Solutions to Selected Exercises in Chapter Two

Exercises from Section 2.1
2.1.1. See [410, Theorem 4.43]. O

2.1.2. For x > x, x € I, the three-slope inequality (2.1.1) implies
f(@) — f(xo)

pra— > f (o).

For x < x¢, x € I, the three-slope inequality (2.1.1) implies

f(x) — f(o)

r — X0

< . (o).

Hence f(x)— f(xo) > Mx —x0) for all 2 € I whenever f/ (z9) < XA < f! (x0). Considering x > o,
the three-slope inequality (2.1.1) implies f’ (xo) = sup{A : ANz —x¢) < f(x)— f(xo) for all z € I},
and by the above, f’(z¢) is the maximum such . O

2.1.3. Suppose T : E — F is a linear mapping, and let A := yg + T where g € F. Then for any
A € R, we have

Adz+(1-=Ny) = TOx+(1-Ny)+o
AMTz)+ (1= 2)(Ty) + yo
MTz +yo) + (1 = N)(Ty + yo)
= Mz + (1-)\)Ay

For the converse, suppose A : F — F'is an affine mapping. Let yo = A(0), T'(x) := Az — yp and
k € R. Then
T(kx) = A(kx)—yo= A(kz+ (1—k)0)—yo
= kA(x) + (1 —-k)A(Q0) — yo = kA(x) — kyo = KT (z).

Furthermore,

Tty) = A+ =4(520+ 50~

= %A(QJ:) + %A(Zy) — o = %[A(Ql‘) — yo] + %[A(2y) — Yo
= JT() + L T(2) = T(x) + T(0)

0

2.1.4. Suppose f is positively homogeneous and subadditive, then for z,y € X, a > 0 and 8 > 0,
we have

flax + By) < flax) + f(By) = af(z) + Bf(y).

This shows f is sublinear. Conversely, suppose f is sublinear. Then clearly it is subadditive by
choosing @« = 1 and 8 = 1 in the previous inequality. Now f(0) < 0- f(z) +0- f(—z) = 0 and



£(0) < f(0) 4+ f(0) implies f(0) > 0, and so f(0) =0. When A =0, 0 = f(0) = f(Ax) = Af(x),
now for A > 0,

FOw) = fa+0) S Af(2) +1- £(0) = Af(z) = Af(A\"'Az) < XA f(Aa)

where the second inequality follows from the first. O

2.1.5. Suppose f is a convex function. Consider the set F' = {z € E : f(x) < a}. In the case F'
is not empty, let u,v € F'. Then for 0 < X <1,

FOu+ (1 =Mv) <Af(u)+ (1 =N f(v) <Ada+(1-Na=a.

Thus Au+ (1 — A)v € F whenever 0 < A < 1, and so f is quasi-convex. Analogously, suppose
u,v € dom f. Then we can choose o € R so that max{f(u), f(v)} < a. It follows from the
previous reasoning that Au + (1 — A\)v € dom f whenever 0 < A <1 and so dom f is convex. []

2.1.6. Observe that a pointwise suprema of convex functions is convex, because the epigraph
is an intersection of convex sets which is convex. Notice that the function need not be proper.
Moreover, the epigraph will be closed if all of the functions are closed.

(a) Suppose f: X — [—00,+00] is convex. If f = +oo, then epi f = () is convex. Otherwise, let
(x,t), (y,s) € epif. Then for 0 < A <1 we have

FOz+ (1 =Ny) <Af(z) + (1= A)f(y) <A+ (1= A)s.

Therefore, A\(x,t) + (1 — X)(y, s) € epi f as desired.

Conversely, suppose epi f is convex, if epi f = () then f = 400 is convex. Otherwise, suppose
f(@), fly) < +o0. Then (z,t),(y,s) € epi f where f(z) < t and f(y) < s. Thus for 0 <\ < 1,
we have A(z,t)) + (1 — A\)(y,s)) € epi f. This implies

FOz+ (1= Ny) <M+ (1—N\)s,

for all t > f(z) and s > f(y). It follows that f is convex. (Hence this confirms that we can define
improper convex functions via their epigraphs as remarked earlier) O

(c) Let z,y € E, and 0 < XA < 1. Then

m(g(Az + (1 = A)y) <m(A(g(x)) + (1 = N)g(y)) < Am(g(x)) + (1 — \)m(g(y)),

as desired.

For a nice alternative geometric approach and explanation to (d), the reader is encouraged to
consult [255, Proposition 2.2.1]. For the converse, the convexity of g follows by restricting to the
case t = 1. |

2.1.7. It is clear that if zg € int C, then ¢ € coreC'. For the converse, suppose C' is convex
and zo € core C. Then there exist §; > 0 so that xg +te; € C for all |t| < §; andi=1,2...,n
where {e;}" | is the usual basis of R". Now let § = min{dy, d2,...,d,}. Because C is convex, it
follows that xo + h € C whenever h = aje; + agea + . .. ape, where |a;| < d/n for i =1,2,... n.
Consequently, g € int C # (). A conventional example of a nonconvex set F' C R? with (0,0) €
core F'\ int F'is F = {(z,y) € R? : |y| > 22 or y = 0}; see also Figure 2.4 for another example. [J



2.1.8. Let € E be a point of continuity of the convex function f. The max formula (2.1.19)
ensures that df(x) # (. Moreover, f has Lipschitz constant K on some neighborhood U of x
(Theorem 2.1.10). Because (v,y — x) < f(y) — f(z) for all y € U and v € 9f(z), it follows that
|lv|| < K. Thus, df(z) C KBg. Now suppose (vy,) C df(x) and v,, — v. Then

(v, —2) = lim v,y — ) < f(y) — f(x), forally € B.

Therefore, df(z) is closed. Finally, suppose u,v € 0f(z) and 0 < A < 1. Writing w = Au+ (1 —
A, for each y € E we have

(w,y—x) = A(u,y—az)—i—(l—k)(v,y—x)
< AW = F@l+ A =N ) = f@)] = fly) = fo).

This shows w € df(x). Therefore, Of(x) is a nonempty, closed, convex and bounded subset of
E. |

2.1.9. Let xr ¢ domfandd € E. f z +d ¢ dom f, f(x + d) — f(x) = oo so the inequality is
clear. In the case x + d € dom f, the three slope inequality implies for 0 <t < 1,

as desired. Thus f(x 4+ d) > f(x) for all d € E if and only if f'(x;d) > 0 for all d € E. Also,
0 € df(z) if and only if (0,d) < f(z +d) — f(z) for all d € E if and only if f(x + d) > f(z) for
alld € E. O

2.1.10. The measurability of ¢ o f follows because ¢ is continuous (see [384]). Let a := [ fdu
and note the bounds on f ensure ¢ € I. Apply Corollary 2.1.3 to obtain A € R such that
o(t) > ¢p(a) + A(t —a) for all t € I. Then ¢(f(t)) — A(f(t) —a) — ¢(a) > 0. Integrating we obtain

16 0) = M0 = 0) = s(a)ld > 0,
Because 11(€2) = 1 and because of the choice of a, this implies
otz +o( [ gan)=o( [ ran).
as desired. O

2.1.11. (a) For arbitrary a,b € R and 0 < A < 1, let f be defined by f(z) :=a for 0 <z < A
and f(z) :=0bfor A <z <1. Then

o [ 1 ) = glra+ (1=

while

1
/0 o(f) dz = Ag(a) + (1 — A)g(b).

o [ s@ar) < [t

3

The original assumption



then implies g(Aa + (1 — A\)b) < Ag(a) + (1 — A)g(b). This establishes the convexity of g.
(b) Applying Jensen’s inequality when ¢ := exp(-)

exp [/Qfdu] S/Qexp(f)du-

When (2 is the finite set {s1, s2,...,8,} with u({s;}) =1/n and f(s;) = y; fori =1,2,...,n, this
becomes

we have

1

1
exp |:n(y1 +...—|—yn)] < E(eyl +...4+e"m), y €R

When x; = €% this becomes
1
(129 - -:cn)l/” < 5(1’1 +xo+ ...+ xp),

that is, the arithmetic-geometric mean inequality. O

2.1.12. Suppose f is not identically —oo. Then fix x¢ where f is real-valued. We may assume
f(zo) = 0. Suppose f(xo+ h) > 0 for some h € E. Then for t > 1,

0< flxog+h) < —t"Yf(xo) +t 1 flwo +th) =t  f(xg + th).

Thus limy_,o f(z0 + th) = limy_o0 tf (29 + h) = 0o which is a contradiction. Finally, in the case
f(zo + h) <0 for some h € E, we would deduce f(xg— h) > 0, and so this, too, is impossible. ]

2.1.13. (a) For k > 0, observe that € AC if and only if kxz € kAC. Therefore ¢ is positively
homogeneous (the definition of y¢ := inf{\ > 0: z € AC'} ensures y¢(0) = 0 even when 0 ¢ C).
Suppose C' C E is convex. Let z,y € E. In the case yo(x) = 0o or y¢(y) = oo then it is clear

YoMz + (1= Ny) < Me(z) + (1 —A)ye(y) when 0 < A < 1.

Suppose yco(z),vc(y) are real-valued and € > 0. Choose a, ( so that yo(z) < a < yo(x) + €,
Yo (y) < B < vc(y) + € and Lz, %y € C. So we choose u,v € C so that v = au and y = av (the
case x = 0 or y = 0 are fine). Then

Aau+ (1= N\)pv

Yara-ng ¢

and therefore
vyo(Aau + (1 = X)pv) < da+ (1 — NS

or in other words, yo(Az + (1 = A)y) < Aye(x) + (1 — A\)ye(y) + €. This shows ¢ is convex when
C is convex, in fact, v¢ is subadditive because

1

5200+ 5(20) ) < 390(20) + 3r0(2) = 0(e) +100)

’YC(CU+ZU):’YC( 5 5 5

Hence 7¢ is sublinear when C' is convex.

(b) Suppose 0 € core C. Given x € E, there exists ¢ > 0 so that tz € C and then x € %C. Thus
vo(x) < 1/t. Because ¢ is convex and everywhere finite on E, it is continuous everywhere by
Theorem 2.1.12.



(c) Suppose 0 € coreC. Then ¢ is continuous, and therefore {x € F : vo(x) < 1} is closed.
Observe that vo(x) <1 for all x € C, consequently clC C {z € E : yo(x) < 1}.

2.1.14. For example, let f(z,y) = — ¥xy when = > 0, and y > 0. The strict convexity assertion
is probably best shown by computing the Hessian (as introduced in Section 2.2) of f at (z,y),

which is X . .
o [ qx77/4y1/4 _@x—3/4y—3/ }
= —3/4, —3/4 1/4, —7/4
—t / y / = / y /

T
Then f is strictly convex on the interior of its domain because this matrix is positive definite for
all (z,y) with > 0 and y > 0 which follows because h1; > 0, and |H| > 0 at all such (z,y). O

2.1.15. Let (f;) be a family of proper functions and define f : E — [—o0, +00] by

f(x) := inf {Z Nifi(x;) Z)‘i =1, ; > 0, \; finitely nonzero, Z)"wi = :L’}

Let u,v € dom f and and let o and 8 be any real numbers satisfying f(u) < a and f(v) < B.
Now choose sums as in the definition above so

Zaif(ui) < a, Zﬂif(vi) < B where Z%‘Uz‘ = ’LL,Z,BZ"UZ‘ = 0.

