde 1s bounded above, the right side is bounded below, and

(1) LS (g(x) - £(x)) ¢ Eéhgnﬂ (P(F) - 74(5))f

Denote by e the value of the left side of inequality (1).
Then ' : a

g(x) ¢ f(x) +4, x&€CAND.

Thus, the only points (x,z) which are common to the_aet‘s

~ [p,gl and [C,f+p], if any, are those for which

oz = g(x) = £(x) +pL . These points are obviously relative
boundary polnts of both sets. Therefore, the Separation
Theorem 28, Chapter II, Section 6 may be appllied, and con-~
sequently, there 1s 1n the smallest flat S containing both
sets & hyperplane h which separates [D,g] and [C,f-l-/t-l
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in the sense of that theorem. The normals to 8 through the
points ¢f h form a hyperplane H of An+lv with the fcllow~
ing properties: H does not contain both sets, [D,gl is aan-;
tained in one of the closed half-gpaces bounded by H, and .

[C f+/ul is contained in the other closed halfmspace baund~

ed by H, ' - :

Suppose Tirst that there 1s a mn—vertica.l; sepa.ratingh-‘
hyperplane h in S. Then H too 1s non=vertical and its
equation 1s of the form =z = x' E° - & . Now, the distance
of the two sets being zero, H 18 a supporting hyperplane to
‘both [D,g] and [C,f+u], and thus, by Propositions 36 .
—.and Ko, ’ ‘ :

S =Y(E?) = ;zi(g‘w

 Together with (1) this shows that min(sﬂ(f) - ’}0(? )) ex-
I1sts and that '

2 su f(x)-g(x)) = min - ).
(})_ | ‘e ﬂpﬂ 13( (x) g( )) re I"/]A(?(E) V(E)‘,
Suppoge now that there is no non-vertical hyperplane.
in 8 which separates [D,gl] and [C,f+/4]. et h bea
vertical separating hyperplane and dencte by L its inter-
gection with =z = O, By precjection parallel to the z-axls
I[p,gl, [¢,f+4], and h are projected inte D, C, and h,
respectively, and h, separates C and D. Thls shows that
the present case oocurs only if € and D have no points in. ,
commorn: which are relative Interior to both mets. Hence, we Ry
conclude that 1f C N D contains points relative interior to
both sets, the minimum problem has a solution and (2) is valid.
The preceding, together with the dual Argument,‘leada'
to the following theorem: ' - ’
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48. .With the notations of 47
suppose that C and D have points
in common which are relatlive 1ntérior'
to both sets and that [’ and A
satisfy the same condltion. Then
g(x)-f(x) has a maximum in ¢ N D,
@P(E)-Y(E) has a minimum in /N4,

~and

y emgxn D(g(x)-f(x)) =§_211n (@ (% )- y(g ))

It may be mentioned without proof that if the direc-
tional derivatives f7(x;y) and gf(x;y) are uniformly ,‘A.
bounded for x € ¢ /) D and all y for which they are defined,
there is a non-vertical hyperplane separating [D,gz] and .
[c,f+44] even if C and D have no points 1ln common which
are relative interior to both sets Hence, 1f this condition
and the corresponding condition for gﬁ and Y are aatisfied,,
the conclusiona of 48 sre valid. :

A continuous furction whese domalin 1s closed and can
be divided into finltely mamvfsubsetﬂ in each of which the func-.
tion is linear, will be called a piecewise linear functlon. T,ﬂda“""
Observe that if such a functlon 1s-bounded above (below); it ‘
has a maximuws (minimum) since 1t carmcet approach its least
upper (greatest lower) bound asymptotically. Consequently,
if the functions f;g and, thus, @ , ) are plecewlse linear,
and if the assumptions of Propositlon 47 are made, the con-
clusions of 48 hold.

From the definitions of the conjugate functions it
is clear that Propesition 47 is equivalent to either of the
two followlng statements:

49, TUrnder the assumptlons of 47



inf | sup (x’f-d.‘ x)- )
3 €rna x&C y ;

L Ei;f (xf‘s’ £(x)- V(E

- and

. esg‘pn 5 ;:;u‘,-’;’ (p(3 )+g(x)-'x"§ )

= inf sup (;D( Fig(x)-x'8 ).
Fe ™4 xe&b . ~

: TF Px'sblems I and II have solutlons, as 13 the cage ,
under the assumpdiloms of 48 or if the fumctions involved are -
- plecewise linear, the outer inf and sup in the immedistely

preceding equations may be replaced by min and max respectively._ o

The pair of Problems I and II 1s eqguivalent to each
of the two following saddle value problems: e

PROBLEM ITI: Let f{(x) be coavex and
cloged in € and let 7 (E) be comcave
and closed in 4O . Put

F(x,8) = x' &~ £x) = ’V(’s’ ).

To find an x° € € and a E” € A such
that

(x, £°) ¢ F(x°, E°) ¢ F(x", §)
for all x € C and all E&4 .

PROBLEM III': Let g(x) be concave
and closed in D and let ¢(§ }  be convex .
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‘ &nd closed’ in . Put.‘ |
PLE - 9°<§>-+g<x5 -wk.

To find an x°€ D and & E EF
such that

P(E.x°) 2 PE ) 2 P(Ex)
for all 'fé 7 and all x & D;
Consider Problem III. Denste the conjugates of Gf

and 4,¥ by [,9 and D,g respectively. From the defi—
nitions of the conjugate functions we have

(3) | F(x,E)s P(E) - ¥(§)
for x€¢, & € MNA , and

(%) F(x,8) 2 g(x) -f(x)

for xecND, & €A .

| Suppcse Problem I haa a solution x° 6 CND and
Problem II has a solutlon E e NNA. PpPut ‘

g(x7) - £x") = P(E°) - Y(E®) = 4.

" Then (3) and (4) give

Hence, F(x, EO) = p and
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F(x, E°) F(xo‘, £°) -S-F(,é’“ %

for x €0, B e 4 .

Suppose now Problem III has a solution e c,
E° GA From F(x, E°) 5 F(x°, g°) for x €€ it followu
that x¥ E° - f(x) attalns & maximmi at x°.  This 1mp11es SR
| that E € 'y and that the maximum value 18 @@ (; ). Hence ; .

