
Solutions to Selected Exercises in Chapter 4

Exercises from Section 4.1

4.1.1. (a) Suppose f : X → [−∞,+∞] is lower semicontinuous. Let α ∈ R, and and S :=
{x : f(x) ≤ α}. Suppose (xn) ⊂ S and xn → x̄. Then lim inf f(xn) ≥ f(x̄) because f is lower
semicontinuous. Therefore, x̄ ∈ S and S is closed.
Now suppose each lower level set of f is closed. Let (xn, tn) ∈ epi f and suppose (xn, tn)→ (x̄, t̄).

For any ε > 0, the set S := {x : f(x) ≤ t̄ + ε} is closed. Now xn ∈ S for all sufficiently large n,
therefore x̄ ∈ S. This implies f(x̄) ≤ t̄ + ε. Because ε > 0 was arbitrary, this implies f(x̄) ≤ t̄,
and so (x̄, t̄) ∈ epi f , and we conclude that epi f is closed.
Finally, suppose epi f is closed. Suppose xn → x̄. If lim inf f(xn) = ∞, then clearly f(x̄) ≤

lim inf f(xn). Thus we suppose lim inf f(xn) < ∞. Let α be any real number such that
lim inf f(xn) < α. Then (xn, α) ∈ epi f for all sufficiently large n. Because epi f is closed, this
implies (x̄, α) ∈ epi f , and f(x̄) ≤ α. Hence lim inf f(xn) ≤ f(x̄). Thus f is lower semicontinuous.
(b) Suppose epi f is weakly closed, and suppose xα → x weakly. In the case lim inf f(xλ) =
∞, it is clear f(x) ≤ lim inf f(xλ). So suppose lim inf f(xλ) < ∞. Let α ∈ R be such that
lim inf f(xλ) < α. Then (xλ, α) is eventually in epi f . It then follows that (x, α) ∈ epi f and so
f(x) ≤ α. It follows that f is weakly-lower semicontinuous.
Conversely, suppose f is weakly-lower semicontinuous, and suppose (xλ, tλ) ∈ epi f satisfies

(xλ, tλ) → (x̄, t̄) weakly. Then lim inf f(xλ) ≤ lim inf tλ = t̄. Thus (x̄, t̄) ∈ epi f , and we deduce
that epi f is weakly closed.
The epigraph of a convex function is convex. Therefore epi f is weakly closed if and only if

it is (norm) closed. Consequently, by the previous parts of this exercise, f is weakly-lower
semicontinuous if and only if it is lower semicontinuous.
(c) This is similar to the corresponding parts of (a) and (b).

4.1.2. (a) Clearly cl f ≤ f and cl f is lower semicontinuous since it is closed. Now suppose
g ≤ f , and g is lower semicontinuous. Then epi f ⊂ cl epi f ⊂ epi g. Thus g ≤ cl f . Consequently,
cl f = sup{g : g is lower semicontinuous and g ≤ f}.
For any x0 ∈ X, it follows that

(1) cl f(x0) ≤ lim
δ↓0

inf
‖x−x0‖<δ

f(x)

(because cl f is lower semicontinuous and so f(x0) ≤ lim infx→x0 f(x). On the other hand,
suppose α < limδ↓0 inf‖x−x0‖<δ f(x). Then we choose δ > 0 so that inf‖x−x0‖<δ f(x) ≥ β > α.
Consequently, (x0, α) 6∈ cl epi f . Thus α ≤ cl f(x0). It follows that

(2) cl f(x0) ≥ lim
δ↓0

inf
‖x−x0‖<δ

f(x).

It follows from (1) and (2) that f(x0) = limδ↓0 inf‖x−x0‖<δ f(x).
(b) For (i), consider f(0) := −∞ and f(t) := +∞ when t 6= 0. This function has no continuous

affine minorant. For (ii), let c00 be the nonclosed linear subspace of all finitely supported sequences
in c0. Consider, for example, f : c0 → (−∞,+∞] for which f(x) :=

∑
xi if x ∈ Bc0 ∩ c00,

and f(x) := +∞ otherwise. Then f has no affine minorant because infBc0
f = −∞ (simply

consider f(−1,−1, . . . ,−1, 0, 0, . . .) so the suprema of the affine minorants is identically equal
−∞ by convention. On the other hand, one can check that (cl f)(x) = −∞ if x ∈ Bc0 and
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(cl f)(x) = +∞ otherwise. Thus (ii) is not generally true. Part (iii) is true, indeed, cl f is
lower semicontinuous and proper, so let x0 ∈ X and a < cl f(x0). According to the epi-point
separation theorem (4.1.21) there exist φ ∈ X∗ so that φ(x) + a − φ(x0) ≤ f(x) for all x ∈ X.
Then α(·) := φ(·) + a − φ(x0) is an affine function, and α(x0) ≥ a. It follows that cl f is the
suprema of affine functionals that minorize it.
(c) One can use the example from b(ii). A similar example is the function f : c0 → (−∞,+∞]

for which f(x) :=
∑
xi if x ∈ c00, and f(x) := +∞ otherwise. It is not hard to show that

cl f ≡ −∞.

4.1.3. See the solution to Exercise 2.1.5 which works in any normed linear space, and moreover
shows the domain of a convex function is convex.

4.1.4. Suppose f : X → (−∞,+∞] is convex. If f ≡ +∞, then epi f = ∅ is convex. Otherwise,
let (x, t), (y, s) ∈ epi f . Then for 0 ≤ λ ≤ 1 we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λt+ (1− λ)s.

Therefore, λ(x, t) + (1− λ)(y, s) ∈ epi f as desired.
Conversely, suppose epi f is convex, if epi f = ∅ then f ≡ +∞ is convex. Otherwise, suppose
x, y ∈ dom f . Then (x, f(x)), (y, f(y)) ∈ epi f . Thus for 0 ≤ λ ≤ 1, we have λ(x, f(x)) + (1 −
λ)(y, f(y)) ∈ epi f . This implies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

as desired.

4.1.5. (a) Let S :=
⋂
αCα, where each Cα is convex. Suppose x, y ∈ S and 0 ≤ λ ≤ 1. Then

x, y ∈ Cα for each α. Therefore, λx + (1 − λ)y ∈ Cα for each α because Cα is convex. Then
λx+ (1− λ)y ∈ S, and thus S is convex.
(b) Given f := sup{fα : α ∈ A}, we have epi f =

⋂
α∈A epi fα. Therefore epi f is convex (resp.

closed) if each fα is convex (resp. closed). Thus f is convex (resp. closed) when each fα is convex
(resp. closed).
(c) Let g := lim sup fα. Fix x, y and 0 ≤ λ ≤ 1. Then

g(λx+ (1− λ)y) = lim sup
α

fα(λx+ (1− λ)y)

≤ lim sup[λfα(x) + (1− λ)fα(y)]

≤ λ lim sup fα(x) + (1− λ) lim sup
α

fα(y)

= λg(x) + (1− λ)g(y).