Then for any 0 < A < 1, we have > [Aa;+(1-X)3;] = 1 and Y (Aa;ui+(1—X)5ivi) = Adu+(1—N)w.
Then by the definition of f,

FOu+ (1 =X)0) > Aaifi(w) + (1= N)Bifi(vi) < A+ (1= N)B.

The convexity of f follows from this. Next we show that f is the largest convex function minorizing
the family. Indeed suppose h is convex and h minorizes the family (f;). Then for any x such
that © = > \jz; where > A\, = 1, A; > 0, and only finitely many of the \; are nonzero, by the
convexity of h and minorization property we have

Taking the infimum over all such sums we see that h < f.

For the example, let f : R — R be defined by f(t) := t? if t # 0 and f(0) = 1. Notice that
epiconv f = {(z,y) € R? : y < 22} and convepi f = epiconv f \ {(0,0)}. O

2.1.16. Suppose T : X — Y is an open mapping. Then T'(U) is open where U = int Bx. Then,
0 € intT(U), so we choose r > 0 so that 7By C T'(U). For any y € Y, choose n > 0 so that
n~ Yyl < r. Then n='y € T(U), and so we let x € X be chosen so Tx = n~'y. Then T(nz) =y
and so T is onto as desired.

Conversely, suppose T is onto. Let y € T'(U) where U is an open subset of X, and choose z € U
so that Txr = y. Let V be an open convex set so that x € V C U. Now fix h € Y. Because T is
onto, we fix v € X so that Tv = h. Because V is open, we choose § > 0 so that x 4+ tv € V for
all 0 <t <. Then T(x +tv) =y+th e T(V) forall 0 <t <§. Thus y € coreT(V), and so
y€intT(V) C T(U). Thus T(U) is open.

2.1.18. Let x be such that f(x) is real-valued. Suppose f(z) = (cl f)(z) and let x,, — x. Because
the epigraph of cl f is closed and f > cl f we know

lim inf f(z,) > liminf(cl f) () > (cl f)(x) = f(x)

n—o0

5



and so f is lower semicontinuous at x. Conversely, suppose f is lower semicontinuous at z. Let
(Zn,tn) € epi f be such that (x,,,t,) — (z,(cl f)(x)) (possibly in the extended sense in the second
coordinate). Then

(clf)(z) = lim t, > liminf f(2,) > f(z).

Because (cl f) < f, we conclude (cl f)(z) = f(x). According to the lower semicontinuity of f at
x we know f(u) > o > —oo on some neighborhood of z. It follows easily that f is proper, see
the proof of Lemma 2.3.3. O

2.1.19. Suppose iminf|, o0 f(z)/||z|| > 8 > 0. Let S = {z: f(r) < a} for some a € R. Find
k > 0 so that k8 > «, and f(x)/| x| > @ for all ||z| > k. If ||z]| > k, then f(x) > kB8 > «.
Therefore, S C kBpg.
Clearly f : R — R defined by f(t) := \/|t| is not convex, and {t : f(t) < a} = [~a?,a?] for each
a > 0. However,
lim f(t)/|t| = lim [¢t|7Y/2 = 0.

[t| =00

[t|—=o0 |

0

2.1.22. (a) For each n € N, let F,, := {x € S : |fx(z)] < n}. Then J,F, = S because
fu(x) = f(x) and f(z) € R. According to the Baire category theorem, there exist N € N such
that Fy contains a relatively open (in E) subset U. Then |fx(x)| < N forall k e N, z € U.

(b) By shifting, we may assume = = 0 where z is some given point in int S. Now rBg C int S
for some r > 0. By part (a), there is some B,, (y) C rBg for which fi(z) < M for all £k € N,
x € By, (y). Replacing M with a larger number as necessary, we may also assume fi(—y) < M for
all £ € N. By the convexity of f,, we have that f,, < M on conv({—y} U By, (y)) which contains
3 Bg. Thus f, is uniformly bounded on 3 Bg.

Now let K be a compact subset of int S. Suppose by way of contradiction there exists € > 0 and
a subsequence (zy,) C K such that

(1) | fre (@) — f(xn, )| > € for all ng.

By passing to a further subsequence as necessary, we may assume x,, — T where T € K. By
the previous paragraph, we find r > 0, so that f,, is uniformly bounded on B,(Z). The proof of
Theorem 2.1.10 shows that (fn,) is equi-Lipschitz on Bz (z). Hence (fy,) converges uniformly to
f on Bz (z). This is a contraction with (1) because (zy,) is eventually in Bz (Z). O

2.1.23. (a) Suppose f does not have Lipschitz constant K > 0 on U. Fix u,v € U such that
f(v) = f(u) > K||v—u||, and let ¢ € f(v). Then
(9, u—v) < f(u) = f(v) < —Kllu -

and so ||¢|| > K.
Conversely, suppose f has Lipschitz constant K > 0 on U. Let u € U. Then df(u) is not empty
because f is continuous. Moreover, let ¢ € 9f(u). Then

(9,0 —u) < f(v) = f(u) < Kllv—u

for all v € U. Because u is in the interior of U, it follows that ||¢|| < K.
The “in particular”’ part, follows from the first part because f is continuous on U, and therefore,
locally Lipschitz on U.



(b) Because dom f = E, f is continuous on F, and the extreme value theorem implies f is
bounded on bounded subsets of E. Exercise 2.1.22 then ensures f is Lipschitz on bounded subsets
of E, and then part (a) of this exercise ensures 0 f maps bounded subsets of E to bounded subsets
of E. O

Exercises from Section 2.2

2.2.1. A proof of the convexity of f using the Hessian is sketched in [369, pp. 27-28]. Because
f is convex, we have

P55 < 3+ 55w

which means

ol T1+ Ty + 1 1
—\/<1 : yl) ( : y) < g VT = S Yy U
Multiplying both sides of the previous inequality by —2 yields the result. O

2.2.2. (a) = (b): Let g := —1/f and ¢(t) := —In(—t) for t € (—00,0). Then ¢ is convex and
increasing, and ¢ is convex. Therefore, Inof = ¢ o g is convex.

(b) = (c): g := Inof is convex, therefore, f = exp(lnof) is convex since exp is convex and
increasing. |

2.2.4. We provide details as in [34, Lemma 3.2]. For a function f on I consider the associated
Bregman distance Dy defined by D¢(x,y) := f(x) — f(y) — f'(y)(x — y). Let g := —1/h so that
g =N /h? (a): 1/h is concave if and only if ¢ is convex if and only if D, is nonnegative if and
only if
0 < ~1/h(z) + 1/h(y) — (W' (y)/P*(y))(z —y) for all w,y €
if and only if
0 < h(z)h(y) — h3(y) — h(z)h (y)(z —y) for all z,y € I.

Part (b) is similar, noting that Dy = 0 if and only if f is affine. Part (c) was shown in Ex-
ercise 2.2.2. Part (d): 1/h is concave if and only if g is convex if and only if ¢” = (h%h" —
2h(h")?)/h* > 0 if and only if hh" > 2(h/)2. O

2.2.5. First, g is a real-valued convex function on [0, 1] and so Theorem 2.1.2(d) ensures that g
is differentiable except at possibly countably many ¢ € [0,1]. Then Theorem 2.2.1 implies that
at points of differentiability Vg(t) = {9g(t)}. Now let t € (0,1) be a point of differentiability of
of g. Observe that

(D1, 8h) < f(z + (s +1)h) = f(x +th) = g(t +5) — g(t),

Hence (¢¢, h) € 0g(t) and we conclude Vg(t) = (¢¢, h). O

2.2.8. Suppose f is Fréchet differentiable at zo. Let ¢ = f'(x¢). Given € > 0 we choose d > 0 so
that d]|¢|| < e and

(o + h) — fz0) — $(h)] < =||h]



whenever 0 < ||h]| < §. Now suppose || — zg|| < 6. Then z = xo + h where ||h|| < 6 and the
previous inequality then implies

[f (@) = fzo)| < [f(zo + h) — f(xo)| < (¢l +€/2)[[h]] <&

Thus, f is continuous at x. O

2.2.9. Suppose f has Lipschitz constant K in a neighborhood U of x¢ and Gateaux differentiable
at xo with Gateaux derivative ¢. Then ||¢|| < K. Suppose f is not Fréchet differentiable at x.
Then there exists € > 0 and t,, — 0T, h,, € Sg such that

’f(ivo + tnhn) - f(fUO) - ¢(tnhn)| > tn€

Because Sy is compact, we may replace (h,) above with one of its convergent subsequences, so
we suppose h, — h € Sx. When ||h,, — h|| < ¢/3K. For n sufficiently large we have

|f(zo + tnh) — f(20) — (tnh)| > [f(x0 + tnhn) — f(w0) — @(tnhn)| — 2Kt |k, — bl
> tpe—2K(e/3K) > tn,e/3

which contradicts the Gateaux differentiability of f. For a slightly different proof of this, see the
last part of the proof of Theorem 2.5.4. O

2.2.13. Suppose f is convex on the inverval I, and suppose J := [a,b] is a compact subinterval
of I. Then for m affine and 0 < A < 1, we have

(f+m)QAa+ (1 =)b) < A(f+m)(a) + (1= A)(f+m)(b)
< max{(f +m)(a), (f +m)(b)}.
Thus the supremum of f 4+ m is attained at one of the endpoints a or b.

Conversely, suppose a,b € I. Now choose an affine function m such that (f+m)(a) = (f+m)(b).
Because (f + m) attains its max on [a, b] at an endpoint, we know it attains its max on [a, b] at
both a and b. Then, for 0 < A < 1, we have

(f+m)Aa+ (1 -=Xb) = f(ha+(1—=X)b)+ Im(a)+ (1 —X)m(d)
< max(f+m) = A(f(a) +m(a)) + (1 = A)(f(b) +m(b)).

Consequent, f(Aa+ (1 —A)b) < Af(a)+ (1 —N)f(b) and so f is convex as desired. O

2.2.16. Suppose a < b and M is an affine function through (a, f(a)) and (b, f()), and let m be
an affine minorant of f passing through ((a+0b)/2, f((a+0b)/2) (using the max formula (2.1.19)).
Then m < f < M, and thus

f(a”) Sbia/abf(t)dtgf(a)*‘f(b)

2 2

since these quantities are the averages of m, f and M respectively on [a, b]. O
2.2.20. First, for (z,y) € dom f \ {(0,0)}, the Hessian of f at (x,y) is

-2 _a2,-3
H:{ 6xy 6y ]

—6x2y_3 6x3y_4



Then H is positive semidefinite for such (z,y) because |H| = 0 and 6zy~2 > 0. Also, for
(z,y) € dom f, we have

M (2y) + (1= X)f(0,0) = A;f — (M)

and together we deduce f is convex. It is also closed because: (i) its domain is closed (ii) 23/y?
is continuous when y # 0, (iii) iminf(, ), 0,0) f(2,y) > f(0,0). However, f is not continuous at
(0,0) even when considering that the underlying topological space is the domain. This is because
lim 42y (0,0 f (, #%) = +00.