F<=_=»E°>=9°E -y (£,

aralogously, F(x°,§) » F(x°,E°) for ¥ €4 ylelds
%€ D and ' - o

F(x°, §°) = g(x°) - £(z°).
Now, by (3) and (4)
g»(x)-i‘(x‘) < 8(x%)-£(x°) = §D(E°)—jb(§°) 5 ’59(?)*%(5 )

for x€CND, £ € ['NA , which shows that x° and g9
are solutions of I and II respectlvely. ‘
By interchanging the roles of f and ? and of ‘YW |
and g 1t is immedlately seen that Problem IIIY also 1s equiva-
lent with the pair of Problems 1 and I3, ' : '
| The main theorem of the thecry of the zero-bBum two-'
person game 1s & partlcular case of 49.
Let K be a given m by n matrix. Let c de-e
note the set of all points x for which x > O, J

and define f(x) ==m0 in €. let A Dbe the set of a.ll points

E =aw,uz0 2 =1, and define % (E) =0 in O,
1= | |
Then

x7 & - £(x) ~y(§) = u'Ax
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gl w0 I o=l and both f’ and
| | 4-1 R S | ~ -
"D are the whole n- space since ¢ and AA are bounded. Hence,

hg yields

for b 4 ; 0,

min max w'Ax = max min , u‘Ax.
£ed x&C | xecC el

The exlstence of the extreme values is obvicus in this case.
. Let A bean m by n matrix, b an m-dimension~
al vector, and ¢ an n-dimensional vector. A pair of basic,
mutually dual, linear programming problems is:

1) to find the maximum of c¢'x subject
to the conditions x 2 0, Ax ¢ bj;

2) to find the minimum of b'u subject
' to the conditions u > 0, A'u 2 c.

If Ax ¢ b for some x QIO and A'u > c for some u » O,
both problems have solutions and max c¢'x = min b'u.

To suow that thls is a particular case of the pre-
ceding results suppose first that m = n and that A is
non-singular. Define € to be the set of all x satisfy-
ing Ax (b and put f£(x) =0 1in C. Define. D to be the
' -positivehorthant x » 0 and put g(x) = c'x in D. Then

~Problem I reduces to the linear programming Problem 1. To
determine the conjugate functions /7,®(£) and 4 SP(E)
introduce a parameter vector u by u = A¥ - & . Then

(%) = sup E'x = Bup u'Ax.
Ax ¢ b Ax £ b

 Since Ax assumes any value less than or equal to b &as x.;

varies in C, u'Ax is bounded above if and only if u 2 O,
Thus, [' 1s the set of all & = A'u, u » O and 50(5') = ulb.
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7&(3)‘511210(5 fé)fm-

" where the right side is finite (then mvm'mmae zers) 1f |
.énd only 1f & » ¢. Thus, 4 1s the set of all & = Aty ; ef;fﬁ

and %(§) =0 1n A . This 3hows that Problem II reduces
to the line&ar Problem 2. ’
o The general case where A is arbitrary rectangular :
hay'be reduced to the case Just consildered In the following
way.  Dercte by E, the 1 by 1 ldentity matrix. Inatead
of A  consider the non-gingular m+n by m+n uatrix

(“én, gm) . Complete the vectors b, ¢, X, E, u to

(m+n)-dimersional ve:tors (8), ), ) (7), (%){’

~ Then the two lirear problems take the forms: 1} to mﬂxiﬁiz&!vgf'
c¢'x subject tu the comdltions | SRR

(%) (D5 () (Dse

whigh ean be written Ax + y { b, x20, .y z 9; 2) -to_iin;e”:fj]

wize b'u BsubJect to the conditions

(C700) =0

M |
(7)zo
™ A . .
or AW -v ¥c, w0, vV »0. Since c'x and b'u do mot
depend on y and v respectively, these problems are équiva~
lent with the original Problems 1 and 2. For, if x° ,y and

uo, v® are solutions of the new problems, x? and uo 30193'
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1--iahd'2;v"arid if x° and ‘ u®  are solutions oi‘ the latter prob-,'j-,- :
~lems, x°,y° and u®, v° aolve the new ones for arbitmy
y° and v° satisfying 0 ¢ y° § b-Ax°, 0¢ v° g A ~c._
. Since the functlons occurring here are piecewiae
linear, the assumptions of 47 guarantee the existence of the
two extreme values. These assumptions take here the follow= ~' ‘
ing form: there exist x 20, y2O 'sétisx‘ying Ax + y gb
a_.nd there exist u 20, v 20 patisfylng A'u -v '; e,
Obviously, it is sufficlent to require the existence of at
least one x » O such that Ax ¢ b and of at least one
u > 0 such that Afu > c, for this x &and this u to- =
gether with - y=0 and v =0 satisfy the stated con- |
ditions. Herewith the statement concerning the linear
programming Problems 1 and 2 is completely proved. '

7. THE LEVEL SETS OF A CONVEX FUNCTION

Conslcer an arbitrary real function 99(X) defixied ;
~over & set D in A", For a given real number T the sub-
set L, of',D conelsting of those polints x of D for
which ¢ (x) ¢ T will be called the level set of @(x)
for the level T . Clearly, L. is empty for T < 1nf;¢‘,. )
and L, =D for T > sup y Therefore T will be re~ -
Btricted to the smallest interval {1 containing the whole =
range of ¢ . This interval may be finite or infinlite,- open,‘
half open, or clecsed. To exclude the trivial case when -
50(7:) 1s a econstant, 1t will be assumed that (L has in- |
terior points. In the following all awmbers T, ’5(’),..'-., _

‘are supposed to belong to L1 . On observing that ,
P(x) ¢ T, 1= equivalent to 50(x) { T for all T > -’COI;'
it 1s ilmmedlately seen that the famlly of level a_ets L’L’

has the following properties:
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I 'c"ej_n. Lg =D -
IT. ,.Lz_1 C L 1:'. T, <"C_'2.

| T,
III. M

T, | '

expty if (L 1s open to the left, |

L  Conversely, given a set D in A" "and a family of |
- gubsets L, 1indexed by the real numbers of some Lnterval and
- satisfying Conditions I-111, there is & function - ¢ de-

- fined over D for which the sets L. are the level aets.

- To exhiblt such a function define 79(::) ==L1n£ I’L‘,.: Then,
Sﬁ(x) is finite for all x € D because fog every x € D _
I ensures that some L'C' contains x while III ensures that

1r L) 18 unbounded below, there im some L"E' which does not

contain x. The level set corresponding to T, ‘of this

function consists of all x such that Inf T ¢ T,. Thus, |
L.>%. ~

x 1s- 1n this level set 17 and only if, tg every &€ > 0, there
isa T T, + & such that x e Ly Because of II this

means x & Lt‘ for all T > T, and hence, by III X € L,c"'.