The proof for limits is similar, but easier.
(d) Consider f(t) := t and g(t) := −t. Then min{f, g}(t) = −|t| is not convex.

4.1.8. A proof for the convexity of dC (that works in any normed space) can be found in
Fact 2.1.6. Clearly the epigraph of δC is convex, so δC is convex.

4.1.9. For c0 let A = c+
0 , that is A := {(xi) ∈ c0 : xi ≥ 0, i ∈ N}. Let B be the ray

{tx − y : t ≥ 0} where x = (4−i) and y = (2−i). Fix t ≥ 0. For i > 2i, we have t4−i − 2−i < 0.
Therefore, A ∩B = ∅.
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Now suppose φ ∈ `1 \ {0} is bounded below on A, say φ = (si). Then si ≥ 0 for all i (otherwise
if si0 < 0, then we choose nei0 ∈ c+

0 and φ(nei0)→ −∞ as n→∞. Since φ 6= 0, we know si > 0
for some i. Therefore, φ(x) > 0. Consequently,

lim
t→∞

φ(tx− y) = tφ(x)− φ(y) =∞.

Thus φ cannot separate A and B. The proof in the case of `p is similar.

4.1.11. (a) Clearly a separating family is total since it can separate x from 0 when x 6= 0.
Conversely, if S is total, and x 6= y, then we choose φ ∈ S so that φ(x − y) 6= 0, and then
φ(x) 6= φ(y) so S is separating.
(b) Let {hn}∞n=1 be norm dense in SX . Choose φn ∈ SX∗ so that φn(xn) = 1. Now let x ∈ X\{0}.

Let h = x/‖x‖. Now choose hn such that ‖hn − h‖ < 1/2. Then φn(h) > 1/2, and so φn(x) > 0.
(c) The standard basis {en}∞n=1 of `1 will work. In general, any countable norm-dense set in BX

will work as a separating family for X∗. Indeed, if φ ∈ X∗ vanishes on a norm-dense set in BX ,
it vanishes on BX and must be the zero-functional.

4.1.13. Alaoglu’s theorem (4.1.6) ensures BX∗∗ is weak∗-compact. Thus, the weak∗-closure of
BX is contained in BX∗∗ . Suppose the containment is proper, say x∗∗ ∈ BX∗∗ \ C where C is
the weak∗-closure of BX . Notice that C is convex. Thus, according to the weak∗-separation
theorem (4.1.22), there exists φ ∈ BX∗ such that φ(x∗∗) > supC φ = 1 which is contraction. Thus
C = BX∗∗ .

4.1.18. Observe that f is convex as a maximum of two convex functions. Observe that dom ∂f =
{(x1, x1) : x1 > 0} ∪ {(0, x2) : |x2| > 1} which is not convex. Indeed, f is continuous at each
point in the first set of the union (which is the interior of the domain of f), while when |x2| ≤ 1,
we have limt→0+ [f(0, x2 + t) − f(0, x2)]/t = −∞ and so ∂f is empty at those points, while if
|x2| > 1, ∂f(0, x0) = {(s, x2/|x2| : s ≤ 0}.

4.1.19.(a) Let x, y ∈ U , 0 ≤ λ ≤ 1 and let φ ∈ ∂f(λx + (1 − λ)y). Now let a := f(λx + (1 −
λ)y)−φ(λx+(1−λ)y). Then the subdifferential inequality implies a+φ(u) ≤ f(u) for all u ∈ U ,
and so

f(λx+ (1− λ)y) = φ(λx+ (1− λ)y) + a

= λ(φ(x) + a) + (1− λ)(φ(y) + a)

≤ λf(x) + (1− λ)f(y)

as desired.

(b) In the case X is finite-dimensional, the converse to (a) is true. Indeed, f is continuous on U
by Theorem 2.1.12 and hence the max formula (2.1.19) ensure ∂f(x) 6= ∅ for all x ∈ U . However,
when X is infinite dimensional, it fails. Indeed, we let f be a discontinuous linear functional on
X. Then ∂f(x) = ∅ because f is not bounded below on any open subset of X.

4.1.20. (b) Suppose 0 ∈ intC, it is clear that 0 ∈ coreC. Now suppose 0 ∈ coreC. Given h ∈ X,
there exists δ > 0 such that 0 + th ∈ C for 0 ≤ t ≤ δ. Then for t = 1/n where 1/n < δ we have

1
nh ∈ C, and so h ∈ nC. Thus

∞⋃
n=1

nC = X.
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Now suppose C is absorbing. By the Baire category theorem, nC has nonempty interior for some
n, thus u+ rBX ⊂ nC for some u ∈ X and r > 0. Because 0 ∈ C, this implies t(u+ rBX) ⊂ C
for 0 ≤ t ≤ 1/n. Because C is absorbing (and convex with 0 ∈ C) s(−u) ∈ C for 0 ≤ s ≤ 1/m
for some m ∈ N . Now choose k = max{n,m}. Then 1

k (−u) ∈ C and 1
k (u + rBX) ⊂ C. By the

convexity of C,
r

2k
BX =

1

2
1k(−u) +

1

2
1k(u+ rBX) ⊂ C

and so 0 ∈ intC.

(c) This is straighforward. Clearly (1/n, 1/n3) 6∈ C for n = 1, 2, . . . and so (0, 0) 6∈ intC. We now
show (0, 0) ∈ coreC. Indeed, let (x, y) ∈ R2. If y = 0, then t(x, y) ∈ C for all t ≥ 0. If x = 0,
again t(x, y) ∈ C for all t ≥ 0. Thus suppose x 6= 0, y 6= 0 and so y = kx for some k 6= 0. For
|t| ≤ |k/x| we have

t(x, y) = t(x, kx) = (tx, tkx) ∈ C since |tkx| ≥ t2x2.

Thus, (0, 0) ∈ coreC.