A further observation is that this type of example cannot occur on R. Indeed, if f : [a,b] = R
is convex and lower semicontinuous then f is continuous as a function on [a,b]. Indeed, it
is continuous on (a,b) and further liminf, ,,— f(x) > f(b) by lower semicontinuity while the
convexity of f implies limsup,_,,— f(z) < f(b). Similarly, f is continuous from the right at a. OJ

2.2.21. Suppose z,y € U, and z* € If(x), y* € If(y) (which are not empty by the max
formula (2.1.19)). Then by the subdifferential inequality

(y'—2"y—2) = yy—z)+tz"(x—y)
fy) = f(@) + f(z) = f(y) = 0.

Hence the subdifferential is a monotone mapping. The ‘in particular’ statement follows because
Of(xz) = {Vf(x)} when f is differentiable at . O

Y

2.2.22. (a) Suppose not, then there exists x, — z¢ and ¢ > 0 so that ¢, € Jdf(x,), but
On & Of(xo) + €eBg. Use the local Lipschitz property of f (Theorem 2.1.12) to deduce that
(Il¢n|)n is bounded. Then use compactness to find convergent subsequence, say ¢,, — ¢. Now
fix y € E. Then

Qb(y) - ¢($0) = qb(y) - Qb(xnk) + QS(l'nk) - gb(xo)

= klim Ony (Y — ) + Ony (0, — T0)
—00

Therefore ¢ € 0f(xo) which contradicts that ¢,, — ¢.

(b) This follows from (a) and the fact 0f(z¢) = {f'(x0)} (Theorem 2.2.1).

(c) Suppose not, then there is a subsequence (ny) and € > 0 such that ¢, € 0fy, (wp, ), Wy, € W
but ¢, & Vf(wn,)+ eBg. Because f, — f uniformly on bounded sets, it follows that (f,) is
uniformly bounded on bounded sets, and thus (f,,) is eventually uniformly Lipschitz on bounded
sets. Hence by passing to a further subsequence, if necessary, we may assume w,, — wp, and
®n,, — ¢ for some wyp, ¢ € E. Now let y € F, and observe

o(y) — (o) = d(y) — d(wn,) + d(wn,) — d(wo)
= lim ¢nk (y - wnk) + gbnk (wnk - 330)
k—o00
< leHOIO fnk (y) - fnk (wnk) + ¢nk (wnk - wO) = f(y) - f(wo),
where the last equality follows by the uniform convergence of f,, to f on bounded sets. Thus

¢ € Of(wp), that is ¢ = V f(wo). By (b), Vf(wr) — Vf(wy) = ¢ which yields a contradiction
because ||¢n, — V f(wp, )| > €.



(d) For example, let f, := max{|-|—1/n,0} and f := |-| on R. Then 8f,(1/n) ¢ f(1/n)+ % Br
for any n € N. Indeed, 0f,(1/n) = [0,1] while 9f(1/n) + 1Br = [1/2,3/2]. For the remaining
part, suppose no such N exists. As in (c), choose ¢, € 0fy, (wy,) but ¢,, & 0f(w) + eBg for
|lw —wp, || < ¢ and as in (c), wy, — wo and ¢,, — ¢ for some wy € E and ¢ € E. Again, as in
(c), one can show that ¢ € 0f(wp). However, for ||wy, —wo| < 0, we have ¢, & Of(wo) + eBg
which is a contradiction. O

2.2.23. (a) We will use the max formula (2.1.19). Suppose zg € bndy C' and take z,, ¢ C such
that x,, — xo. By the max formula (2.1.19), let ¢,, € ddc(xy,). Then ||¢,|| < 1 because d¢ has
Lipschitz constant 1, and ||¢,| > 1, because we choose Z,, € C such that do(zy,) = [|zn — Tnll,
and then (¢n,Z, — x,) < —dco(zy). By the compactness of B, we know ¢,, — ¢ for some ¢,
and [|¢|| = 1. Also, for any x € E, we have

(6, = w0) = 1 (6, = ) < lin(do (@) = doan,) = do(@) = dolao)

Thus ¢ € ddc(z0). Then ng € Ondc(xo) and so ng + ¢ € df (xo).
(b) Let f(t) := —/t for t > 0 and f(t) := +o0 when ¢t < 0. Then 9f(0) = (). Let g := 6[0,4-00)-
Then 0¢(0) = (—o0,0].

Further notes. The proof of (a) shows that given any nonempty convex set A with zy € bndy A,

that there exists ¢ € ddc(z) with ||¢| = 1, and C being the closure of A. It then follows that
é(xg) = supp ¢. Had we done this separation theorem earlier, we could have more elegantly
completed the proof of Theorem 2.2.1 and part (a) of this exercise.

Exercises from Section 2.3

2.3.2. Using calculus, one can show that for f := |- |P/p on R one has f* = |-|?/q. The
Fenchel-Young inequality (2.3.1) then shows f(z) + f*(y) > zy, that is,

|z|P/p + |y|?/q > xy for all real x and y,

as desired. 0

2.3.3. Let || f|l, = o, |lg]lq = B where «, 8 > 0 (if either « =0 or § = 0, then fg =0 a.e. and so
the inequality is trivially true). Now we integrate both sides of the Young inequality:

1 P11 . 1 1
900y, ¢ [ U Lty 11y
x a f xp o q pI poq
Multiplying both sides by «/ yields the result. O
2.3.4. (a) To show that x — Zivzl |z |P is convex observe that g :=|-|P is a convex function R,
and then

N
x Zg(Pk(a:)) where Py(z) =z
k=1

is a sum of convex functions since go Py is a convex function for each k as it is a composition of a
convex function with a linear function. Now use the gauge construction as suggested in the hint.
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(b) Alternatively, one may apply the discrete form of Hélder’s inequality of Exercise 2.3.3 as
follows:

N N
Dlze+unl” = > lakller + uel”t A+ lyeller + kP!
k=1 k=1

N 5 /N i
(S (B )
k=1 k=1

N YN :
(Z kal”) (Z ok + ykl(p_l)q>

k=1 k=1
1 1 1
N q N p N P
= () | () ()
k=1 k=1 k=1

q

£ +yk|p> using that 1—1/¢=1/p

NE

where we used (p—1)g = p. Now divide both sides by (

£
Il

1

N LN LN :
(waykw) < (Z\mp) + (Z rykv’)
k=1 k=1 k=1

as desired. O

to obtain

2.3.12. Part (a).
(i) According to the Fenchel-Young inequality (2.3.1) we have
f(x) +9(Az) = (A9, ) — [ (AP) + (=0, Az) — g (=¢)

(9, Az) — [*(A"0) = (&, Ax) — 9" (=)
= —[(A%) —g"(—9).

Taking the infimum of the left-hand side over x € E, and then taking the supremum of the
right-hand side over ¢ € Y establishes the weak duality inequality p > d.

(ii) (This part is for the subdifferential sum rule). Let x € E and suppose ¢ € df(x) and
A € 9g(Ax). Then for any v € E we have

(p+ A"Njv—x) = (p,v—2x)+ (A, A(v —x))
fv) = f(z) + g(Av) — g(Ax).

Thus ¢ + A*A € O(f + g o A)(z) from which the inclusion follows.

IN

(iii) Fix w € Y. Then f(z)+ g(Ax+u) < oo for some z € X if and only if there exist z € dom f
such that Az+u € dom g if and only if u € dom g— A dom f. Thus dom h = dom g— A dom f.
To check the convexity of h, suppose u,v € dom h and let «, 8 be any numbers such that

11



(iv)

h(u) < a and h(v) < B. Choose =1 € E such that f(z1)+ g(Az1 +u) < a and z2 € E such
that f(x2) + g(Axze + v) < 8. Then for any 0 < A < 1, we have

h(Adu+ (1 —=A)v) = ;gg{f(x) + g(Az + A u+ (1 = Nv)}
FQzr+ (1= Nz2) + g(AAzy + (1 — N)x) + Au+ (1 — N)v)
Af(@1) + (1 = A) f(z2) + Ag(Az1 + u) + (1 = A)g(Azz + v)
X+ (1— N

VAN VANIVAN

Thus, h(Au+ (1 — A)v) < Ma(u) + (1 — N)h(v) as desired.

Let zg € dom f be such that Axg € contg. Let yg = Axg. Because g is continuous at yyq,
this implies yg + rBy C dom g for some r > 0. Therefore,

rBy = (yo + rBy) — Azg C dom g — Adom f

which implies 0 € core(dom g — Adom f) as desired.

Part (b).

(i)

First, inclusion was completed in (a)(ii) above. Conversely suppose ¢ € I(f + g o A)(Z).
Applying the Fenchel-Young inequality (2.3.1), and then applying the Fenchel duality the-
orem (2.3.4), we obtain

f(@) +9(A7) = ($,2) = inf{f(2)+g(Az) = (¢,2)} = nf{(f - ¢)(2) + g(Az)}
= —(f-9)"(4¢) —g"(-9),
where ¢ € Y is a point where d in the Fenchel duality theorem (2.3.4) is attained. Therefore,
(f = 0)(@) — (A7, 2) + g(AT) — (=9, AZ) = —(f — ¢)"(A"¢) — 9" (=)

and by Fenchel-Young inequaltiy (2.3.1), A*¢ € O(f — ¢)(Z) and —¢ € dg(Az). The first
inclusion implies A*¢ + ¢ € 0f(Z), and using the second inclusion we check

(—A*¢,u — ) = (—¢, A(u — 7)) < g(Au) — g(AZ) for all u € E;
thus —¢ € dg(Az), consequently equality holds in the sum formula.

The previous part has proved the ‘only if” assertion, and we can essentially reverse our steps
to deduce the ‘if’ assertion. O

2.3.13. Suppose f : E — R has Lipschitz constant k. Suppose ¢ € E and ||¢|| > k. Choose
xo € E with ||xo|| = 1 and ¢(z¢) > k. Then lim;_,o ¢(tz) — f(tz) — co. So ¢ & dom f*.

For the converse, assume dom f* C kBg is not empty, then f is bounded below by ¢ — a where
¢ € dom f* and a = f*(¢). (Using relative interior properties, one knows that the domain of
the subdifferential of a proper convex function on FE is nonempty, and hence the domain of the
conjugate is not empty; see Theorem 2.4.8). Then if dom f # E, one can find y, € dom f* such
that ||y, || — oo: for example, letting f,, := ¢ — a + ndc where C' := dom f, one has f, < f, but
for x ¢ C, and y € 0f,(z), one has ||y| > n — ||¢]|. Since y € dom f*, this yields a contradiction.
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Thus dom f = E and thus f is continuous. In the event f is not k-Lipschitz, one can choose
u,v € E such that f(v) — f(u) > k|ju —v||. Now let y € 9f(v). Then

(y,u =) < —klju—wv]|

and so ||y|| > k, but y € dom f* which is a contradiction.
This result fails if f is not convex: for example, consider f(z) := y/|z| on R. Then dom f* = {0},
but f is not Lipschitz. O

2.3.14. Basic facts about infimal convolutions.
(a) Let (x,s) € epi f and (y,t) € epig. Then

(fog)x+y) < f(z)+g(z+y—x)=flz) +g(y) <s+t

and so (z +y,s +t) € epi(fog). That is, epi f + epig C epi(fog). Now suppose h
is a function such that there exists z € E with h(Z) > (fog)(Z). Choose t € R such
that h(z) > t > (fog)(Z). Then we choose y € E such that f(Z) + g(y — ) < t Then
(Z,t) & epih, but (z,t) € epi(fog). Thus (fog) is the largest function whose epigraph
contains epi f + epig.