A further consequence of III is that f(x) = min 'z".' This

it

equatlion establishes & one-to-one cor‘respondencg between the
functions p(x) defined over D and the indexed fa.nilies of

subgets of D satisfying I - III.
It is well known that a function 99(::) with leVel

sets L, 1s lower semicontinuous if and only if for all

Ted:

IV. LT‘ ia closéd relative to D.

The condition for upper semicontinuity:
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U L_ 1s open relative to D,
T< T, T ' N *
-~ will not be-used eXplicitly. :

: et t = F(T) bve. 8 strictly increa.aing cantinmusi[_zf
'fmction defined for T € ﬂ Denote by W the ra.nge of
F(z), T€Ll, and let < = @(t), tew be the inverse
- of F. Then the family of setg K, = £)s tew, is

‘the family of level sets of the function f(x) =F ?( ))

and satisfies Conditions I - IV 1f L,, z-.s_(z, ~does. |
For the sake of brevity two familles like L. and Kt v :
obtalned from each obher by a strictly mcreasing and con~ .
tinuous index transformation ¢ w.F’('z;') will be said to be
trangformable into each other. B

, The problem to bhe discussed in the following may nﬁw:f'$

be formulated: -

Under wasi conditions is a family
cf pets L‘?’: gatipfying I - IV trans~
formable into the family of level sets
of & convex fuiction. To avoid in-
esgential difficulties the domain D
will henceforth be assumed to he véon—'

vex and open.
An obvlous necessary condition is:

V. L, 1s convex for T éﬂ

However, this condition is not sufficlent. _ ,Cé.'ii a
function ¢(x) defined over D gquasi-conyex if )

P((1-0)xs07) g max (P(x), P())

for 0 ©¢1 andall x and y in D. The following
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Sta ement holds:

50. The level sets of a function St)(x), .
x & D, are convex if and only 1 ?(7) is

quasi convex.

To prove the necesslity let x and y be a.rbitx;a.z?j o
, 'poin‘ts of D and define T = max

X € L’L’ s ¥ & Loy andi since
Hence 90(«;.-«:«,3 oL T

be an arbitrary level set of

@(y) g
convexlty of (x}, @((1-6x

it follows that ?(x) 2T

A ;amim of gubsets

i

(#(x), (y)). Then

Lig 1s convex, (1-8)x + @y € L

To prove the sufficlency let I”E

P(x).
- oY)

L,C,'

If'xeL,L_, yE€L,.,
7 - Because of the quasi-
< 7T, that 1s (1-@)x + Gye L,

of D pgatlsfying I - v,

that 1s the fomily of level cets of a lower semicontinuous, qlmsi- o

"gonvex function gﬁfx, Jedvined over D wlth range .[2. 1s
briefly called a guagi-convex family. Suppose now L, 1s

tranaformaile into the famlly:

famlly. Then both £ {(x) and

terval W, the image of L2 Uy

right since a convex functlon
mum. Hence {J must have the

ol level sets K, te W, of
a convex function f\ o= B ;‘)uw ), briefly called a convex

@ (x)

are continuous. The in—

= ["(7T), 1s open to the

in an open domain hasg no maxi-
pame property. This implies in

particular that all sets L, = K. are proper subsets of D.
If W 1s closed to the left, _Ou. i3 closed to the left, and
conversely, and we have a = F(o(). Thus, with the notatlons
K = 1inf P(x), L =sup P(x), a = inf £(x), and

b = sup f(x) where '»ooé o4

<ﬁ<

W 1s agt<b and () 1is
equalities can only ocecur si multaneously (and, of course, ’only

1f a and o are finite).

(K T< ﬁ are denoted by W, and
A rather obvioug necessary condition which a quasi~
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convex family I“r must satisfy in order that it be trans-
formable into a convex family is o

U/ L . fop * T, E}rlo-,

L_=
17< ‘EO T Ts

-~

Thls expresses the fact that a convex functlon cannot assume
" a constant value except possibly 1ts minimum on a relatively
open subset of 1ts domain. This condition will ndt, hbwever;
be used explicitly. The further discussion of the problem
étated above will be based on the following characterization
of a convex famlly:

51. A quasl-convex family Kt’
t €W, 1s a convex famlly 1if and only

if
(*) (1-8)K, + 6K, C K

to E1 Tt
where 0 ¢ 6 < 1, to € W, tl € W,
tg = (1-9)to + ot;.

To prove this, suppoge Kt are the level sets of

the convex function f(x), x & D. Let x® = (1—e)x° + le,
where x° & Kt ’ xle- Kt" be an arbltrary point of
o] : 1
(l-e)Kt + GKt . Then
o 1
e, . 0 1 |
£(x7) ¢ (1-8)f(x") + of(x7) < (1-9)tO + 6t; = to.

Hence xge K, - Conversely, let (*) be satisfied and define
e
f(x) = min t. As mentioned above, this function has the level
5 _
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kseté Kﬁ. Tet x° and x*  Dbe arbitrary points of D and put
f(xo) =t f(xl) = ty, and %9 = (1-6)x° + oxt. Then  t  ‘_,_ |
x° € Kt , x1 & K, , and e K because of (*). Hence = = -
l e o : ‘

» e
f(x@) _ min t < te = (1-0)f(x") + Qf(_x ).

This proves the statement.
Let M be a point set. As 1n Chapter II, Section 5,_
the cone with vertex at the origin consisting of all directions _
in which M 1is bounded will be denoted by B(M). The followf;-"
ing rather obvious properticg of cones B wlll be used: - For
any two point sets M, ¥ o

B(M) 3 B(N) if MC N,
Ay = BM) for A > 0O,
B{M+NY = B(M) /) B(N).

For a quagi-convex family L'Z’" T E.Q ; trans-.

formable into a convex family:

VI. ALl setz L, T € {2, are

bounded in the same dlrectiong, that 1s

B = B(L,.), Te L), 1s independent of

T. I" L, exists, BCB(LO_()C'E.

Since this statement is invariant under index fransf‘
formations, it suffices to prove it for a family..Kt satisfyf'
ing (*). let t eW,, tyeW, t > t, be given and choose’
t <t 1in W. With 6 = (t—to)/(tl-to) the relation (*)

o}
ylelds

120



Hence, because K, CK CK, .,
' : o - 1

B(Ktl) cC B(Kt) C'.[IB‘(KtO) 2 B(Ktl)l #B(Ktl) . “ff:ff‘,

Thus B(Kt) = B(VKt ) which proves the statement.
o 1 .

If Ly @7ists, B CB(Ly) because L, & Ly .
’fé_o.o. It only remains to prove that B(L, )C B when .
Lx exists. Let & #0 be in 3(L,) and let H be the
supporting hyperplane of Ly with normal direction Ev. S
In L, there 1s some point p whose distance from . H is .
- leas that a given £ > 0. Denote by H, that hyperplane. >
~parallel to H at distance g which is separated from p
by H. In Hg consider the (n-1)-dimensional closed (Solivd)‘
unlt sphere U whose center is the orthogonal projection of
p on ‘HE - The compact set U having a positive distarivcé
_frOm Lx s there 1s by III some t > a such that Kt and - -
U are disjJoint. By the Separation Theorem 28, Section 6,
Chapter I1I, there 1s a hyperplane H! separating K, a.nd‘
U . The normal vector Z ' of H' which 1s directed to-
wards U belongs to B because K, 1s bounded in this |
directlon. The tangent of the angle formed by & and E!'
1s less than 2 € since H' geparates p from U . Hence

the ray (E) 1is a 1limit ray of rays (E’) & B. This
proves B(L, ) < B. ' N o
Since the asymptotic cone A(M) of a convex set