4.1.21. (a) As suggested, define Λ : c00 → R by Λ(x) :=
∑
xi where x = (xi). Then Λ is a linear

functional, and we consider un ∈ c00, such that the i-th coordinate of un is 1/n for i = 1, 2, . . . , n,
and 0 otherwise. Then un → 0, but Λ(un) = 1 and Λ(0) = 0 and so Λ is not continuous.
(b) Let {en}∞n=1 denote the standard coordinate (Schauder) basis of c0. Extend this to an

algebraic (Hamel) basis of c0, say {bγ}γ∈Γ. Then an extension of of Λ to c0 is Λ(eγ) = 1 when
bγ = en for some n ∈ N and Λ(eγ) = 0 otherwise.

4.1.22. (a) ⇒ (c): Suppose X = Rn, with standard basis {e1, e2, . . . , en}, and
⋃
k≥1 kC = E.

Then there exist δi > 0 such that tei ∈ C when |t| ≤ δi. By the convexity of C, (x1, x2, . . . , xn) ∈ C
whenever |xi| ≤ δ/n where δ := min{δ1, δ2, . . . , δn}. Thus 0 ∈ intC.
(c) ⇒ (b): Let f : X → R be a linear functional. Then

⋃
k≥1 kf

−1(−1, 1) =
⋃
k≥1 f

−1(−k, k) =

X. By the hypothesis, f−1(−1, 1) has 0 in its interior. Thus there exists δ > 0 so that f(δBX) ⊂
(−1, 1). Therefore

|f(x)− f(y)| = |f(x− y)| =
∣∣∣∣f (δ x− y

‖x− y‖

)∣∣∣∣ · ‖x− y‖δ
≤ 1

δ
‖x− y‖.

That is, f has Lipschitz constant 1
δ .

(b) ⇒ (a): Suppose X is not finite dimensional. Let {eγ}γ∈Γ be an algebraic basis of X.
Fix a countable set {eγ1 , eγ2 , . . .} in this basis and define a linear functional f on X by setting
f(eγk) := k‖eγk‖. Then f(vk)→ 1 while vk → 0 where vk = eγk/(k‖eγk‖).

4.1.23. (a) Suppose C is a closed convex set, and suppose x̄ =
∑∞

i=1 λixi where xi ∈ C and
λi ≥ 0,

∑
λi = 1. Fix x0 ∈ C, and write

yn :=
n∑
i=1

λixi +

(
1−

∞∑
i=n+1

)
x0.

Then yn → x̄, and so x̄ ∈ C. Thus closed convex sets in Banach spaces are convex series closed.
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Suppose U is an open convex set and suppose x̄ =
∑∞

i=1 λixi where xi ∈ U and λi ≥ 0,
∑
λi = 1.

Suppose x̄ 6∈ U . By the separation theorem (4.1.17) we choose φ ∈ X∗ so that φ(x̄) > φ(x) for
all x ∈ U . Then φ(x̄− xi) > 0 for i ∈ N, and therefore

0 > φ

(
x̄−

∞∑
i=1

λixi

)
= 0.

This contradiction shows that open convex subsets of Banach spaces are convex series closed. It
now follows easily that a Gδ-set, is convex series closed as it is an intersection of convex series
closed sets.

(b) We will prove this by induction on the dimension of E. Indeed, this is true of convex sets in
E where dimE = 1 because those sets are intervals or singletons. Suppose we have shown the
result for all Euclidean spaces of dimension less than n. Let dimE = n and suppose C ⊂ E is a
convex series closed set. Suppose x̄ =

∑∞
i=1 λixi where xi ∈ C and λi ≥ 0,

∑
λi = 1. Suppose

x̄ 6∈ riC. Then then we choose φ ∈ E such that

r = 〈φ, x̄〉 ≥ 〈φ, x〉 for all x ∈ C.

This implies φ(xi) = φ(x̄) for all i. Consequently, xi ⊂ C ∩ φ−1(r) for i ∈ N. Now C ∩ φ−1(r)
is a translate of a convex set in a Euclidean space of dimension less than n. By the induction
hypothesis, x̄ ∈ C ∩ φ−1(r), and so x̄ ∈ C. The result now follows using mathematical induction.

(c) Suppose S is a convex series closed set. If intS = ∅ there is nothing to do. By tranlating S,
we assume 0 ∈ intS Thus, there exists r > 0 so that

0 ∈ rBX ⊂ S ⊂ S +
r

2
BX .

Multiplying the previous inclusions by
1

2i
for i = 1, 2, . . . we obtain

r

2i
BX ⊂

1

2i
S +

r

2i+1
BX .

It then follows that
r

2
BX ⊂

1

2
S +

1

4
S + . . .+

1

2i
S +

r

2i+1
BX .

Thus for any u ∈ r
2BX , there exist s1, s2, . . . , si ∈ S such that

u ∈ 1

2
s1 +

1

4
s2 + . . .+

1

2i
si +

r

2i+1
BX .

Let un :=
∑n

i=1 2−isi it follows that un → u. Because S is convex series closed, it follows that
u ∈ S. That is r

2BX ⊂ S, or 0 ∈ intS as desired.

(d) It is easy to verify an open map is onto, so suppose T : X → Y is onto. By translation and
dilation it suffices to show T (BX) has nonempty interior. Suppose ȳ ∈ Y \{0}, and choose x̄ ∈ X
such that T x̄ = ȳ. Then for 0 ≤ t ≤ 1/‖x̄‖, we have

tȳ = tT x̄ = T (tx̄) ∈ T (BX) because ‖tx̄‖ ≤ 1.

Thus 0 ∈ coreT (BX) ⊂ coreT (BX), and so 0 is in the interior of T (BX), and by part (c),
0 ∈ intT (BX) as desired.
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Further notes Clearly the proof of part (b) used finite dimensionality in a crucial fashion. This is
not artificial: for example c00 is not convex series closed in c0. Moreover, this c00 ⊂ c0 example
confirms some additional property such as closed or open as used in (a) above is needed in infinite
dimensional spaces.

4.1.28. Suppose x, y ∈ X and x 6= y. Write y = x+ h. By the three-slope inequality (2.1.1),

f(x+ h)− f(x)

‖h‖
≤ lim sup

n→∞

f(x+ nh)− f(x)

n‖h‖

≤ lim sup
n→∞

K‖x+ nh‖+ |f(x)|
n‖h‖

≤ lim sup
n→∞

K‖x‖+Kn‖h‖+ |f(x)|
n‖h‖

= K.

Thus f(y)− f(x) ≤ K‖y − x‖. Similarly, f(x)− f(y) ≤ K‖x− y‖ and we are done.

4.1.29. Consider x := (1, 0). Then r(1, 0) 6∈ C for all r ≥ 0. Therefore, γC(1, 0) = +∞. Now
consider xn := (1, 1/n). Then t(1, 1/n) ∈ C for all t ≥

√
n, and so γC(1, 1/n) = 0 for each n.