(b) As suggested, let f(x) := e” and g(z) := 0. Then f and g are continuous and convex, but
epi f +epig = {(r,y) €R? : y > 0}.
(c) As suggested, let f(z) := z and g(z) := 0. For any u € R,
(fog)(u) < f(—€") +g(u+e€") = —€" foralln e N.
Thus (fog)(u) = —oo for all u € R.

(d) Assuggestedlet C := {(z,y):y > e"}and D := {(2,y) : y > 0}. Then dcodp = d{(z4):y>0}
which is not closed.

(e) Suppose f and g are convex functions. Let u,v € dom(fog). Let a and § be any real
numbers satisfying (fog)(u) < a and (fog)(v) < S. Now choose z1,x2 € E so that

flz1) + gu—a1) <a and f(z2) +g(v—22) < B.
Then
(feg)Au+ (1 =A)v) < fAzr+ (1= A)z2) + g(A(u—21) + (1 = A)(v — 22))
< Af(z) + (L= A)fx2) + Ag(u — z1) + (1 = A)g(v — z2)
< Aa+ (1 -X)B.
It follows that fog is convex.

(f) Notice that (c) already shows this may fail if one of the functions is not bounded below,
and we need to explicitly assume g is proper and let ¢y € dom g. Then

inf f +infg < (fog)(z) < g(zo) + f(z — z0).

When f is continuous, this implies (fog) is real-valued and hence continuous. When f is
bounded on bounded sets, so is (fog). When f is Lipschitz with Lipschitz constant & > 0,
then f < k| - || + f(0) and so fog < k| - || + b where b := g(xo) + f(0) + k||zo|| which
implies (fog) is Lipschitz with Lipschitz constant k (see Exercise 4.1.28). See also the note
following (g).

13



(g) Observe that
(I lledc)(z) = inf fle = yll +dc(y) = inf Jlo =yl = do(z)

As in the proof of (f), the convolution has Lipschitz constant 1 because the norm has
Lipschitz constant 1.

Further notes. One may prefer a more explicit argument in (f). Indeed, once we have established
(fog) is real-valued, suppose (fog)(Z) = t. Given € > 0, choose y € E such that f(y)+g(Z—y) <
t + €. Then for any h € FE,

(fog)(h+z) < fly+h)+g@—y) <|fly+h)— fW)+ fly) +9@—y)
< (fog)(h+2)+|fly+h) — Fly)l+e

From here, local/global Lipschitz properties of the convolution then follow directly from the
local/global Lipschitz properties of f (this argument works just as well in any normed linear
space irrespective of the dimension). O

2.3.15. For (a) see the proof of Lemma 4.4.15; for (b) see the proof of Lemma 4.4.16; and for
(c), use (a) and (b), c.f. Corollary 4.4.17.

(d) Observe that if f and g are closed, then (f*og*)* = f** + ¢** = f + g, where the first
equality follows from (a). Then (f + ¢g)* = (f*og*). The result as stated follows because
cl(f + g) = cl f + clg under the condition dom f N cont g # () as we now sketch.

Clearly, cl f +clg < f+gandsoclf+clg <cl(f+g). Let z € dom(cl f+clg). We will show
c(f+9)(@) < (cl f+clg)(x). Fix v € int dom gNdom f and choose r > 0 so that g is bounded on
v+ rBx C intdomg. Now choose u,, € dom f with u, — Z and f(u,) — cl f(Z). For 0 < A < 1,
AT+ (1 — A)(v+rBx) C int dom g. Because u,, — Z, we fix A, — 1 so that

Aty + (1 =)0 € MyZ 4+ (1 — A\p)(0+1Bx) C
Now,

I Anun + (1= Ap)(0)) = clgAnun + (1 = Ay)(0))
= clg(AZ+ (1 — A\p)vy) where v, € v+ rBx
< Anclg(T) + (1= Ap) clg(un) — clg(T).

Similarly, f(Apun + (1 — X)) (0) < A f(un) + (1 — Ap) f(0) — cl f(Z). Altogether, we conclude
cl(f +9)(7) < cl f(T) + clg(T). O

2.3.16. Suppose f : C' — R is Lipschitz with Lipschitz constant k, and let f(z) := inf{f(y) +
kllz —y| : y € C}. For zo € C, taking y = z¢ clearly shows f(zg) < f(xo), hence f < f
on C. Also, fix z9p € C. Then f(z) < f(xo) + k|lz — x0||, and so f(z) < oo for all z € X.
Moreover, f(z) > f(zo) — k||z — xo|| for x € C. Now fix z € X, then f(y) + k|lz — y|| >
f(zo) — klly — xo|| + kllz — yl| > f(xo) — ||z — x| for all y € C. This shows f(z) > —oco for all
r e X, ie. f is real-valued.

Suppose f(zg) < f(zo) for some xg € C. Then there exists y € C such that f(y) + kl|zo — y|| <
f(20). This violates the Lipschitz constant of f on C. Hence f(x) = f(x) forall z € C. Similarly,

one can see that f is globally Lipschitz with Lipschitz constant k. Indeed, suppose f(u)— f(v) >
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k||u—v]|| + € for some u,v € X and € > 0. Choose g € C such that f(v) < f(z0)+ k|jv — zo]| + €.
Then

flu) < fxo) + kllu — zol| < f(zo) + Kllv — zol| + Kllu — vl

which is a contradiction. O
2.3.17. (a) Suppose z and y are global minimizers of f. Then f(Az + (1 — A)y) > f(z) =

Af(x)4+ (1 =N f(y) for 0 < A < 1. Because f is strictly convex, x = y.
(b) It suffices to show this for y = 0, and it suffices to show

1 1
(2) f (u ;— U) < if(u) + 5 (v) for all distinct u,v € E.

Indeed, if f(Au + (1 — Nv) = Af(u) + (1 — A)f(v) for some 0 < A < 1 and distinct « and v,
then by the convexity of f equality holds for all 0 < A < 1. We now check that (2) is an easy
consequence of the parallelogram identity:

(%) -

<

2
1 1 1
200 = Sl + Sl — Sl — ol

flu)+ %f(v) when u # v.

1
2
1
2

(c) (i) Let y € E and define f by f(z) := 3|z — y||> + 6¢. The strict convexity of f follows
from (b), and f attains its minimum on C' because any minimizing sequence is bounded and a
convergent subsequence converges to the unique, by part (a), minimizer.

Now let y € E, and suppose y € C satisfies (y — g,z — y) < 0 for all x € C. Then for z € C
ly=al> = w-9y-9=W-gy—2)+{y—-gz-7)
< W—py—o(< ly—yllly — =l
and so ||y — g|| < |ly — z|| for all x € C, thus y = Po(y).

Conversely, suppose § € C satisfies (y — g, — g) > 0 for some x € C. Then for each 0 < A < 1,
the convexity of C' implies the point ) := Az + (1 — A)g is in C. Now compute

(y —x\,y — )

= (y—g—-Mrx—9),y—9— Nz —9)

= |ly—7l> —2Xy — g,z — §) + N[z — g?
= lly—al* = A2y — 7.2 —7) — Az — g]*].

ly — 212

For A > 0 sufficiently small, the term in the brackets is positive and then ||y — 7[|? > ||y — z|?,
and so § # Po(y).
(ii) Let £ € C. Then d € N¢ () if and only if d € 9d¢(Z) if and only if

(Z+d—z,2—T < 0c(x) —dc(Z) =0 forallz € C

if and only if Po(z + d) = z (by part (i)).
(iii) In fact one can show

3) 1Pc(x) = Pe)|” + lla = Pe(z) = (y = Pe@)|I? < llo — ylf* for all 2,y € E.
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Indeed, expanding and rearranging using the inner product, the left-hand side of (3) is equal to

(4) (x —y,x—y) +2{y — Pc(y), Pc(x) — Pc(y)) + 2{x — Po(x), Po(y) — Po(x))

and by part (i) the last two inner products in (4) are less than or equal to 0 which provides the
desired conclusion.

(d) For example S = {—1,1}, then Pg(0) is multi-valued, and lim, ,o+ P(z) = {1} while
lim,_,o- P(x) = {—1} so there is no single-valued selection of P that is continuous at {0}. O

[

2.3.20. (a) Let f(z) := ”x2 — 0g(z). The proof of Fact 4.5.6 shows

2
%d?s(y) i )

2
or dg(-) = || - |[> — 2f*(-) is a difference of convex functions as desired.
(b) de = || - || 2d¢ and thus d = (|| - |)* + 0% = 0B, + oc-

(c) Let x € C. By Fenchel-Young (Proposition 2.3.1), ¢ € 0ddc(x) if and only if dj(¢) =
¢(z) — de(z) if and only if 6p,(¢) + oc(¢) = ¢(x) — do(z) = ¢(x) if and only if ¢ € Br and
¢(x) = oc(¢) if and only if ¢ € dd¢ and ¢ € B if and only if ¢ € No(z) and ¢ € Bg.

(d) Suppose x € C. Then ¢ € ddc(z) if and only if ¢ € Br and
(9.2 — Po(z)) 2 do(z) — do(Pe(x) = de(z) = ||z — Po(z)].

1
m(ﬂﬂ - Po(z)) = W(x — Po(x)).

e) For x € C, we obtain that Vd2(z) = 0 because
C

Therefore, ¢ =

lim |Vd2,(x + th) — d&(z) — (0,th)]| < t2||h].
_)

For ¢ C, the chain rule implies Vd%(z) = 2d¢(2)Vde(x) = 2(x — Po(z)) (by part (c)). Thus
(e) follows. O

2.3.21. Let D :={z € E: Ax =b}. Let x € D, then ¢ € 0D(z) if and only if ¢(y — z) <0 for
all y € D if and only if ¢(u) < 0 for all u € ker A if and only if ¢(u) = 0 for all u € ker A.
Suppose ¢ € A*Y, that is ¢ = A*y for some y € Y. Fix u € D, and let v € D be arbitrary, then

(A%y,v—u) = (y, Alv —u)) = (y,b—b) = 0.

Therefore ¢ € D(u), that is ¢ € Ne(u)

Conversely, suppose ¢ € ddp(z). Suppose ¢ # 0, then fix zyg € X such that ¢(xg) = 1. We
now express F as the direct sum ker ¢ @ Rxg. Observe that Azxg ¢ A(ker ¢). Indeed, suppose
Azxg = Az for some z1 € ker¢p. Then A(xg — x1) = 0 and so by the previous paragraph
¢(xg — x1) = 0. Thus, by the basic separation theorem (2.1.21), we choose y € Y such that
y(Azg) = 1 and y(A(ker ¢)) = {0}. Given Z € E, we write T = h+ ¢(Z)xo where k € ker ¢. Then

(A%, z) = (y, A(h + ¢(T)x0)) = (y, Ah) + ¢(Z){y, Azo) = ¢(Z).