M 1is the polar cone, (B(M))" = B(H] of B(M) (Propo-

sition 26, Section 5, Chapter II), the preceding result

vields: ‘

52. A1l level sets of a conveX‘
function have the same asymptotic cone.
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Now let Ln, T € LL, ves family of subseta 01'
D satisfying conditlons I - VI. Denote by

n(z,g) =n, (%)

the support function of L, . From VI it follows that for. ﬂ.x- o
ed ze L), n(T,&) 1is defined over the cone ‘B and no-- .
where else. If of is finite and & 652, h(od, F) is de~
fined not only over B, but possibly on certain boundary rays
of B which do not belong to B. However, in the sequel 11: ;
will be sufficient to consider h(«,% ) for E € B. Further-— :f"‘l
more, it suffices to consider unit vectors & . By II,‘ h(z ,t)
for fixed £ 1s an increasing function of T €Ll which: may

be interpreted as follows. Let = @ (x) be the function

with the level sets L, . In the (n+l) dinensional space . BEs,
%, T consider the set [D,¢]. Its orthogonal projection upon ,
the 2-flat A? spanned by the T -axis and the vector (& '0)",'7:*
E & B, laid off from the origin is called the § -profile Ot S
®. If -E 1isalso in B, the (- )-profile is 1dent1ca1

wilth the E—profi]e. In A?“ introduce the rz,y-coordinate \
gystem conslsting of the 7T -axls and the oriented line de— . :':
termined by (& ,0) as y-axis. Every line 7T = T, Z" E.O-
in A% parallel with the y- -axis interaects the §-profile m

a segment or a ray (in the direction - &) whose end-point in
the direction £ has the y-coordinate h(z,¥ ). This f,ollcms.“:f

because for Hg‘“ =1, h{7T,, §) 1s the distance from the

origin to the suppor‘tir‘p‘ (n- 1) flat with normal direction § -

of L"E' Thus = h(T,%) or, in case -§’E—B, ya"v
o .

h(z,¥) and y = -h(T,-&) are the equationé of the boundaz'y

of the & -profile. L :
Suppose now there 13 a strictly 1ncreasing continuous

function t = F(7T) such that f(x) = 73(1: is convex 1n
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D. Then the sets K, = Lg ), T'= () the nverse ar;.
~t » F(T), satisfy (*) and, hence, by the properties of
- support funetions stated at the end of Section 1. g

(.1~—~9_)h(§(to).. )+ eh@(tl).t-:)

T~

(%) n(Blrg), E)

where to = (1-6)t_ + 6t;. This means “that h(é(t E) 1s
a concave function of “t for fixed & € B “hsigor thﬁ
fact that the E«grmiles of F(@(x)) are convex sets. Py
: Conversely, yzppoge there exlists a strictly 1ncreasinglu,
'continuoub function t© = F(T), Z‘&ﬂ s T o= é ;, té& W;
" such that for a family qugﬂr € L1, the function Mi e

h( é(t),ﬁ) is a concave function of t f'or every fixed L
E € B, that is the E -profiles of F(;v are all convex. o
It follows from this hypothesls tha qﬁ(x 1s a convex
‘function in D. To prove this it *3 sufficient to prove (*)
Now (**) 1z valid and for two point sets M and N,

hM(E) < hN(E) implies {M} C [N} . Hence

K, ™o (1-8)X, + oK/ :3(1-9)1{ + 0K, .
i’9 s tl to tl

Condition IV ilmplies £ N D = K . Consequently

Lo

. L) = (1-e)K, + 6K

8 O 1 (o)

K, 2D M ((1-6)K, + 8K

t tl.

The latter equality follows from the inclusionsg Kt' < Dy
o} _ -
Kt C D, and the convexity of D. This completes the proof
1 : ,
of the followlng theorem: '

53. Let L,, € L), be the

family of level sets of a lower gemlcon-
tilnuous, quasi-convex function ?(x)
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such that the cone ‘B(L,) =B 1s independ-
ent of T for 7€ L) . Let h(z,§),
£ &€ B, be the support function of - L«
Further let ¢t = F(’C’) be a strictly in--
¢reasing continuous function and o

= ®(t), t W, 1ts inverse. Then"
F(c?(x)) is convex for x & I if and only
1f h(P(t), %) for every fixed £ & B
i1s a concave function of t € W, that is

h(T, E) - (T, E)  n(T,, %) - n(T,E)
F(T,)-F(T,) % mz-j)—F(rg)

for any three numbers T, < T. < T. in L1,
‘ 1 z 5

This condltion may be given a different form.-‘If
h('tg,-E) = h(7T, £ ), the inequality implies h(’f E)
(’Eé,E) since h(7,%¥ ) 1increases with T . The inequality
being trivially satilsfied in this particular case, it is equiva-
lent to ‘

F(T,) - F(’Z'g) 'Z:‘ ,8) - h( (T,,8)
F( 72) - F( Tl) h(fg:i ) = h( 'Elag)

the right-hand side being interpreted as. O whensver the de-
nominator vanishes. The quantity : L

— . 1’1(’:‘3;2) - h(TEJE) :
W (T, Th Ts) = §S€L-lpB B(Tp, 8) - B( T, 8

. . o -
which only depends on the family L _., 1s used #iee state the
necessary condition: ' '

VII. There is a strictly increasing
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. continuous function F(’L"), 'Z," E.Q
. such that.

(%ex) | F(I3)~F(,'tz) 2 '(F(,Tg)'—F;( ’L‘l))}t( Tl,'t'gx%)

for any three numbers :17~ quff < T,
Pers e S T2t

in _(Z.

From the precedlng it 1s clear that I - VII are nec~‘,-
essary and sufficient conditions in order that a family of sub-
gets of an open convex set D ‘sultably indexed by real numbars,
forms the family of level sets of a convex function defined
over D. While I - VI are simple and intuitive, VII 1s'father
complicated. There 1s no simple test to decide whether the '
function (T, Tps T5) 18 such as to admit a strietly in~
creasing continuous solution of the functional 1nequality
above. Both local and global properties of (T, Tphs ¢'3)
enter decisively. Compared with the original problem there -
seems to be no progress. However; VII has the advantage df;
leading to a kind of constructlion of the requirPd function - ‘
F(r). To indicate the procedure the following remarks may ”?‘V;?'
be added. ' A
. Iet T, < T, < T be fixed in {1. Select numbery
'zi, 1 =1,...,p + 1 Buch that T R

T, < '2.’2< ees < z,—p< 'z'pﬂg"z'.‘
Then (*¥*) yilelds
F(Ty)R(Ty) 2 (F2)-F(T0)) 20Ty T i)

for 1 =1,...,p. Multiplicatlon of these inequalitiés'for k
1=1,...,] <P, glves ’
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F(tm)-F(ch) 2 (F(7))-F(T,)) ;l;f;x( Ty Ty Twl=