Thus, xn → x, but lim infn→∞ γC(xn) < γC(x).

4.1.30. For part (a), see the solution to Exercise 2.1.13. For part (b), suppose x ∈ coreC, then
0 ∈ coreC − x. Thus for u ∈ X, we can write u = th for some t > 0 and h ∈ C − x. Then
γC−x(u) ≤ 1/t and the conclusion follows.
(c) Let x ∈ X then Λ(x) = α. If α ≤ 1, then x ∈ C, and if α > 1, then α−1x ∈ C, and so

0 ∈ coreC. However, γC is not continuous since there exists xn → 0 so that Λ(xn) > 1, and
hence γC(xn) ≥ 1. The closure of C contains 0 in its interior, hence it cannot be contained in
{x : γC(x) ≤ 1}.
(d) Because 0 ∈ coreC, and C is closed, there exists r > 0 so that rBX ⊂ C. Then γC(x) ≤ 1

r‖x‖
for all x ∈ X. Consequently, γC is Lipschitz with Lipschitz constant 1/r by Exercise 4.1.28.
Clearly, C ⊂ {x ∈ X : γC(x) ≤ 1}. On the other hand if x 6∈ C, because C is closed it follows
from the separation theorem that γC(x) > 1. Thus C = {x ∈ X : γC(x) ≤ 1}. Then, clearly,
{x ∈ X : γC(x) < 1} ⊂ intC and {x ∈ X : γC(x) = 1} is the boundary of C.

4.1.31. It is clear that σC1(·) ≤ σC2(·) when C1 ⊂ C2. Conversely, suppose C1 6⊂ C2. Then we
choose x̄ ∈ C1 \ C2. By the basic separation theorem (4.1.12) there exists x∗ ∈ X∗ such that
x∗(x̄) > supC2

x∗. Then σC1(x∗) > σC2(x∗). By contraposition, σC1(·) ≤ σC2(·) implies C1 ⊂ C2.

Further notes. Let C1 := BX and C2 := intBX . Then σC1 ≤ σC2 but C1 6⊂ C2, so we cannot
remove the closure assumption. More drastically, let C2 := span{e1, e2, e3, . . .} ∩ 2BX and C1 :=
BX where X = c0. Then σC1 < σC2 but C1 6⊂ C2. Convexity is crucial as well. Indeed, let
C1 := BX and C2 := 2SX . Then σC1(·) < σC2(·), but C1 6⊂ C2.

4.1.32. Suppose f and g are proper convex functions on X with f ≥ −g that additionally satisfy
either

dom f ∩ cont g 6= ∅

or f and g are both lower semicontinuous and

0 ∈ core(dom g − dom f).
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Then there is an affine function α, say α = x∗ + r for some x∗ ∈ X∗ and r ∈ R such that
−g ≤ α ≤ f on X. See Figure 1.2 for a sketch. If x̄ ∈ X is such that f(x̄) = −g(x̄), then
−x∗ ∈ ∂g(x̄) and x∗ ∈ f(x̄).

4.1.33. Let C be a closed convex set. Then x∗ ∈ NC(x̄) if and only if x∗ ∈ ∂δC(x̄) if and only if
〈x∗, y − x〉 ≤ δC(y)− δC(x) for all y ∈ X if and only if 〈x∗, y − x〉 ≤ δC(y)− δC(x) for all y ∈ C
as desired.

4.1.34. Let C be a nonempty closed convex set and let K be a nonempty compact convex set
that is disjoint from C. Consider the distance function dC . Then dC is continuous and so it
attains its minimum on K; say dC(x0) = r > 0 where x0 ∈ K. Consider S := K + r

2BX and
so S := {x + y : x ∈ K, y ∈ r

2BX}. Then S convex, has nonempty interior and is disjoint from
C. By the separation theorem (4.1.17) we find φ ∈ SX∗ such that supintS φ ≤ infC φ. Now
supK φ+ r/2 ≤ supintS φ and so we are done.

4.1.38. Suppose 0 ∈ ∂f(x̄). Then f(y) − f(x̄) ≥ 〈0, y − x〉 = 0, and so f(y) ≥ f(x̄) for all
y ∈ X. Conversely, suppose f has a local minimum at x̄. Then for each y ∈ X, there exists δ > 0,
depending on y, so that f(x̄+ th) ≥ f(x̄) where h := y − x̄ and 0 ≤ t ≤ δ. In the case δ > 1, we
have f(y) = f(x̄+ h) and so f(y) ≥ f(x̄) as desired. In the case δ < 1, we observe

f(x̄) ≤ f(x̄+ δh) = f((1− δ)x̄+ δ(x̄+ h))

≤ (1− δ)f(x̄) + δf(y)

to conclude f(y) ≥ f(x̄), as desired.

4.1.39. Suppose f : X → [−∞,+∞] is a convex function, and let x ∈ X. If ∂f(x) is empty,
there is nothing to do. Suppose ∂f(x) is not empty. Let φα ∈ ∂f(x) and suppose φα →w∗ φ.
Then for any y ∈ X,

φ(y)− φ(x) = lim
α
φα(y)− φ(x) ≤ f(y)− f(x).

Thus ∂f(x) is weak∗-closed. Let φ,Λ ∈ ∂f(x). Suppose 0 ≤ λ ≤ 1, then for y ∈ X,

(λφ+ (1− λ)Λ)(y)− (λφ+ (1− λ)Λ)(x) = λφ(y − x) + (1− λ)Λ(y − x)

≤ λ[f(y)− f(x)]

+(1− λ)[f(y)− f(x)]

= f(y)− f(x).

This completes the proof.

4.1.40. Proposition 4.1.4 shows f is continuous at x0 if and only if it is Lipschitz in a neighbor-
hood of x0 and the proof of Proposition 4.1.25 shows this occurs if and only if ∂f is bounded on a
neighborhood of x0. Exercise 4.1.39 ensures that ∂f is weak∗-closed. Because ∂f(x) is bounded
when f is continuous at x, it follows from Alaoglu’s theorem that ∂f is weak∗-compact.

4.1.45.(a) Let f(t) := −
√
t and g(t) = −

√
−t. Then f + g = δ(0), so ∂(f + g)(0) = R. Howerver,

∂f(0) = ∅ = ∂g(0).
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(b) Let g(x, y) := −
√
x and A : R → R2 be defined by A(x, y) := (0, y). Then g ◦ A = 0 ans so

∂(g ◦A)(0) = {0}, but ∂g(0) = ∅ and so A∗∂g(0) = ∅.