Because z € E was arbitrary, we have ¢ = A*y, and A*Y C dp(z) as desired.
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(a) Suppose 7 is a local minimizer as specified. Then Vf(z)| € 9dp(z) and so Vf(z) € A*Y

(b) Suppose Vf(z) € A*Y and f is convex. Then Vf(Z) € 06p(Z), and because f is convex, T
is a global minimizer of f|p. O

Exercises from Section 2.4

2.4.1. Part(a).

(i)

(i)

(iii)

As in the proof of the Fenchel duality theorem (2.3.4), let h : Y — [—o00, +00] be defined by
() = inf {(2) + g(A + )},

then A is convex and 0 € core(dom g — Adom f) = dom h, thus by the max formula (2.1.19)
Oh(0) is not empty, so we let —¢ € Oh(0). Now for all x € F and v € Y with u = Av where
v € E, we have

0 < h(0) < h(u) + (p,u)
< f(@) + g(A(z +v)) + (¢, Av)
= [f(z) = {479, 2)] — [-9(A(z +v)) — (¢, A(z + v))].
Define
(5) bi= inf{f(z) — (A"¢,2)} a:= igg{—g(A(Z))—M*clﬁ,@}-

Then a < b and thus for any r € [a, b] we have

flx) >r+ (A%, x) > —(go A)(x) forall z € E.

With notation as in the Fenchel duality theorem (2.3.4), observe p > 0 because f(x) >
—g(Azx), and then the Fenchel duality theorem (2.3.4) says d = p and because the supremum
in d is attained, we choose ¢ € Y such that

0<p = —f(47¢) - g (-¢)
< [f(@) = (¢, Ar)] + [9(y) + (¢,y)] forallz e X, yeY,

where the second inequality is a direct consequence of the definitions of f*(A*¢) and g*(—¢).
Then for any z € FE, setting y = Az, in the previous inequality, we deduce a < b where a
and b are as in (5). Now choose r € [a,b] and let a(x) = (A*p, x) + 7

The inclusion is straightforward (Exercise 2.3.12 (a)(ii)), so we prove the reverse inclu-
sion. Suppose ¢ € I(f + go A)(Z). Because shifting by a constant does not change the
subdifferential, we may assume without loss of generality that

x> f(2) + g(Az) — ¢(x)

attains its minimum of 0 at Z. According to the sandwich theorem (2.4.1) there exists an
affine function o := (A*y,-) + r with —y € dg(Az) such that

flx) —é(x) > a(x) > —g(Az) for all z € E, with equality when x = Z
Then f(x) > (¢ + A*y,z) + r and f(z) = (¢ + A*y,z) + r. Thus ¢ + A*y € 9f(z), and as
a consequence, we have ¢ € 0f(z) + A*0g(AZ) as desired.
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(iv) Let the notation be as in the Hahn-Banach extension theorem (2.1.18). Then —¢ < p where
g = —f+dg. Because p is everywhere continuous, we can apply the sandwich theorem (2.4.1)
to find an affine mapping « such that —g < o < p, that is f < a < p. Then a = a(0) + ¢
where ¢ € E. We know «(0) > f(0) = 0 and so ¢ < p. We claim ¢(s) = f(s) for all s in the
linear subspace S. Indeed, if this were not true, then f(xg) — ¢(xo) # 0 for some z¢ € S.
Then choose k € R so that k(f(zo) — ¢(xo)) > «(0). This implies f(kxg) > ¢(kzo) + «(0)
which is impossible. Thus ¢|s = f as desired.

Part (b). Several connections were outlined in (a) and earlier, for now we’ll derive a couple
additional easy relations, to sketch one complete circle.

(i) Suppose the subdifferential sum rule is valid, and zy € coredom f where f : E — (—o00, +00]
is convex. Then E = 9(f + d44,1)(w0) = Of (w0) + 06444} (z0) and so df (7o) is not empty.

(ii) Suppose the subdifferential of a convex function on F at a point of continuity is not empty.
Now consider a linear function f on a subspace Y of E and f|y < p for some sublinear
function p on E. Consider h = fop. Then h < p, hly = f, h is continuous with h(0) =
0. Consider ¢ € 0h(0). Then ¢|y = f, and ¢ < h. Thus the Hahn-Banach extension
theorem (2.1.18) follows.

So one of the circles of implications we have sketched is: Hahn-Banach extension = max formula
= Fenchel duality theorem = sandwich theorem =- nonemptiness of subdifferential = Hahn—
Banach extension theorem. Where the proofs of the respective implications are given in: proof
of max formula (2.1.19), proof of the Fenchel duality theorem (2.3.4), Part(a)(ii), Part(a)(iii),
Part(b)(i), Part(b)(ii).

Further notes. (I) The Fenchel duality and the sandwich theorems are most easily visualized and
understood in the classical case Y = E where A is the identity map, and yet still very powerful.
In this case, the primal and dual problems are:

p:= inf{f(z)+g(z)} and d:=sup{-f*(y) —g"(-y)}.
ek yeE
As before, p > d by the Fenchel-Young inequality (2.3.1). We derive p = d using the sandwich
theorem (2.4.1) when 0 € core(dom g — dom f). Indeed, when p > —oo, we know f(z) > p — g(z)
for all z € E, and thus there is an affine function « := ¢ 4 r such that

flz) > (p,x)y+r>—g(zx)+p forall z€kFE.

Then (¢, z) — f(x) < —r forall x € E and (—¢,z) —g(z) <r—pforall x € E. Thus f*(¢) < —r
and g*(—¢) < r —p. In other words, p > d > —f*(¢) — g*(—¢) >r+p—r =p and so p = d and
the sup is attained at ¢ as desired.

(IT) Of course, one can derive the Fenchel dualilty theorem (2.3.4) from the sandwich theo-
rem (2.4.1) by slightly modifying the proof as presented in the text. Indeed, let h be as defined in
the proof of the Fenchel dualilty theorem (2.3.4), and observe h > p — d4¢y, and h(0) = p. By the
sandwich theorem (2.4.1), there is an affine function, say a :=p — ¢ such that h > a > p — d;0y,
and thus —¢ € 9h(0). Now proceed as in the proof for the Fenchel dualilty theorem (2.3.4).

(III) A more direct derivation of the Fenchel dualilty theorem (2.3.4) from the sandwich theo-
rem (2.4.1) is as follows. Let h: E XY — (—o0, +00] be defined by h(z,y) := f(x) + g(y). Then
h > p — dg(ay, where G(A) := {(x,y) : y = Ax} is the graph of A: £ — Y, and we apply the
sandwich theorem (2.4.1) to obtain A € E, ¢ € Y and r € R such that

(6) 9(y) + f(z) > Az) — ¢(y) + 7 > p—dga, forallz € X,y €Y.
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When z = 0 and y = 0, (6) implies » > p, and (6) further implies A(x) — ¢p(Ax) > p — r for all
x € E, and so A = A*¢. Lastly, we rewrite the left inequality of (6) as

—[=o(y) —9(y)] = [A"¢(x) — f(@)] = r (= p)

and take the infimum over y € Y and then over x € E to deduce —g*(¢) — f*(A*¢) > p which
together with the weak duality inequality provides the result. O

2.4.3. (a) Fix € > 0 and let z € clC. Then there exists a sequence (z,,) C C such that z,, — .
Fix ng such that ||z,, — Z|| < e. Then T € z,, + eBx C C + €Bp.
(b) Let x +y € D+ F where x € D, y € F. Because D is open, we choose ¢ > 0 so that
x+€eBg C D. Then 4+ y+ eBg C D+ F. Therefore, z +y € int(D + F) and so D + F' is open.
(c) Let z € intC and choose ¢ > 0 so that = + eBr C C. By part (a), for each A > 0,

cddCcC+ 1);5)\ Bpg. Therefore,

A+ (1-NdC C A+ (1-N) <C+ 1A_€ABE>

= Az —eBp)+(1-N\)C
Mz +€eBg)+ (1-X)C cCC.

Because x € int C' was arbitrary it follows that
AintC' + (1 = N)clC Cc C, foreach 0 <A <1,
and by part (b), the sum on the left hand side is open, and so
AintC' 4+ (1 = A)clC CintC, foreach 0 < A <1,

as desired.

(d) Because int C' C ¢l C, the previous inequality implies (trivially) Az + (1 — A\)y € int C for all
z,y €intC' and 0 < A < 1, and so int C' is convex.

(e) For any fixed x € intC, Ax + (1 — X\)clC C intC. Letting A — 07, we deduce that
clC C cl(int C).

Clearly this can fail without convexity. For example, let S := QU (0,1) C R. Then cl1S = R,
but cl(int S) = [0, 1].

Further notes: in any normed linear space it is straightforward to show the interior of a convex
set is convex: Let z,y € int C, and choose r > 0 so that x +rBx C C' and y +rBx C C. Then
for 0 < A <1, one has

Mz+7rBx)+(1—=MN(y+rBx)CC.

Then, Az + (1 — Ay +rBx C C and Az + (1 — \)y C int C' as desired. It is also easy to see that
the closure of a convex set is closed (see solution to Exercise 2.4.8). See also [383, Theorem 1.13]
for more. O

2.4.4.(a) Let (A;i)icr be a collection of affine sets. Let A =(,c; A;, and let 2,y € A and X € R.
Then z,y € A; for each i € I and so Az+(1—\)y € A; for each i € I. Therefore, Ax+(1—-\)y € A,
and so A is affine.

(b) Suppose A is a nonempty affine subset of E. Fix zg € A. We claim that Y := A — ¢ is
linear. Indeed, then for a, 5 € R and =,y € L we have z = u — xp and y = v — x¢ where u,v € A,
and

axr + Py + xog = au — axg + fv — Prg+ lzg € A
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because a —a+ — F+1 =1 (see part (c)). Therefore, ax + fy € A — ¢, and A — x¢ is a linear
subspace. Conversely, if Y is linear, and xg € F, then A :=Y + z is affine. Indeed, for z,y € Y,
and o + 8 = 1, we have

alx 4+ xo) + By + o) = ax + By + xp € A,

which completes the proof of (b). (Alternatively, one can directly deduce this from Lemma 2.4.5).
(c) This part follows immediately from Lemma 2.4.5 which shows aff D = = + span(D — z) for
any « € D. Indeed, suppose 1, %2, ..., Ly € D. Then for 3", X\; = 1, we have

i)\ixi =+ i)\z(acz - a?) € aff D.
=1 =1

Conversely, suppose u € aff D. Then u € x + span(D — ) and so

m m m
u :a:—i-Zozi(xi — )= Zaixi + (1 - Z%’)UC-
i=1 i=1 i=1

Thus u € aff D and this proves (c).

(d) Suppose D is nonempty. Linear subspaces of E are closed, therefore aff D = x+span(D —x)
is closed for any x € D. Consequently, c1 D C aff D. It then follows that aff(cl D) C aff D.
Because the reverse inclusion is clear, we deduce aff(cl D) = aff D. O

2.4.5. (a) Consider C; = [0,1] x {0} and Cy = [0,1] x [0,1] as subsets of R?2. Then riC; =
(0,1) x {0} while riCy = (0,1) x (0,1). Thus C; C Co, but riC} ¢ riCs.

(b) By translating C, we may assume that 0 € C, then aff C =Y is a linear space, and so riC'
is the interior of C relative to Y, thus we may apply Exercise 2.4.3 using Y as the overspace to
derive the conclusion.