: ‘S_tmination' over J gilves .
, A | o 4

CR(7)-F(Ty) 3 (FOT)-F(T,) = TTac(r,_ 1’ 'zi, 'cm)
. ' = Jsl A=l S
Hitkh»tbbs notation
| | op 4 X

where the sup is taken over all subdivisions Tl < 7,'2 < vos. < 2" ( '7;
of the interval 'Z'l, Ty Ja R

F(T)-F(T,) 2 (FOT)-F(T)) Kl To Tys Bhe
Thus k(T T1sT) has to be finite for all T, < T, < T
in (). This involves a mixture of local and global conditions
on 7 . If k 1s finite, a functlon F(7) which has the de-
gsired properties for 7T > T, may be obtained as follows.
Tt is easlly seen that the values of F(7) at two points, -
To and 7, say, may be prescribed arbitrarily. Then any"";_.k;,"‘
strictly increasing continuous function F(7T), T> Ty

satisfying
F(z) 2 FlTy) + (F(7)-F(T,)) k(,id" 7"1’7")

can be shown to have the required properties. Such functions
exist since k(T,, Ty, T) 1s increasing in 7T . In similar
ways the function can be constructed for 7 between T, ‘
and T, and for T 1less that T . ' .
In the next section the construction is carried

through in the case of smooth functions.
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8. SMOOTH CONVEX FUNCTIONS WITH PRESCRIBED LEVEL SETS = .

Let D be an open convex set in AT, The’probiém'il
discussed in the preceding section will now be solved under ' 
the assumption that the prescribed subsets L,. of 'D'<ar§g' i |
the level sets of a twice differentiable function =T = ¢ (x}. .
As in Section 7 we set o = Inf @(x), ﬁ = sup P(x). We
ask for a twice differentiable strictly increasing function -
F(T), o« & T<p, such that £(x) = F((x)) 1s convex
in D. We start by derlving necessary conditions, which will"
turn out to be sufficient. The results of Section 7 will not -
be used. o

We introduce the notations

o @ -
>x, - P S e

1,3=1, e y0s
2%2@ 22 .
3xi§)i;?“ 7913" axi-éxj 13’

The derivatives of f(x) = F(¢ (x)) may then be written

(i) - £, = F! 901,

(2) £,y =F'P P+ TPy

Suppose now f(x) = F(¢(x)) 1s convex. Then £(x) has no
critical points except possibly those at which 1t attains its -
abgolute minimum. Obviously, ¢P(x) must have the same c

property.. We formulate this as the first necessary condition: . -

A. f(x) has no critical points
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except those where it attains 1ts absolute
minimum, 1f such a minimum exists. a

From (1) and F'('z-) > 0 for ’C‘ < ,5 11: thero-
fore follows that Fi(T) >0 for T o( . Now £(x) 4s conx-‘;l‘;’
vex 1f and only if for every fixed xebD. the quadratic form
1sz §Eyy = PP P, (x)y;)2 + PP B ﬂj(miy
L5 : , v
in the varilables Yy: 1 =1,¢:.,n, 1s positive semidefinitg,,f-7~
If P(x )3 and henze (f(x)) has a minimum, this con=-
dition 1s obviously satisfiled at all polnts where the minimum

18 assumed, that is at all x & Ly . This _is because ¢i = 0. -

and z <,vi‘jyiyJ is positive semidefinite at these points. -'
1, ~ - IR
Hence 1t 1s sufficilent to conslder those x for which

@(x) > K. For such x, F! » 0 so0 that the notatlons

P!  x

o ‘ﬁ U-(x) = F' f X y
(3) Qly,y) = Z > . + O (S '.52,~'
( ) | (y Y) 1 ?iwjinJ 1 ?D;LY.L ‘

may be used to replace the previous cox.'ldit'io'n by: Q(y,y)

positive semldefinite for every X in D but not in L“ . :
. Let such an x be fixedd The characteristic deter-

minant of Q(y,y) 1s | - o

i

cg(A) = | @y - A 513 - TP P,

- Py - A gij + °' 791 7 A
0 | 1
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abtraction of sultable multiples of the added °°1“mn'fr¢m C
the other columns leadgto S : :

?,, - LA |

Co(A) e
- 0-79J 1

[ ]

This determinant equals the minor of its lower right hand
corner, plus the value of the determinant when 1 1s repiacedv '
by zero. Thus the characteristic determinant of Q(y,y) takes

the form

' | 4} 9%J - Aféaj : ?i

(1) oA = [Py - AEy| - o |
7G ‘ 0

If it 1s written as a polynomial in A s

CQ()\) =T - T 1A+ .o+ (F1)7T ) AT,

we have T, =1, and Tp, _)o'z l,...,n, 1s the ¢pth

elementary symmetric function of the characteristic roots.
' The first term on the right side of (4) is the char-

acteristic determinant 9

Cp()\) =8, -8, 1A + ...+ (-1)%, A"

of the quadratic form

P(y,y) = = @, . ¥:¥s»
i,Jﬂ,jiJ
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Here SO = 1, and .SP , £ = l1,...,n, 1g the pth elemehtary
symmetric function of the characteristic roots of P(y,y). We
~are going to show that the seCond term of (4) 1s essentially

v the characteristic determinant C (,\) of the quadratic form

P (y,y)‘ in n-1 variables derived by speclalizing P(y,y)

to the hyperplane 2 <?3y1 = 0. The characteristic roots_of

P (y,y) are the stationary values of P(y,y) subject to the
constraints ? gﬁyi = 0 and ? yig = 1. Hence, by the multi-

plier rule, they are the statlonary values of the function

. 2
iZJ Pig¥idy + 22 2 Py, - /\(i_yi - 1)

with ¥y urrestricted, 2z and A denoting the multipliers..
For the critical points Jq this gilves the condition’

(5) Zj G’Dijyj + z ¢i - A yi =0
(6) 53 Pyyy =0
(7) s y,% = 1.

. 1 i

The exlstence of a solution Y45 % of this system implies

| 2P A 513 7?3’
(8) = 0.