4.1.46. (a) Follows because continuous convex functions are locally Lipschitz and directionally
differentiable on the interior of their domains, and hence so is the difference of two such functions.

(b) Using the inner product,

f(x) =
1

2
sup{〈x, x〉 − 〈x− y, x− y〉 : y ∈ F}

=
1

2
sup{〈x, x〉 − 〈x, x〉+ 2〈x, y〉 − 〈y, y〉 : y ∈ F}

= sup

{
〈x, y〉 − 1

2
‖y‖2 : y ∈ F

}
.

Thus f is convex as a supremum of convex functions.

(c) See Section 4.4 for properties of conjugate functions. Part (b) shows f =

(
1

2
‖ · ‖2 + δF (·)

)∗
and then using the fact that f∗∗ is the convex closure of f we obtain

f∗(x) =

(
1

2
‖ · ‖2 + δF (·)

)∗∗
= conv

(
1

2
‖ · ‖2 + δF (·)

)
=

1

2
‖ · ‖2 + δconv(F )(·)

4.1.47. Let g(t) := t sin(1/t) for t > 0, and g(t) := 0 otherwise. Then g is continuous but not
of bounded variation in any neigborhood of 0. Indeed, consider points tn := 1/(2nπ − 3π/2)
and sn := 1/(2nπ − π/2). Then |g(tn) − g(sn)| ≥ 1/nπ. Given any neighborhood U of 0, there
exists N such that sn, tn ∈ U for all n > N and the claim follows. Now let f :=

∫ x
0 g(t)dt. Then

f ′(x) = g(x) for all x, and so f is locally Lipschitz because f ′ is continuous, but f is not locally
DC otherwise we would write f = h− k where h and k are convex functions on a neighborhood
of 0. Then f ′ = h′+ − k′+ is of bounded variation because h+ and k+ are monotone.
For an example where f is twice differentiable, proceed similarly with g(t) := t2 sin(1/t2) for
t > 0 and g(t) := 0 otherwise. Then g′(0) = 0 and so g is everywhere differentiable and g is not of
bounded variation as one can check with points tn := 1/

√
2nπ − 3π/2 and sn := 1/

√
2nπ − π/2.

The remaining details are similar.

4.1.49. See solution to Exercise 2.4.20.

Exercises from Section 4.2

4.2.1. Let C := {x ∈ c0 : |xn| ≤ n−2, n ∈ N} where we denote x := (xn). Let (en)∞n=1 denote
the standard coordinate basis of c0. Let f := δC . Then 0 ∈ ∂f(0), and so we suppose φ ∈ ∂f(0).
Then

〈φ, ten − 0〉 ≤ f(ten)− f(0) = 0 whenever |t| ≤ 1/n.

Therefore, 〈φ, en〉 = 0 for all n ∈ N. Thus φ = 0. This shows ∂f(0) = {0}.
However, for h := (n−1), the (k + 1)-th coordinate of k−1h = 1

k(k+1) > 1/(k + 1)2, and so

f(k−1h) =∞. Therefore

lim
k→∞

f

(
0 +

1

k
h

)
− f(0) =∞

8



and f is not Gâteaux differentiable at 0.

(b) Observe that 0 ∈ ∂dC(0) ⊂ ∂f(0). Therefore, ∂dC(0) = {0} and so dC is Gâteaux differen-
tiable at 0 because its subdifferential is a singleton (Corollary 4.2.5).

Further notes. Observe that the function dC in (b) is not Fréchet differentiable at 0. If it were,
its derivative must equal 0 (the Gâteaux derivative). However,

lim inf
n→∞

dC
(

2
n2 en

)
− dC(0)

2
n2

= lim inf
n→∞

1
n2

2
n2

= 1/2

and so if the Fréchet derivative of dC exists at 0, it cannot be 0, and hence does not exist.

4.2.2. Let φ be a discontinuous linear functional on X, and define f := φ2. Fix h ∈ X. Then
φ(h) = α for some α ∈ R, and so f(th) = t2α2 for any t ∈ R. Consequently,

lim
t→0

[f(0 + th)− f(0)]/t = lim
t→0

(t2α2)/t = 0.

Thus ∇f(0) = 0 as a Gâteaux derivative.
No, f is not lower semicontinuous on X, otherwise f would be continuous at 0 because it is

Gâteaux differentiable at 0 (Proposition 4.2.2).

4.2.3. Let Λ : X → R be a discontinuous linear functional. Let f : X → [0,+∞] be defined by
f(x) := Λ2(x) when |Λ(x)| ≤ 1 and f(x) := +∞ otherwise. We claim the Gâteaux derivative of
f at 0 is 0. Indeed, fix h ∈ SX ; then Λ(x) = kx where kx ∈ R, then

lim
t→0

f(0 + th)− f(0)

t
= lim

t→0

t2k2
x

t
= lim

t→0
tk2
x = 0.

Because Λ is not continuous, {x : |Λ(x)| ≤ 1} has empty interior.

4.2.4. (a)⇒ (b): Let D ⊂ X be dense in X such that D ⊂
⋃∞
n=1 nC. Given h ∈ D, then 1

nh ∈ C
for some n ∈ N. Suppose φ ∈ ∂δC(0). Then

φ

(
1

n
h

)
− φ(0) ≤ δC

(
1

n
h

)
− δC(0) = 0.

Therefore, φ(x) ≤ 0 for all x in the dense subset D of X. Therefore φ = 0.
(b) ⇒ (c): Let f := dC . Observe that 0 ∈ ∂f(0) ⊂ ∂δC(0) = {0}, and so ∂f(0) = {0}.
(c) ⇒ (a): We suppose (a) is not true and proceed by contraposition. Because

⋃∞
n=1 nC is not

dense in X, the complement of the closure is a nonempty open set, and so we choose h ∈ X and
r > 0 such that (h + rBX) ∩ (

⋃∞
n=1 nC) = ∅. Then 1

k (h + rBX) ∩ (
⋃∞
n=1 nC) = ∅ for all k ∈ N,

for otherwise we would have

1

k
h+

1

k
ru = mx̄ for some k,m ∈ N, u ∈ BX , x̄ ∈ C.