(c) (i) = (ii): Let = € riC then there exists r > 0 so that x + eBg Naff C C C. In particular,
for y € C choosing € > 0 so that €lly — z| <r, we have z + e(z —y) € C.

(ii) = (iii): Let Y := {A(c—x): A > 0,z € C}. Certainly 0 € Y. Moreover, let A(c —x) € Y.
Then aX(c—x) € Y if a > 0. Suppose a < 0, then choose € > 0 so that €(z —¢) + 2« € C. Then

aXc—z) = |oAz—c)= ‘Oﬂ)\e(ac —¢)

= Pep ) 10y -al,

and so Y is closed under scalar multiplication. We now show Y is closed under addition. Indeed,
for the nontrivial case A1, Ao > 0 we have

A1 — Ao
AMAA2 AN+ A
= ()\1+)\2)(5—$),

Al(cl—x)—i—/\g(cQ—m) = ()\1+)\2) Co— I

where ¢ € C' by the convexity of C as desired. Thus Y is a linear subspace.

(iii) = (i) Let Y = {A(c — ) : ¢ € C}. It follows from Lemma 2.4.5 that aff C = 2+ Y. For a
basis {y;} of Y, we can choose each of y; and —y; can be written as A(¢ — ) for some A > 0 and
¢ € C from which it follows that z is in the interior of C relative to aff C.

(d) In fact, ri(T'C) = T'(riC); see [369, Theorem 6.6]. O
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2.4.6. By shifting f we may assume 0 € dom f, and let Y = span(dom f). Let « € ri(dom f), the
x is in the interior of the domain of f relatively to Y. By the max formula (2.1.19), df|y (x) # 0,
that is, there exists ¢ € Y such that

(7) (py—z) < f(y) — flz) forall yey.

Now write E = Y + Z as a direct sum, and define ¢ on E by ¢(y+2) = ¢(y). Because dom f C Y,
it follows from (7) that ¢ € f (z).

Notice that this result ensures the subdifferential of any proper convex function on FE has
nonempty domain and range. This is because the domain of a convex function is convex, and
every nonempty convex subset of £ has nonempty relative interior. O

2.4.7. Suppose zg € dom f and df(xp) = (. Because cl(ridom f) = cl(dom f), there exists a
sequence (z,,) C ri(dom f) converging to o, and hence by Exercise 2.4.6 there exist ¢, € 9f(xy,).
Suppose by way of contradiction that ||¢y,| / oo, hence it has a bounded subsequence, and then
by compactness a convergent subsequence. Thus we suppose ((ﬁn].) — ¢. Then for y € E, we have

o(y) — ¢(x0) = li;n Gn; (Y — ;) < limjinff(y) — f(zn;) < f(y) — f(=0),

and so ¢ € 0f(zp). This provides our desired contradiction. Thus ||¢,| — oco. Furthermore,
Exercise 2.2.23 shows that df(x() is unbounded whenever it is not empty and zg is in the boundary
of the domain of f. Thus 0f is not bounded on any neighborhood of a boundary point of the
domain of f.

Further notes. Closedness is necessary as simple examples illustrate. Indeed, let f(¢) := 0 if
t<1, f(1):=1and f(t) := 400 for t > 1. Then 9f(1) =0 and 9f(t) = {0} for all ¢t < 1. O

2.4.8. Suppose f is proper. Fix zg € ri(dom f) and let ¢ € 9f(xp). Then f(x) > clf(x) >
f(xo) + ¢z — xp) for all x € X and so cl f is proper. One can verify cl f is convex because
its epigraph is convex as the closure of a convex set; that a closure of a convex set is convex
is elementary to verify. Indeed, suppose D = clC where C' is convex. Suppose x,y € D, and
0 < X < 1. Choose (xy,), (yn) C C so that z,, — = and y,, — y. Then

Ar+ (1= ANy = lién()\xn + (1= ANyn).

Hence Az + (1 — )y € D as it is a limit of elements from C'.

Further notes. Hence, one can use the Hessian to check convexity of convex functions on closed
domains. For example suppose f : C — R is continuous and int C' # (). Suppose f is twice
Gateaux differentiable on int C' whose Hessian is positive semidefinite at all x € int C. Then f is
convex, because flint ¢ is convex, and f is the closure of flin - O

2.4.9. The set C is closed by Carathéodory’s theorem (1.2.5) because it is the convex hull of a
compact set. The set of extreme points of C' is not closed because (1,0, 0) is not an extreme point
of C but every other point on the circle {(x,y,2) : 22 + y? = 1,z = 0} is an extreme point of C.
L]

2.4.10. (a) If (2.4.12) has a solution, then clearly (2.4.13) does not, so at most one of (2.4.12)
and (2.4.13) has a solution. Let C:={z € E:ax =3 " Nz, Ay > 0,>. A = 1}. Then C'is a
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closed convex set. In the case 0 € C, then (2.4.12) has a solution. In the event 0 ¢ C, we apply
the basic separation theorem (2.1.21) to find z € E so that suppz < (z,0) = 0. In particular,
(i, z) <0fori=0,1,...,m and so z is a solution to (2.4.13).

(b) Clearly, (2.4.14) and (2.4.15) cannot simultaneously have solutions. Consider the cone

m
C = {a;:x:z,uixi, w; > 0}.
i=1

Then C is convex and it is a finitely generated cone which is thus closed by Carathéodory’s
theorem (1.2.5). In the event ¢ € C, then (2.4.14) has a solution. In the event ¢ ¢ C, we apply the
basic separation theorem (2.1.21) to find x € E so that (x,¢) > sup,cc(x,u) = 0 (note supsz =0
because 0 € C, and if (z,u) > 0 for some u € C, then nu € C and so supg z > n(x,u) > (z,c)).
Therefore, (2.4.15) is satisfied by x because (c,z) > 0 and (z;,z) < supoxz =0 fori=1,...,m.
U

2.4.11. (a) Suppose {a;}7; is linearly dependent, and x = 37", pija; where p; > 0 for j =
1,2,...,m. We will show that x can be written in this form using at most m — 1 elements, from
which the first statement in (a) will follow.
Using the linear dependence we can write

m
Atar 4+ Asas + ...+ Apay, =0, where Z)\j >0
j=1
and not all \; are 0. Now for any ¢t € R we have
m
r= (uj—tA)a.

Jj=1

Let Jy := {j : A\; > 0}. Then Jy # 0 because Y A; > 0 and not all A\; = 0. Let jy denote an

index in J; such that
Hio
Ajo

Set t := pj,/Ajo- Then t > 0 and for j € J4 one has

Iy Hj Ko
(j —tAj) = Aj < — > >0,
’ ! ! )‘j )‘jo

= min{p;/XAj: j € Ji}.

which equality when j = jo. When j ¢ J4, then \; < 0 and so pj — tA; > 0. Therefore,
pj —tA; >0 for j =1,2,...,m with equality when j = jo, and so we write

r= ) (-t

1<j<m,j#jo

as desired.

For the second statement in (a), let {a; : j € J} be a linearly independent set, and let
N := |J| and define the linear mapping A : RY — RN by A(cy,ca,...,cn) = Zf\il ¢;a;, where
J ={j1,752,---,jin}. Then A is an isomorphism and so it maps closed sets onto closed sets, in
particular, A(Rf ) = Cj is closed.

(b) A finitely generated cone is thus closed as a union of finitely many closed sets.
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(c) This can be proved along the same lines as (a), but with more care: see p. 41-42 in L.D.
Berkowivitz, Convezity and Optimization in R™, Wiley, 2002. We will use the result of (a) to
derive (c). Indeed, suppose A C R™, and suppose x € conv A. Then there exist a,...,a, in A
such that x = ;" A\ja; where \; > 0 and ) ;" \; = 1. Now consider the cone C; C R" x R
generated by {(a;, 1)}™,. Then (z,1) = >, Xi(a;,1) € Cy, and by part (a), (z,1) € C; where
{aj,1}jey is linearly independent in R™ x R, and so [J| < n+ 1. Now (z,1) = >, ; pj(a;,1)
where p; > 0 for j € J. Consequently, = . ;pja; and 1 =3 ; p; which shows the desired
result.

(d) Let A be a compact set in R™ and let f be a function from R(MHD? o R™ defined by
Fy, 1,2, Tap1) = S0y where y = (y1,92, - - Ynt1) € R*! and x; € R™. Then f is a
continuous function and conv A is the image of the compact set A x A x A x ... x A under the

mapping f where A is the simplex in R"t1, O
2.4.12. Let {x1,29,...,2p42} C R™. The collection {x; — xl}?j; is linearly dependent in R™,
hence we find {a; ?;52 not all 0 so that 2?222 ai(z; —x1) = 0. Now set set a1 := — 2?2_22 a;. Then
n—+2 n—+2
(8) Z a;T; = 0 and Z a; = 0.
i=1 i=1

Let I1 :={i:a; >0} and I := {i : a; <0}, and let
Cy:=conv{z; :i€ 1} and C9:=conv{z;:i€ Ir}.
Let a:= ) ;c; aiand let 7 := ), ; “x;. Then ), ; % =1and so Z € 1, and it follows from

i€l

(8) that z =3, ., —%x; and ), ; —% = 1. Consequently Z € Cy as well, and we are done. [

2.4.13. We first establish the case when I is finite (in this case we need not assume the sets C;
are closed and bounded). The case |I| < n + 1 is trivial, so we suppose |I| =n + 2 and that the
sets C1,C,...,Chio are such that that every subcollection of n + 1 or fewer sets has nonempty
intersection. For each 1 < i < n+ 2, we fix z; € ﬂje],j;éz‘ Cj. In the case Z; = Z;, for some
J1 # j2, then Z;, € (;c; C;i and we are done. So we suppose the Zjs are all distinct. According
to Radon’s theorem (1.2.3) we can partition I = I U I so that Dy := conv{z; : i € I;} and
Dy := conv{Zz; : i € I} have nonempty intersection, say z € Dy N Dy. Now & € D; ensures
T € ier, Ci and & € D3 ensures T € [,y C; and 80 T € ()<<, 0 Ci as desired.

Now suppose |I| = k > n + 2, and the assertion is true whenever |[I| < k — 1 the argument in
the previous paragraph shows every subcollection of n + 2 sets on {C;};e; will have nonempty
intersection. Now consider the collection Dy := C; N Cy and D; := Cy41 for ¢ = 2,..., k. Then
Dy,Ds,...,Dp — 1 is a collection of closed convex sets such that every subcollection of n + 1
or fewer sets has nonempty intersection. By the induction hypothesis, ﬂf;ll D;. has nonempty
intersection, that is (),.; C; is not empty as desired. By mathematical induction, the result is
true for every |I| € N.

Now suppose {C;}ier is as in the statement of Helly’s theorem. According to the previous para-
graph, every finite subcollection has nonempty intersection. By the finite intersection property
for compact sets, (;c; C; is not empty. O

el

2.4.20. Let m :=info f. Then f > —g where g := dc — m. The conditions imply we can apply
the sandwich theorem (2.4.1) to find an affine function « such that

m—éc <a<f.
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Then m < info o < info f as desired.