@, 0

Suppose that A satisfies this equation and that ¥y, 2 sOlve
the system (5), (6), (7). Multiplying (5) by y; and summing
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4r 1, we see that ?“yiyj = A so that /\ 1s the

itationary value 1n"question. Bence-(8) 1s the characteristic
squation of P (y,y). Formally the left side of (8) is a
polynomial of degree n in A . However, the coefficient
of A" vanishes. The coefficient of AP 1, which is -
needed for normalization, 1s obtained by dividing the deter-
minant (8) by A" ! andletting A—> 00. If this is done
by dividing each of the first n rows by A and multiply-
ing thereafter the last column by A, the coefficlent is
easily found to be R -

"l O » 0 0 O ?l
o -1 N O 992

With the notation

2 : 2
¥ =32
: 7,
we therefore have
- A
* 1 ¢1J glj ¢i
C (A) = Ty °
P k2

?, 0
If this 1s written as a polynomial

* ¥ * n-1l.*% n-1
CP( A) - Sl’l—l - Sn_2 A + .. + (‘-‘l) SO A Fa
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then s = 1 and 3;' is the fath elementary symmegfric func-'
tion of the characteristic roots of P (y,y) HEnce, (4) may
be written : ' »

- I
Oq=Cp + Tk Cp -

Thefefore

(9) To = So +(7k28P‘1, p=1,...,n.
Now Q(y,y) 1s positive semidefinite 1f and only ir
all characteristic values are non-negative, that 1s

(10) T 2 0, P=1,.00,m

.As 1s well known, this impliles that if one ?f = 0, all the
. following TP vanish too.

Looking for necessary conditlons that there may ex-
ist an F(7 ) such that F(® (x)) 'is convex, we assume (10)
to be valid. The expression (3) shows that P*(y,y) agrees

with Q(y,y) for y; satisfying = §3yi = 0. Hence,
1 .

#* . )
P (y,y) 1s positive semidefinite and thus

. .
Sf’l ; O’ fg l,-.-‘,n-
Let
My 2 Moz v 2 e
and

* ¥ ¥*
M2z e 2

: ¥*
be the characteristic values of P(y,y) and P (y,y)
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fixed x € D the quadratic form s 7%J(x)yiyj.- |

’ 2
"restricted to the hyperplane I Pi(x y; =0
. ' 1 '
be posltive semidefinite, and if r - 1 -de-
noteg itys rank, the rank of the same form ‘

without the restriction be at most r,

This han only been proved for x not in de.. However,
for x € L_, we have }Di(x) = 0 and the L,tatement is obviocusly
true., ' ‘

The ['rsht part of the condition, P¥*{y,y) positive:
gsemidefiniie, expregses Lhe é:onvexity of the level sets of qD( )
- The second part Ic crivialt vy satisfled when P*(y,y) has the
maximal rank -~ 1. AL points x where r < n 1t restricts
the local uwenaviour of fﬁx} in & way Indicated by the follow-

. 1Ing example: ' '

‘ Let »n = 2 and assume that for each T, of a cer-
‘taln subinterval of «, ’)'Zf B the curve gﬂ(x) z, (z, a
constant) contalng a segment depending smoothly on ’Z,’Onb Then
the rank of P*(y,y) 15 zero at the points of the segments.
The surfaces 7T r?’(x) and, hence, t = f(x) then contain
pleces of ruled surfaces whose generators are parallel to the
X X,-plane. Such a ruled surface can only be convex 1if 1t 1s
a cylinder, that 1s if the generators and, thus, the segments
are mutually parallel. This 1s Just what the c:Ondition, rank -
of P(y,y) at most one, requires in this case. ‘

- Even if CB~"X) is an analytic function, the
rank corlditiorx may restrict 1ts local behaviour. Take
agaln n = 2 and assume that the curvature of a curve wher'e

@(x) 1s a constant vanishes at some point. Then the rank
conditlon requireg that the Gaussian curvature of the sur-
face T = @(x) also vanish at that point. _

Consider again a flxed x not in L, . In view of

(9) and because of Sf = S;—l = 0 for £ > r the condlition

134



(10) reduces to o » T where

o | sf,_

o =g (X) = max (-' 5w ).

1 4pS T kS
Let this maximum be attained for P = .. For the coefficlents
of the characteristic equation of Q(y,y) with o replaced
by O we then have ' -

- - 2 S
the equality slgn being valld for p = .j%, As mqntioned a=
bove, this implies Ti =0 for ¢ > £,; hence, in par-
ticular, for P =1 f£,. This gives o

(11) ’ a- =T T5 s
. : ’ k'S

*
r-1

For each fixed x not in Lo, and T = <P(x) :

we therefore have

: " '
(12) g ?{, == O'(T su x) = sup Sp »
§~ gxx =T 2" :
_ k Sr 1

where the sup has to be taken over all x € D for which
' 79(x) = T . Thus, we have the further necessary condition:

s

C. If for a twice differentiable,
strictly increasing function F(<),
< ’E<v £ , the function F( P(x))
1s convex, then
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| - PE)=r L KTS,

‘ _ Conversely, let there be giveh a twicé‘diffefentiable '
function T = 7Kx), x,é-D,' and a twilce differéntiable,'Strict+.
1y increasing function F(7T), X (&, T < B, where o = inf @
~and ﬂ = gup gD, such that conditions A, B, and ¢ are sgatis-
fied. Then f(x) = F((x)) 1s convex in D, We have to

Vghow that the quadratic form izj fijyiyJ is positive‘semi-
definite for each x € D. For éhe points x € L, , '1f'any,

this 1is obviously the case as mentioned at the beginning of

this sectlon.  Fur x not in L, we have to show that

Q(y,y) 1s positive semidefinite. Because of C,

i} ~ _B" 2
S
r ‘ 2
2 R PrVaTy - 55— (& PV,
Oy Py T AT Pr¥y

It therefore suffices to prove that the latter form, call 1t
Q*(y,¥y) 5 1s positive semidefinite. From (3) and (9) 1t 1s seen
that the QOefficientsvof 1ts characteristic equatlon are

T v gt =1
f - Sf - S* S_F"l" . f = ,aou,na
r-1 » \
* _
.Now, S? = Sf~1 = 0 for f=r+1,...,n, because of B.
Hence )
Tf’ = 0, £ =.r,r+l,,n.,n,

which shows .that the rank of Q'(y,y) 18 at most r - 1. On
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thé other hand, _Q'(y,y)k’festricted to the hyperplané
p 991y1 = 0 agrees with P*(y,y). ‘Because of B, ‘
1 ; o
P*(y,y) has r - 1 positive characteristic roots.

Hence Q'(y,y) must have the same property. ‘This
proves the statement.
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HISTORICAL NOTES
CHAPTER T
CONVEX CONES

Sectiong 1 - 6. Important contributidns to the theory of
convex cones are contained (more or less explicitly) in Minkowski's
posthumous paper [48]. The basic paper on the subject is, how-
ever, Part II of Steinitz's paper [57]. Practi%ily all the con-
cepts and results of Sections 1 - 6 are to be fbund in this
paper. Alsc many of the proofs given here are based on 1deaé
due to Steinitz.  Polyhedral convex coneg have been the subJecﬁ_

of several more recent exposltions, namely Weyl [66] (with
purely algebraic methods), Gale [21], Gerstenhaber [24]. ,
Section 7. As menticned in the text, the theory of (poly-
hedral) convex cones 1s closely related to the theory of
(finite) systems of linear inequalities. For the latter theory
and 1lts various geometrlical iInterpretations the reader 1g re-
" ferred to Dines and McCoy [16] and especlally to the disserta-
tion of Motzkin [49]. Included in the latter 1s a very com-
plete bibliography up to 1934. Of more recent papers Dines
[14], Blumenthal [5], [6], Levi [42], La Menza [40], Nagy [50]
may be mentioned. Further referenceg may be found in Contri-
hutions to the Theory of Games (Annals of Mathematics Study
24, Princeton, 1950). | |
For the second interpretation used 1n Section 7 seé algso
Gale [21]. Theorem 17 for polyhedral cones has been announced
by Tucker [63]; the corollaries III - VI are likewlse due to

Tucker.