Then h+ ru = kmx̄ and so h+ ru ∈ kmC which is a contradiction. Consequently, dC
(

1
kh
)
≥ 1

kr
for all k ∈ N (since 1

k (h+ rBX) ∩ (
⋃∞
n=1 nC) = ∅ for all k ∈ N). Therefore, f ′(0;h) ≥ r, and the

max formula (4.1.10) ensures ∂f(0) 6= {0}, thus (c) does not hold.
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4.2.5.(a) ⇒ (b): Let K be as given, and let f := δK , the indicator function of K. Then f is
not continuous at 0 since 0 is not in the interior of the domain of f . However, ∂f(0) = {0} by
Exercise 4.2.4.
(b) ⇒ (a): Here is an argument slightly different from the suggestion in the hint. Let f be a

function as given in (b), and let φ ∈ ∂f(0). By replacing f with f − φ − f(0), we may assume
that ∂f(0) = {0} and f(x) ≥ f(0) = 0 for all x ∈ X. Now f is not continuous at 0, because f is
not Gâteaux differentiable at 0 (Proposition 4.2.2). Let K = {x ∈ BX : f(x) ≤ 1}. Then K is a
closec covnex set with 0 ∈ K, but 0 6∈ intK.
If
⋃∞
n=1 nK is norm dense in X, then we are done. So we suppose not, and choose h ∈ X and

r > 0 such that h + rBX ∩ (
⋃∞
n=1 nC) = ∅. Choose φn ∈ SX∗ separating nC and h + rBX so

that supnC Λn + r ≤ Λn(h). By the weak∗-compactness of BX∗ we let Λ be the weak∗-limit point
of a convergent subnet of Λn. Then Λ(h) ≥ r (since 0 ∈ nC, supnC Λn ≥ 0 and so Λnh ≥ r for
each n). Moreover, supC Λ = 0, otherwise if Λ(x̄) = α > 0 for some x̄ ∈ C, then Λn(x̄) > α/2 for
infinitely many n, and so r ≥ lim supnC Λn →∞ which is impossible. Therefore, Λ(x) ≤ 0 for all
x ∈ C.
We will obtain a contradiction by showing Λ ∈ ∂f(0) (since Λ 6= 0). Indeed, suppose x ∈ dom f ,

then choose 0 < t < 1 so small that ‖tx‖ ≤ 1 and tf(x) ≤ 1. Then, f(tx) ≤ (1−t)f(0)+tf(x) ≤ 1
and so tx ∈ C. Thus λ(tx) ≤ 0. Consequently, Λ(x)− Λ(0) ≤ 0 ≤ f(x)− f(0) as required.

4.2.6. (a) Let C be a closed convex set with empty interior and let x̄ ∈ C. Replacing C with
C − x̄ it suffices to show f is not Fréchet differentiable at 0 where f := dC . Because 0 ∈ ∂f(0),
it is the candidate for the derivative. Suppose f is Fréchet differentiable at 0. Then there exists
n ∈ N so that

|f(0 + h)− f(0)− 〈0, h〉| ≤ 1

4
‖h‖ whenever ‖h‖ ≤ 1

n
.

Thus dC(h) ≤ ‖h‖/4 whenever ‖h‖ ≤ 1/n. Now consider the closed convex set nC which also
has empty interior. Fix h ∈ SX . Then we find x0 ∈ C such that ‖x0 − n−1h‖ < 1/(3n). Thus
nx0 ∈ nC and ‖nx0 − h‖ < 1/3. Thus dnC(h) < 1/3 for each h ∈ SX .
On the other hand, because nC has empty interior, we know 1

4BX 6⊂ nC. Thus we choose y0

with ‖y0‖ ≤ 1/4 so that y0 6∈ nC. According to the basic separation theorem (4.1.12) there exists
φ ∈ SX∗ so that supnC φ < φ(y0) < 1/3. This contradicts the property that dnC(h) < 1/3 for each
h ∈ SX (since we can take h0 ∈ SX with φ(h0) > 2/3 and then if x ∈ nC satisfies ‖x−h0‖ < 1/3,
we get the contradiction φ(x) > 1/3). Hence we conclude dC is not Fréchet differentiable at 0.

(b) Exercise 4.2.1(b) gives an explicit example on c0 where dC is Gâteaux differentiable at 0 ∈ C,
but C is a closed convex set with empty interior. Exercise 4.2.4 can be used to produce similar
examples on any infinite dimensional separable Banach space using a set C as in Example 4.2.6.

Further notes. The fact that dC can be Gâteaux differentiable at some x ∈ C for C as in (a)
makes the statement not quite as obvious as it might seem at first glance. However, when C is
a closed convex set with nonempty interior, then dC is not Gâteaux differentiable at any x in
the boundary of C. Indeed, let x̄ ∈ bndC. According to the separation theorem (4.1.15), there
exists φ ∈ SX∗ such that supC φ = φ(x̄) and 〈φ, x〉 < 〈φ, x̄〉 for every x ∈ intC. Thus φ 6= 0, and
φ ∈ ∂dC(x̄); indeed for fixed x ∈ X and any y ∈ C,

〈φ, x− x̄〉 = 〈φ, x− y〉+ 〈φ, y − x̄〉 ≤ 〈φ, x− y〉 ≤ ‖x− y‖.

Taking the infimum over y ∈ C, shows φ ∈ dC(x̄) as claimed. Because 0 ∈ ∂dC(x̄), it follows that
∂dC(x̄) is not a singleton, and so dC is not Gâteaux differentiable at x̄.
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4.2.7. This modifies the proof given for the Fréchet differentiable case, essentially replacing norm
convergence with weak∗-convergence.
(a)⇒ (e): Suppose that (e) does not hold, then there exist εn → 0+, φn ∈ ∂εnf(x0), φ ∈ ∂f(x0),
h ∈ SX and ε > 0 such that

〈φn − φ, h〉 > ε for all n.

Let tn = 2εn/ε. Then

tnε

2
≤ tnε− εn ≤ φn(tnh)− φ(tnh)− εn
≤ f(x0 + tnh)− f(x0)− φ(thn).

and so (a) does not hold.
(e) ⇒ (d): Suppose φn ∈ ∂εnf(xn), Λn ∈ ∂εnf(yn) where (xn) and (yn) converge in norm to x0

and εn → 0+. Because f is continuous at x0, we know that f has Lipschitz constant, say M ,
on B2r(x0) for some r > 0 (Proposition 4.1.4). In the case ‖xn − x0‖ ≤ r, one can check that
‖φn‖ ≤M + εn/r. Consequently, φn(xn)− φn(x0)→ 0. Thus, for y ∈ X, one has

φn(y)− φn(x0) = φn(y)− φn(xn) + φn(xn)− φn(x0)

≤ f(y)− f(xn) + εn + φn(xn)− φn(x0)

≤ f(y)− f(x0) + εn + |f(xn)− f(x0)|+ |φn(x0)− φn(x0)|.