Suppose Z minimizes f on C, and write the affine separating function as @ = ¢ + r. Then
¢ € 0f(z) and —¢ € 3¢ (Z) and so 0 = ¢ — ¢ € Of(Z) + N (z) as desired.

Conversely, suppose 0 € 9f(Z) + dc(Z). Then 0 € I(f + 0¢)(Z), and so f + d¢ attains its
minimum at z. Therefore f attains its minimum on C at .

Further notes. This last part could have been completed equally easily using the subdifferential
sum rule because

0 € d(f +dc)(x) if and only if 0 € Of(Z) 4+ 0dc(Z) if and only if 0 € Of(Z) + Nc(Z).

2.4.21. (a) Applying the Fenchel duality theorem (2.3.4) we obtain

inf {dc(2) +op(Aw)} = sup{-d;(A"¢) — Ip(~¢)}

PEY

= sup{—oc(A%¢p) —dp(—¢)}
peY

= sup{—sup(¢, Azx) — dp(—¢)}
PeY zeC

= sup{inf (~¢, Az) — dp(—9)}
pey zeC

= sup{lnf{<yaz4$>}
yeD €

Further, the supremum is attained when finite according to the Fenchel duality theorem (2.3.4),
and so we have

9 inf A f(y, A

©) :32022}3@ r) = max inf (y, Az).

(b) In case (i) when D is bounded, op has full domain and AC' is not empty and so (2.4.17)
holds. In case (ii), when A is surjective and 0 € int C, then 0 € int AC because A is open. Clearly
0 € domop, and thus (2.4.17) holds in this case as well.

(c) When D is compact, (2.4.17) holds by case part (b)(i). The compactness of D and C' then
allow the replacing of sup and inf with max and min. O

2.4.23. Let K be a nonempty subset of E. Then
K :={peFE:(p,x) <0, forall z € K}
Given any x € K, t > 0 and ¢ € K~ we have

(¢, tx) =t(¢p,z) <0

Therefore, K C (K~)~. Also, observe that for any set S, S~ is a closed convex set because it is
an intersection of closed half-spaces. In particular, K~ is a closed convex set containing R K.
Now let C be the closed convex hull of Ry K, and suppose zg ¢ C. By the basic separation
theorem (2.1.21), we choose ¢ € E such that ¢(zg) > supq ¢. Observe that sups ¢ = 0 because
0 € C, and if supr ¢ > 0, then there exists ¢ > 0 and £ € K such that ¢(t) > 0. Then
limy, 00 #(nZ) = 00, and so ¢ would not be bounded above by ¢(xg) on C. Since sup-¢ = 0,
then ¢ € K~, and so zp € (K~)7, and thus K~~ C C as desired. O
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2.4.24. We will prove the assertions for D + C, the other case follows by considering D + (—C).
Suppose dy + ¢1,da +c3 € D+ C. Then for 0 < A < 1, using the convexity of D and C' we obtain

)\(dl + Cl) + (1 — )\)(dz +62) = \dy + (1 — )\)dg + Aep + (1 — /\)62 e D+ C.

Now suppose (d,, + ¢,)o2y C D+ C and d,, + ¢,, = . Let (c¢y,) be a convergent subsequence of
(cn), say, ¢, - c€ C. Thend,, -z —¢c Thusz—ce D,and so z € D+ C as desired. O

Exercises from Section 2.5

2.5.1. Suppose f is differentiable at z¢ (by Theorem 2.2.1 f is automatically Fréchet differen-
tiable), so given € > 0 we choose ¢ > 0 so that

[f(@+h) = fx) = (f'(z0), )] < gllhll whenever 0 < [|h]| < é.

Therefore, for ||h|| < ¢, using the triangle inequality we obtain

Fa+h)+ fla=h) =2f@)] = [f@+h) = f@) = (f'@)h) + fla—h) = f(2) = (@), )|
SURl+ 510 = €llall

IN

=0.

—h)—2
This implies lim fleth)+ flz=h) f(z)
Ibl—0 |17
Conversely, suppose f is not differentiable at x. Because f is continuous at x, the max for-
mula (2.1.19) ensures df(z) # 0, thus we use Theorem 2.2.1 to deduce that there are distinct
¢, A € df(x). Thus we choose hy € Sg so that (¢ — A)(hg) > 0. Now let ¢ = (¢ — A). By the
subdifferential inequality

f(z+tho) — f(x) — ¢(tho) + f(x —thy) — f(x) — A(—thg) > 0, for all ¢.
In particular, f(z + thy) + f(z — tho) — 2f(x) > (¢ — A)(thg) > €t for all ¢ > 0 and so

lim sup f@+h)+ flx—h)—2f(z)
I[h]|—0 Al

> €

which establishes the ‘if’ assertion. O

2.5.2. Let
Gnm = {mEU: sup f(a:+h)—|—f(x—h)—2f(;p)<?;n},

1
hll<5;

and O,, := Um21 Gpm and G := ﬂn21 O,,. Suppose z € G and let € > 0. Choose n such that
1/n < e. Now find m such that z € Gj, ,,, and choose ¢ so that 0 < § < 1/m. The convexity of

f implies
1 1
sup f(z+h)+ f(x—h)—2f(x) < e whenever 0 < o < e
[hl|l=c

Indeed, for 0 < A <1 we have

@+ Ah) + f(x = Ah) = 2f(z) < Af(z+h)+ (1 =Nf(@)+Af(z—h)+ (1= Nf(x) - 2f(z)
= AMf(z+h)+ flx—h)—2f(z)].
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Exercise 2.5.1 implies that f is differentiable at . Conversely, suppose f is differentiable at x,
and fix n € N. Choose 0 < € < 1/n and use Exercise 2.5.1 to find 6 > 0 so that

f@x+h)+ f(x—h)—2f(x) <e€||h|| whenever ||h] <.

Then z € Gy, for all m > 1/6. It follows that x € G as desired.

It remains to verify that O, is open for each n. Indeed, fix n and suppose € O,. Then for
some mg € N, x € G, and, as above, the convexity of f implies that x € G,,;,, for all m > my.
Now fix m > my sufficiently large so that f has Lipschitz constant, say K > 0 on By, (z). Then
choose € > 0 so that )
sup f(z+h)+ f(zx—h)—2f(z) < — —e.

IBlI<% mn
Now we choose o > 0 so that 4K« < € and o < 1/m. Now suppose ||u — z|| < «, then because f
has Lipschitz constant K on By, (z), for [|h]| < 1/m we have

fluth)+ f(u—h) =2f(u) < f(z +h) + f(z = h) = 2f(z) + 4K]|z — u]] <—.

mn

This shows O,, is open as desired. O

2.5.3. Suppose f : R™ — R™ is locally Lipschitz. Let p; be the j-th coordinate projection from
R™ to R. Define f; = pj o f. Then f; is locally Lipschitz. Let D = {z € R™ : f; is differentiable
at x, 7 =1,2,...,m}. It follows from Rademacher’s theorem, that D¢ is a union of finitely many
null sets, and thus has measure 0. It remains to show that f is differentiable at each x € D.
Indeed, fix € D and let A be the m by n matrix whose j-th row is V f;j(x). It is not hard to
verify that V f(z) = A, indeed for € > 0, choose § > 0 so that

fiz +th) — fi(z)

—° whenever h € Sgn, 0 <|t| <0.

~ (Vh) 1) <

t Jm
Then for h € Spr and 0 < [t| < d, we have
r+th) — f(x " i(x+th) — fi(x 2
ety S (B A gy )
i=1
mo2
€
< ;m—ﬁ.
Hence V f(z) = A as desired. O

2.5.4. Let € > 0, and let h € Sx. Let K > 0 be chosen so that f satisfies Lipschitz constant K
in a neighborhood §B,(z) of z and |ly|| < K. Now fix k € N with ||hx — k|| < ¢/4K. Now choose
0 < 6 < r so that

(10) f(Z +thy) — £(2) — (y, thy)| < it whenever |¢| < .

Now for [t| < § we have
£ (Z +th) — f(Z) — (y, th)] |f(Z + the) = f(2) = (y, the)| + 2K||th — thy||

€ €
—|t| + 2K |t|— = €|t|.
Sl + 2Kt = el

IN

IN
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This shows f is Gateaux differentiable at & with V f(Z) = y. So far, we didn’t use that X is finite-
dimensional. However, because X is finite-dimensional, and f is Lipschitz in a neighborhood of
z, Exercise 2.2.9 implies f is Féchet-differentiable at = as desired.

Further comments. The reader will notice that last part of the proof of Rademacher’s theorem
also proves this fact. Observe further that even the assertion f is Gateaux differentiable at &
may fail for continuous functions (the estimate with the Lipschitz constant above was crucial).
Indeed, on R? let f(z,y) = 0 whenever y < \/|z| and f(z,y) = y — \/|z| for y > \/]z|. The
hypothesis of the exercise are satisfied at & := (0,0) for every direction h € Sgz with y := (0,0)
except for the direction h := (0,1), however, f fails to be Gateaux differentiable at (0,0). O

2.5.5. Let x be a boundary point of C'. Because C' has nonempty interior, we choose ¢ € Sx» so
that ¢(x) = supy ¢ and ¢(x) > ¢(y) whenever y € int C. It follows that ¢ € ddc(z). Indeed, if
y € C, then o(y—2) <0 = do(y) —do(x). Tty ¢ C, then d(y—=) < inf{|ly—ull : 6(u) < o)} <
dc(y) = do(y) — do(x). Because 0 € de(z), it follows that ddco(z) is not a singleton, so d¢ is
not differentiable at x. Thus d¢ is a convex function that is not differentiable at the boundary
points of C', and consequently, the boundary of C' is both first category and Lebesgue-null. O

2.5.7. (a)=-(b): g is almost everywhere differentiable by Theorem 2.5.1. On the other hand, the
subgradient inequality holds on U. Together, these facts imply (b).

(b)=-(c): trivial.