CHAPTER II

CONVEX SETS
For the literature up to 1934 concerning baslc properties
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of convex sets the reader 1is referred to the report [8] by
Bonnesen and the author. Attention 1s called to the disser-
tation of Straszewlcz [60] which gives a comprehensive

- account for compact sets and to Part I of Steinitz [57] which
deals with arbitrary convex sets. For convex polyhedra see
also Kirchberger [36] and especlally Weyl [66]. More recent,
malinly expository articles are Dines [14], Botts. 9], Bate=
man [3], Macbeath [45]. For a generalization of the concept
of convex sets see Greenand Gustin [25]. ‘

Section 2. 1In Propoéition 6 (stating that every point |
of the convex hull of a polnt set M 1s a centrold of at most
n+ 1 points of M) the maximal number n + 1 can be re-
placed by n if the set M has certailn properties of
connectedness. See [8] p. 9 for references to the first papers
on this subjJect. Further references are Bunt [11], Hanner
[28], and especially Hanrer and Radstrom [29]. The following
guestlon is likewlse connected with Propositicn €: What 1is
the smallest positive Integer p with tre property that every
poeint z relative iInterior to the corvex hull of a set M of
linear dimension d > O 1s relatlve interior to the convex
hull of a subset of M with linear dimensior 'd consisting
of at most p points? The answer is p = 2d as is easlily
Been by applying the Corollary to Thecrem 8 (Chapter 1) to
the cone with vertex =z consisting of the rays which Jjoin
z with the points of M. This result (essentially due to
Steinitz) occurs implicitly in the discussion of systems of
linear inequallties of the form Ax ) 0. (Cf. Chapter I,
Sectlon 7 and e.g. Dines and McCoy [16], Dires [14].) A
direct proof has recently been giver by Gustin [26].

Sectlon 4. Projecting cones and normal cones were in-
troduced by Minkowskl [48], the cones of directlons of bound-
edness and asymptotic cones by Steilnitz [57]. For the theory
of asymptotic cones and various applications see Stoker [58].
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The concept of s- convexity (under the name of even convexity)
is introduced in the author's paper [19].

Section 6. The Separation Theorem 27 1s due to Minkowski
[(48]. The useful statement 28 1s slightly more general. Theorem .
I of Klee's paper [37] may be considered as a generalization of
Proposition 27 to an arbitrary finite numbeér of compact convex
sets. . ,
Section {. For literature cdnéerning extreme points and
supports see [8], p. 16, further, for polyhedra, Weyl [66].
Straszewicz [61] has szhown that in Proposition 33 it 1s suffi-
‘cient to conslder "exponed poilnts” instead of extreme poiﬁts.

An exponed point of a closed convex set 1s by definition a
'point of the set through which there 1s a (supporting) hyper-
plane having no other points in common with the set. -

Section 8. Convex sets in projectilve spaces have been
consldered by Stelnitz [57], Part III. (For a problem in
connectlon with the definition see alsc Kneser [38].) The polarity
with respect to the unit sphere has been 1ntroduced by Minkowski
[48], p. 146-T; cf. also Haar [27], Helly [31], von Neumann [65],
Young [67], Bateman [3]. For generalizations to certain un-
bounded sets see Radstrdm [54], Lorch [44]. Arbitrary polari-
tles have been considered by Steinitz [57], Part III, and, as
in Section 8, for sets which are not necessarlily closed or
open, by the author [19]. |

CHAPTER III
CONVEX FUNCTIONS

For the history of the theory of convex functions, various
applications, and generalizations as well as extensive bibli-~
ozraphles the reader 1s referred to Popoviciu [51] and Becken-
bach [4]. Apart from some references to basic papers, only
more recent papers dealing or connected with the toplcs of this
report are quoted in the sequel. A modern, detalled exposition
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of many basic propertles of convex functions 1is given in Haupt,
Aumann, Pauc [30], I, Section 4.8, Section 5.4.2.1, Section
5.5, II, Section 2.2.5, | | S
Section 1. Proposition 4 which comprises many of the
classlcal 1nequalitiles of analysils seems to haVe been the ,
start of the theory (H6lder [32], Brunn [10]}, and the basic
paper Jensen [34].) Convex functions defined over arbitrary
point sets have been considered by Galvani [23], Tortoriei [62],
and especially Popoviciu [51]. Homogeneous convex functions
(gauge functions, supports functions) were introduced by
Minkowsk1 [47]1, [48]. For further references see ([8] Secfionv
4. A recent papér 1s Rédel [55]. See also the exposition by
Bateman [3]. B | |
It should be pointed out that Propositions 5, 10, 11, 14, -
which for systematic reasons are deduced directly from‘thé
definition of convex functlons, are immedlate cOnquuences of
the existence of a support through every point x,f(x) (proved
in Section 4). , ‘ ' '
Sections 2 - 4.. For references COncérning the well-known
continulty properties of convex functions see Popoviciu [51].
The question whether a convex function 1s necegsarlly absolute-
1y continuous has been-discusséd by Friedman [20], the answer
being affirmative for n = 1 only. For the behaviour of a
convex functlon at the boundary of 1ts domain (Propositions
24-26) see the author's paper [18]. .
The first proofs of the exlstence of the ope-sided de~
rivatives of a convex function of'one variable and of the
directional derivative of a convex function of several
variables seem to have been given by Stolz [59], p. 35-36
and Galvani [23]. The latter concept has been applied to
the study of homogeheous convex functions by Bonnesen and
the author [8), Section 4. The discussion of the direc-
tional derivatives of arbitrary convex functlons as gilven in
the present Section 4 probably has not been published
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elsewhere. A new approach to the study of certain smoothness
properties of convex functions has been made by Andérson_and
Klee [2]. Busemann and Feller [12] and Alexandroff [1] have
proved the almost everywhere existence df a,secohd differential o
of a convex function of several variables. A new definition

of smooth homogeneous convex functions based on the definité—‘
ness of the quadratic form occurring in Proposition 35 has been
proposed by Lorch [44]. ,

Sectlon 5. The conjugate of a convex function of one
variable has been defined by Mandelbrojt [46]. For the general
concept and some of 1ts properties see the author's paper [18]',
The inequality stated in Proposition 38 has a well-known -
analogue for homogeneous functions: Let F(x) and H(Z)
be the gauge function and the support function, (respectiVely),
cf a convex body € containing thelqrigin in 1ts interior.