Consequently, φn ∈ ∂ε′nf(x0) where ε′n = εn + |f(xn)− f(x0)|+ |φn(xn)− φn(x0)| and ε′n → 0+.
According to (d), φn →w∗ φ. Similarly, Λn →w∗ φ and so (c) holds.
(d) ⇒ (c): Letting Λn = φ and yn = x0, we see that (c) follows directly from (d).
(c) ⇒ (b): This follows because the continuity of f at x0, implies f is continuous in a neigh-

borhood of x0 (Proposition 4.1.4), and so by the max formula (4.1.10), ∂f(xn) is eventually
nonempty whenever xn → x0.
(b) ⇒ (a) We prove the contrapositive. So we suppose f is not Gâteaux differentiable at x0.

Then there exist tn ↓ 0, h ∈ BX and ε > 0 such that

f(x0 + tnh)− f(x0)− φ(tnh) > εtn where φ ∈ ∂f(x0).

Let φn ∈ ∂f(x0 + tnh) (for sufficiently large n by the max formula (4.1.10)). Now,

φn(tnh) ≥ f(x0 + tnh)− f(x0) ≥ φ(tnh) + εtn

and so φn 6→w∗ φ. Thus (b) fails.

4.2.9. (a) Let for f := ‖ · ‖1 the usual norm on `1, consider x∗ := (2−i) ∈ `1. Then φ ∈ ∂f(x∗) if
and only if ‖φ‖ = 1 and φ(x∗) = 1. Thus φ = (1, 1, 1, . . .) ∈ `∞. Therefore, ∂f(x∗) ∩ c0 = ∅.

(b) Observe that the proof of the weak∗ epi-separation theorem (4.1.23) works the same x∗0 ∈
dom f as it does for x∗0 ∈ cont f . Thus let x∗0 ∈ dom f . Given ε > 0, apply the weak∗ epi-
separation theorem (4.1.23) with α = f(x∗0)− ε to find x0 ∈ X such that

〈x0, x
∗ − x0〉 ≤ f(x∗)− α = f(x∗)− f(x∗0) + ε for all x∗ ∈ X∗.

Therefore x0 ∈ ∂εf(x∗0) ∩X as desired.
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Exercises from Section 4.3

4.3.1. The ‘if’ part was done, as suggested for the converse let (xi) be any Cauchy sequence in
X. Define the function f(x) := limi→∞ d(xi, x). Then f is lower semicontinuous with infX f = 0.
Let ε ∈ (0, 1). Choose z ∈ X such that f(z) < ε. Applying Ekeland’s variational principle (4.3.1)
with λ = 1, there exists y ∈ X such that

f(y) + εd(z, y) ≤ f(z) and f(x) + εd(x, y) ≥ f(y) for all x ∈ X.

In particular, f(y) < ε and f(xn) + εd(xn, y) ≥ f(y). Taking the limit on the left-hand side of
this equation, we get εf(y) ≥ f(y). Because f(y) ≥ 0 this implies f(y) = 0, that is, xn → y.
Thus (X, d) is complete.

4.3.2. The contractivity of the mapping implies there can be at most one fixed point. As
suggested, let f(x) := d(x, φ(x)). Then f is lower semicontinuous and bounded below on X. Let
z ∈ X be such that f(z) < infX f + ε. Applying Ekeland’s variational principle (4.3.1) to f with
λ = 1 and 0 < ε < 1 − k, there exists y ∈ X such that f(x) + εd(x, y) ≥ f(y) for all x ∈ X. In
particular, with x = φ(y), we have

d(φ(y), φ(φ(y)) + εd(φ(y), y)) ≥ d(y, φ(y)),

or in other words, d(φ(y), φ(φ(y)) ≥ (1− ε)d(y, φ(y)) > kd(y, φ(y)) which is a contradiction.

4.3.5. Let 0 < ε < 1. Suppose x0 ∈ SX and φ0 ∈ SX∗ satisfy φ0(x0) > 1 − ε2/2. Then
φ0 ∈ ∂ε2/2‖x0‖. According to the Brøndsted–Rockafellar theorem (4.3.2) there exists x ∈ X with
‖x− x0‖ ≤ ε/2 and φ ∈ ∂‖x‖ with ‖φ− φ0‖ ≤ ε. Now let x̄ = x/‖x‖ and φ̄ = φ. Then ‖x̄‖ = 1,
‖φ̄‖ = 1 and φ̄(x̄) = 1 as desired.

4.3.6.(a) Let 0 < ε < 1. Fix x0 ∈ bnd(C) and choose x1 ∈ X \ C such that ‖x1 − x0‖ < ε. By
the basic separation theorem (4.1.12) we choose x∗0 ∈ SX∗ so that σC(x∗0) < 〈x∗0, x1〉. Because
‖x1−x0‖ < ε, it follows that 〈x∗0, x0〉 > σC(x∗0)−ε and thus x∗0 ∈ ∂εf(x0) where f := δC . Applying
the Brøndsted–Rockafellar theorem (4.3.2) with λ =

√
ε we obtain x ∈ dom f and x∗ ∈ ∂f(x)

such that ‖x− x0‖ ≤
√
ε and ‖x∗ − x∗0‖ ≤

√
ε. In particular, x∗ 6= 0, and 〈x∗, x〉 = σC(x∗).

(b) Suppose σC(x∗0) <∞ and let 0 < ε < ‖x0‖2. Choose x0 ∈ C such that 〈x∗0, x0〉 > σC(x∗0)− ε.
Then x∗0 ∈ ∂εf(x0) where f := δC . As in (a), we apply the Brøndsted–Rockafellar theorem (4.3.2)
with λ =

√
ε to find x ∈ dom f and x∗ ∈ ∂f(x) such that ‖x− x0‖ ≤

√
ε and ‖x∗ − x∗0‖ ≤

√
ε. In

particular, x∗ 6= 0, and 〈x∗, x〉 = σC(x∗).

Exercises from Section 4.4

4.4.11. See solution to Exercise 2.3.12(a)(i).

4.4.12. Using the definition and subdifferential sum rule (4.1.19), we observe

NC1∩C2(x) = ∂(δC1(x) + δC2(x)) = ∂δC1(x) + ∂δC2(x) = NC1(x) +NC2(x).
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4.4.14. See solution to Exercise 2.3.12(a)(iii).