(¢c)=(a): Fixu,vin U, uw # v, and t € (0,1). It is not hard to see that there exist sequences (uy,)
in U, (v,) in U, (t,) in (0,1) with w, — u, v, = v, t, = t, and z, := tpu, + (1 —t,)v, € A, for
every n. By assumption, Vg(z,)(un —2n) < g(un) — g(zn) and Vg(x,) (v, —xn) < g(vn) — g(zn)-
Equivalently, (1 —¢,)Vg(zn)(vn — upn) < g(upn) — g(xn) and t,Vg(zn)(un — vn) < g(vn) — g(xn).
Multiply the former inequality by %,, the latter by 1 — ¢,, and adding we obtain

0 < tng(un) — tn(g(zn) + (1 —tn)g(vn) — (1 — tn)g(zn),

or in other words g(z,) < tpg(un) + (1 — ty)g(v,). Now let n tend to 400, and deduce that
g(tu+ (1 —t)v) <tg(u) + (1 —t)g(v). The convexity of g follows and the proof is complete. [

2.5.8. Let fu(x) :==n[f(z+1/n) — f(x)]. Let G := {z : f'(x) exists}; then fp(x) — f'(x) for
z € G. Let F, .= {z : |fj(x) — fu(z)| < 1/2} for all j,k > n. Then F, is closed because it
is an intersection of closed sets since f; — fi is continuous for each k,j € N. Clearly (f,(x)) is
convergent for z € G and so | F,, D G. Suppose F,,, contains an open interval I for some ng € N.
Then |fn,(z) — f'(x)] < 1/2 almost everywhere on I. By the Fundamental theorem of calculus,
f'(x) = xs — xr\s almost everywhere, and so f'(z) = 1 on a dense subset of I and f'(z) = —1
on another dense subset of I we conclude that f,, > 1/2 on a dense subset of I, and f,,, < —1/2
on a dense subset of I to contradict the continuity of f,,. Hence F}, is nowhere dense for each
n € N and so G is a set of first category. O

Exercises from Section 2.6

2.6.1. Using the bilinear property of ¢, and then the symmetric property we compute

pz+y,z+y) = d@,2+y)+ oy, z+y)
¢(z,7) + d(z,y) + ¢(y, ) + d(y, )
= ¢(x,2) +2¢0(x,y) + o(y,y).
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Therefore,

$(.y) = 160+ v,7 +y) — 9l ) — oy, v

That is, ¢ is uniquely determined by the values ¢(h, h) such that h € E. O

2.6.3. (a) This part is essentially a restatement of the definitions. Indeed, assume that

flx+th) = f(z) = t(Vf(z), h)
Z |

Aff(a;) th—

converges uniformly on bounded sets to the function h — (Ah,h) as t — 0 for some matrix A.
Then given € > 0, choose § > 0 so that

[z +ty) = fz) =6V f(2),9)
$2

- — (Ay,y)| < e when 0 < |t| <,y € Sx.
2

Now letting h := ty where y € Sx and 0 < |t| < ¢ in the preceding, implies

fe+h) = fz)+(Vf(z),h)+ %(Alu hy +o(|h]1%), IR — 0

as desired. The converse implication follows essentially by reversing the preceding steps. Indeed,
suppose f has a strong second-order Taylor expansion at x. Given € > 0, choose d > 0 so that

1 1
‘f<x+ n - (f(w) +(VF(@). ) + L (Ah, h>)\ < Lelhl. when ] <
Then given any r > 0 for y € rBx and |t| < §/r, we have
1 2 1 2
fla+ty) = f@) + 6V f(2),y) + 5t Ay, y) || < Seltl™.

Dividing both sides by %tz when ¢t #£ 0, we obtain

—(Ay,y)| < e

|f(w +ty) — fz) — H{V f(z),y)
t2

1
2

Thus A? f(x) — (Ah, h) uniformly on bounded sets.
The argument for pointwise convergence is analogous.

(b) As in the proof of Theorem 2.6.1, let A be a symmetric matrix. By part (a), ¢ := %A?f(m)
converges pointwise to g(h) := %(Ah,h}. According to Proposition 2.6.3 , the functions ¢; are
closed and convex. Because they converge pointwise to ¢, it follows that ¢ is convex. It follows
from Exercise 2.1.22 that the convergence is uniform on bounded sets. O

2.6.4. (a) The definition of generalized Fréchet derivative implies ¢, — ¢ whenever ¢,, € 0f ()
and x, — x. Then Corollary 2.5.3 implies 0f(z) = {¢}. Thus f is Fréchet differentiable at x
with V f(z) = ¢ (Theorem 2.2.1).
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(b) Suppose by way of contradiction that the definition of the generalized second-order Gateaux
derivative at x works with distinct matrices A and B. Then we choose h € Sx such that Ah # Bh.
Thus we set € := ||(B — A)h||. Then choose § > 0 so that

Of (x +th) C ¢ + A(th) + §|t|BE and Of(x + th) C ¢+ B(th) + §|t|BE for [t| < 6.
Now for fixed 0 < t < §, we let A € 9f(x + th) and write

t
A=¢+Ath)+y1 and A= ¢+ B(th) +ys where |ly1]l, [|ve] g%.

Then [|(A — B)(th)|| < %t which contradicts € := |[(B — A)h||.

(c) Suppose f has a generalized second-order Fréchet derivative at . Then given € > 0, there
exists § > 0 so that

Of(x+h) C Vf(x)+ Ah + €0 Bg whenever 0 < ||h]| < 4.

Therefore, if |t| < §, h € Bg and ¢ € Of(z + th) we have

o0 = (o) = Aeh)] <l andso | * =T anf <
Therefore, lim m = Ah uniformly for h € Bg as desired.
t—0 t
Conversely, suppose %il% d%—tvf(fﬁ) = Ah uniformly for h in Bg. Given € > 0, there exists
—
0 > 0 such that
¢t — Vf(x)

|

Thus [|¢r — V f(z) — A(th)|| < €|t], or in other words,

" - AhH < e whenever 0 < [t| < 4, ||h|| = 1,¢¢ € Of (x + th).

|¢ — Vf(z) — Ah|| < €||h|| whenever ¢ € df(z +h), 0 < ||k <.
Because € > 0 was arbitrary, this implies
Of(x+h) C Vf(x)+ Ah+ o(||h|)Bg

as desired. [

2.6.5. Suppose that for some matrix A : F — FE, given any € > 0 and bounded set W C F there
exists 6 > 0 we so that
AOf](x)(h) — Ah C eBg for all h e W, t € (0,0).
Applying this with W = Sg and arbitrary € > 0 we find § > 0 so that
Of(z +th) — Vf(z)
t

— Ah C eBg for all h € Bg, te€ (0,0).

In particular, when 0 < [Ju|| < 6 we write u = th where t = ||u|| and h € Sg and mutiplying both
sides of the previous inclusion by ¢ we obtain

Of(x+u) C Vf(x)+ Au+ edBg
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and thus f has a generalized second-order Fréchet derivative at x.

Conversely suppose f has a generalized second-order derivative at x. Let W C F be bounded
and let € > 0. Choose K > 0 so that W C K Bg. Using the definition of generalized derivative,
choose n > 0 so that

Of(w+h) C Vf(z) + Ah + %HhHBE whenever 0 < || < 1.

Now set § := n/K and suppose 0 < t < § and h € W. Then ||th| < n and using the previous
inclusion we obtain

Of (x + th) — Vf(z) C A(th) + %chHBE;
and then dividing both sides by ¢ and noting ||h|| < K we obtain
A¢[0f](x)(h) — Ah C eBg for all h e W, t € (0,0),

as desired. 0

2.6.6. The subgradient inequality ensures A? is nonnegative. Hence the convexity, closedness and

1
properness of A? thus follows because f possesses those properties. We next verify 9 [2 A? f (w)] =
A[0f](z). Indeed, suppose y € O [3A7 f(z)] (h), then for u € E,

fla+t(h+u) - flo) - {Vf(@),h+u) — [f(z +th) — f(z) — UV [(z), ")
$2
flx+th+u)) — f(x+th) — (Vf(z),tu)
$2

(y,u)y <

Multiplying both sides of the previous inequality by ¢ (note: ¢t > 0), we obtain

1 flx+th+u)) — f(x+th)
(y, tu) + ;Vf(:c),tu) < - )

Thus y + %Vf(:v) € %8]’(90 +th), that is y € w. Therefore,

1
0| 3821)| € adosia)
The reverse inclusion follows by roughly tracing the steps backwards. O

h3 cos(1/h) — 0

2.6.8. First, f/(0) = }131% =0 and f'(t) = 3t? cos(1/t) +tsin(1/t) when t # 0 and
%

so f is continuously differentiable. Moreover,
1 1
t3cos(1/t) = 0 + 0Ot + 501t2 +o(t?) = £(0) + f(0)t + 501&2 + o(t?)

and so f has a second-order Taylor expansion at 0. However, f” does not exist at 0 since

I f'(h) — f(0) _ i 3h2 cos(1/h) + hsin(1/h) — 0
h—0 h h—0 h

does not exist. O
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Exercises from Section 2.7

2.7.1. Note that given a nonempty set S, conv(S) is the collection of convex combinations of
elements in S, that is element of the form ZZI A;s; where m € N, s; € S, ZZZI A; = 1 and
N >0foralll<i<m.

By the extreme value theorem, f attains its maximum at some Z € C. By Minkowski’s theo-
rem (2.7.2), we may write T = ) ., \;x; where x; is an extreme point of C, \; > 0 for 1 <i <m
and > " A; = 1. By the convexity of f, f(z) < >;%, \if(x;). Because f attains it maximum at
Z, this implies f(z;) = f(Z) for each 1 <i <n.

2.7.2.(Exposed Points)

(a)

Suppose z is an exposed point of a convex set C. Choose ¢ € E such that (¢, xg) = supq ¢
and (¢, x) < (@, ) for all z € C'\ {xp}. Let z,y € C\ {x0}. Then for any 0 < A <1,

Az + (1= Ny) = Ap(x) + (1 = N)o(y) < d(xo)-
Thus zg is not a convex combination of x and y.

Let C be a compact convex subset of E. Suppose zo € C' is an exposed point, exposed by
¢ € E. Now suppose (z,,) C C' is a sequence such that ¢(z,) = ¢(x0), but z,, =— 9. By
the compactness of C, there is a convergent subsequence of (x,,) such that (z,, ) — & where
T # xp and T € C. Then ¢(Z) = lim ¢(x,,) = ¢(x0). This contradicts the fact ¢ exposes g
in C.

A proof that the exposed points are dense in the extreme points of a compact convex (or
any closed convex set in F) can be found in [369, Theorem 18.6, p. 167—68], the proof uses
the basic separation theorem (2.1.21) and Carathéodory’s theorem (1.2.5). We will outline
another proof that every compact convex subset of E is the closed convex hull of its strongly
exposed points that mimics techniques that will be used in Section 6.6.

Indeed, let C' be a compact convex subset of E. Then o¢ : E — R is a continuous convex
function. By Theorem 2.5.1, o¢ is differentiable on a dense subset of E. Now let D be
the closed convex hull of the exposed points of C. Suppose by way of contradiction that
D # C, that is, we fix Z € C'\ D. According to the basic separation theorem (2.1.21),
we choose y € E such that (y,Z) > suppy. Because D is bounded, and the points of
differentiability of o are dense in F/, we may choose ¢ € E such that o¢ is differentiable
at ¢, and ¢(Z) > supp ¢.

Now let 29 = Voc(¢) and so doc(¢) = {zo}. It is easy to check that ¢(zg) = oc ().
Indeed, (z0,2¢ — ¢) < 00(2¢) —oc(d) = oc(d) and (z9, ¢ —0) > oc (@) —0c(0) = —0c(d).
Thus ¢(x9) = oc(¢). Further, g € C, for otherwise we would use the basic separation
theorem (2.1.21) to find A € E so that A(xg) > oc¢(A). This provides the immediate
contradiction (x, A — @) > occ(A) —oc(¢). Finally, if u € C is such that ¢p(u) = o¢(¢), then

(u,A — o) <oc(A) —oc(¢) forall A€ E

and so u € doc(¢) = {xo}. Thus ¢ attains its supremum on C uniquely at zg, and this
yields the contradiction that xg is an exposed point of C' which is not in D.

Further notes. The set C = {(z,y) € R? : -1 <z < 1,-V1-22 <y <1+V1-2%}isa
compact convex set that is not the convex hull of its exposed points. Indeed, any exposed point
(x,y) of C satisfies |x| < 1. Thus the closure is needed in (c). O
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