Then

x' £ < F(x)H(E)

for all x and & . (Cf. Helly [31], von Neumann [65], Young
[67], Lorch [44].) This may be consldered as a special case
of Propositlon 38. For, put f(x) = 0 for x &€ C, that is
for F(x) ¢ 1. Then ?(E) = H(Z) and hence

x'E ¢ H(E) for F(x) ¢ 1.

Because of the homogeneity of F this is equivaient to the
above inequality. ‘ '
The rest of Section 5 1s unpublished. . The corollary,
Proposition 43, 1s a slight generallzation of a theorem due
~ to Bohnenblust, Karlin, Shapley [7]. Helly's Theorem, which
appears here as a corollary (Proposition 45) and various
generallzations have been the subject of many recent papers}
Vincensini [64], Robinson [56], Lannér [41], Dukor [17], Rado
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[53]1, Horn [33], Rademacher and Schoenberg [52], Karlin and
Shapley [35], Levi [43], Klee [37]. For references to the
older papers see [8] p. 3. Propositlon 46 generalizes Minkows—'~,‘
Ki's well-known characterization of the support functions of
(compact) convex bodles. See (8], p. 28 for the older litera-
ture. Further references are R€dei [55], Bateman;[}]. ' The
determination of the support function of the intersection

of convex sets following Proposition 46 seems to be noted

 for the first time by F. Riesz (who communicated it to Lanner,
see [41])

Section 6. Unpublished. The results generalize the
'duality property of linear programming problems proved by Gale,
Kuhn, Tucker [22] to non-linear problems of the type conslder-..
ed by Kuhn and Tucker [39]. The consideration of completely
arbitrary closed convex functions 1s essentlal fdr the formu-
lation and the validity of a simple duality theorem. For the
theory of programming problems‘in general the reader 1s rée
ferred to Activity Analysis of Production and Allocation
- (Cowles Commissiorn Monograph 13, New York 1951). ’

Section 7. The problem of the exlstence and the deter~'
mination of a convex function with préscribed level sets: was
" raised and studled by de Finettl [13] uhder the assumptlon that
the domain D and, thus, all level sets are compact and con-
vex. In this case the Conditlons I - VI are trivially satlsfied.
The part of Sectlon 7 dealing with these conditions in the '
general case 1s not published. Condition VII 1s a generali-
zation to the case considered here of a result of de Finettil.

For detalls of the construction of a convex function the read -

er 1s referred to de Firettl's paper.

Section 8. Unpublished. In a footnote de Finetti [13]
states that 1in his case of a compact D the smoothness of
the function @ (x) implies the exlstence of an F(7z ) such
that F(@ (x)) 1s convex. This contradicts the results of
Section 8 of the present report. Apparently de Finettli had
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overlooked the fact that the smoothness of “?7 does ﬁot Imply
the smoothness of the support function h(§ ,7). This 1s only
the case i1f the rank r - 1 introduced in Section 8 has its
maximal value n - 1 everywhere in D Then the quantity o
(see equation (11)) is easily found to be ‘ :

= _ 3°p d h
o o 2:2/// éazri

At points where r < n, the second derivative may not exist
even 1f 7) is analytic, ' |
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INDEX OF DEFINITIONS

- Asymptotic ¢one, 42

Barrier, 45

v QS(M), 46

Boundary ray, 2

Boundary ray, relative, 3
Bound of a set, 45

Centroid, 36

Cloged cone, 2

Closed convex functibn,.78
Concave function, 57 '

Concave function,
" strictly, 57

Cone, 1
asymptotic, 42
closed, 2
convex, 5
convex hull of, 8
dimension space S(M) of, 3
extreme ray of, 20
extreme support of, 21
lineality of, 3
lineality space of, 3
linear dimension of, 3
normal, 9

of directions of
boundedness, 46

open, 2

polar, 10

polyhedral, 22

projecting, 41

support of, 6
ConJugate function, 90

Convergence of a sequence
of rays, 2
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Convex'COne, 3
Convex family, 118

-Convex function,_57

closed, 78

- strictly, 57

Convex hull of a cone, 8
of a set, 36

Convex set, 36
‘extreme point of, 51

p- Convexity of a hyperplane

set, 52 -
of a point set, 52
s-Convexity, 42

[p,f],

Dimension, linear, of a
cone, 3 :

- of a set, 39

Dimension space S(M) of a
cone, 3

Directional derivative, 79'

& —neighborhood of a ray, 2
Exterior ray, 2 ‘

Extreme point of a convex
set, 51

Extreme ray of a cone, 20
Extreme support of a cone, 21

Flat, 32
oriented, 45
supporting, 45
non-vertical, 88
vertical, 88

Function, closed convex, T8

concave, 57
conJugate, 90



Function (continued)

| convex, 57
plecewise linear, 109
posltively homogeneous, 66
quasi-convex, 117
strictly concave, 57
strictly convex, 57

Hyperplane gset, p-convexity of, 52

Interior ray, 2

Level get, 115
Limit ray, 2
Lireality of a cone, )
Lineallty space of a cone, 3
Linear comblnatlon of polnts, 29
Linearly dependent polnts, 31
Linear dimension of a core, 3

of a set, 39

Metric on rays, 1

Neighborhood of a ray, 2
Non-vertical flat, 8&
Normal cone, 9

Open cone, 2

Oriented flat, 45

p-Convexity of a hyperplane
~set, 52
of a point set, 52

p-Flat, 32

p~3Simplex, 32

Plecewlse linear functlon, 109

Point set, p-convexlty of, 52

Polnt, relative boundary, 39
relative interlor, 39

Polar cone, 10

Polyhedral cone, 22
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Poéitively homogeneous
function, 66

E -profile, 122

Projecting cone, 41

Quasi-convex family, 118
Quasi-convex function, 117

Ray, 1 |
boundary, 2 ;
£ -nelghborhood of, 2
exterlor, 2 -
extreme, 20
Interlior, 2
limit, 2

" metric, 1
relative boundary, 3
relative interior, 3
topology, 1

Rays, convergence of a
sequence, 2

Relative interior point,39
Relatlive interior ray, 3
Relative boundary poilnt, 39
Relatlve boundary ray, 3

s-Convexity, U2
Set, barrier of, 45
bound of, 45
convex, 34
convex hull of, 36
ilmengion of, 39
support of, 45 .

llnear

support function of, 67
supporting flat of, 45
Simplex, 72

Strictly concave
function, 57

Strictly convex function, 57



Support, extreme, of a cone, 21 Topology on rays, i
- function of a set, 67 Transformable families, 117
of a corie, 6
of a Set, 45 »
Supporting flat of a set, 45

Vertical flat, 88