4.4.20. (a) Suppose X is reflexive, then the properness and coercivity of f imply that K := {x :
f(x) ≤ M} is nonempty and bounded for some M > 0. Because f is lower semicontinuous and
convex, K is weakly closed and convex. Therefore K weakly compact. Now f is bounded below
on K, therefore, let (xn) ⊂ K be such that f(xn) → infK f . According to the Eberlein-Šmulian
theorem, (xnk

) converges weakly to x̄ for some subsequence and some x̄. Because f is weakly
lower semicontinuous, this implies lim inf f(xnk

) ≥ f(x̄). Thus f(x̄) = infK f . Outside of K,
f(x) > M , and so f(x̄) is an absolute minimum for f .
Conversely, suppose X is not reflexive. According to James’ theorem (4.1.27) there is a functional
φ ∈ SX∗ that does not attain its norm on BX . Then f := φ+ δBX

does not attain its minimum
on X. Indeed, infX f = −1, but there is no x ∈ BX such that |φ(x)| = 1.
(b) For each φ ∈ X∗, f − φ is supercoercive. Now f − φ attains its minimum at x̄ for some
x̄ ∈ X. Thus, φ ∈ ∂f(x̄).
(c) No. For example let f be defined by f(x) := (supn∈N |x(n)−1|)2 +

∑∞
n=1

1
2n |x(n)−1|2 where

x = (x(n)) ∈ c0. Then f is a continuous (in fact bounded on bounded sets) and supercoercive
convex function that does not attain its minimum. Indeed, f(x) > 1 for all x ∈ c0, and for
xn := (1, 1, . . . , 1, 0, . . .), we have limn→∞ f(xn) = 1. Consequently, 0 6∈ range ∂f . More generally,
in any nonreflexive space, consider f := ‖ · ‖2. Using James’ theorem (4.1.27), one can show that
the subdifferential map is not onto.

4.4.21. (a) Because f is Lipschitz, there exists K > 0 so that dom f∗ ⊂ KBX∗ . According to
the hypothesis, we choose N ∈ N so that f∗n(φ) ≤ f∗(φ) + ε for each φ ∈ ∂f(X) ⊂ KBX∗ , and
n ≥ N . Now let x ∈ X, and let φ ∈ ∂f(x). Then for each n ≥ N , one has

f∗(φ) = φ(x)− f(x) ≥ f∗n(φ)− ε ≥ φ(x)− fn(x)− ε.

Therefore, f(x)− ε ≤ fn(x) ≤ f(x) for all x ∈ X, and all n ≥ N .
(b) Let x0 ∈ X. Given ε > 0, and any number α < f(x0) it suffices to show that there exists N

such that fn(x0) > α − ε for all n ≥ N . Now choose φ ∈ X∗ such that φ(x)− φ(x0) ≤ f(x)− α
for all x ∈ X. Then f∗(φ) ≤ φ(x0) − α and so φ ∈ dom f∗. Now choose N ∈ N so that
f∗n(φ) ≤ f∗(φ)− ε for n ≥ N . Now, for all n ≥ N ,

φ(x0)− α ≥ f∗(φ) ≥ f∗n(φ)− ε ≥ φ(x0)− fn(x0)− ε.

Therefore, fn(x0) ≥ α− ε.
(c) We conclude that f n‖ · ‖2 converges uniformly (resp. pointwise) to f provided that f is

Lipschitz (resp. lower semicontinuous proper) and convex because

(f n‖ · ‖2)∗ = f∗ +
1

2n
‖ · ‖2∗,

converges uniformly (resp. pointwise) to f∗ (where ‖ · ‖∗ denotes the dual norm to ‖ · ‖).

4.4.22. We first prove Fact 4.4.4(b). Suppose f is continuous at x0, then there exist δ > 0 and
M > 0 so that f(x) ≤ M for x ∈ x0 + δBX (Proposition 4.1.4). Now suppose x∗∗ ∈ X∗∗ and
‖x∗∗ − x0‖ ≤ δ. According to Goldstine’s theorem (Exercise 4.1.13) there is a net (xα) ⊂ δBX
with xα →w∗ (x∗∗ − x0). The weak∗-lower -semicontinuity of f∗∗ implies that

f∗∗(x∗∗) ≤ lim inf
α

f∗∗(x0 + xα) = lim inf
α

f(x0 + xα) ≤M.
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Thus f∗∗ is bounded above on a neighborhood of x∗∗, and thus it is continuous at x∗∗ (Proposi-
tion 4.1.4).
Conversely, if f∗∗ is continuous at x0 ∈ X, then so is f because f∗∗|X = f (Proposition 4.4.2(a)).
We now prove Fact 4.4.4(c). Suppose f is Fréchet differentiable at x0. Let ε > 0, the according

to Proposition 4.2.7 there exists δ > 0 so that

f(x0 + h) + f(x0 − h)− 2f(x0) ≤ ε‖h‖ if ‖h‖ < δ.

Now suppose h ∈ X∗∗ and ‖h‖ < δ. Then there exist hα ∈ X with ‖hα‖ = ‖h‖ < δ and hα →w∗ h
by Goldstine’s theorem (Exercise 4.1.13). Using the weak∗-lower semicontinuity of f∗∗ and the
fact f∗∗|X = f (Proposition 4.4.2(a)) we have

f∗∗(x0 + h) + f∗∗(x0 − h)− 2f∗∗(x0)

≤ lim
α
f∗∗(x0 + hα) + f∗∗(x0 − hα)− 2f∗∗(x0)

= lim
α
f(x0 + hα) + f(x0 − hα)− 2f(x0) ≤ ε‖h‖.

Applying Proposition 4.2.7 we conclude that f∗∗ is Fréchet differentiable at x0.
The converse, as in (b), follows from Proposition 4.4.2(a).

4.4.23. (a) (i) ⇒ (ii): If f is supercoercive, it is clear f − y∗ is supercoercive for each y∗ ∈ X∗.
The Moreau-Rockafellar theorem (4.4.11) implies the equivalence of (ii) and (iii).
We now show (ii) ⇒ (i) when X is finite dimensional. Indeed, suppose by what of contradiction

there exists (xn) ⊂ X such that ‖xn‖ → ∞ but lim sup f(xn)/‖xn‖ ≤ K for some K > 0. Let
un = xn/‖xn‖, and by passing to a subsequence as necessary, we suppose un → u. Now let φ ∈ SX
be such that φ(u) = 1. Then let y∗ = 3Kφ. Now f − y∗ is coercive, and for n sufficiently large
y∗(un) > 2K and (f − y∗)(xn) > 0 and so f(xn) > y∗(xn) ≥ 2K‖xn‖ which is a contradiction.
For (b), define the conjugate function f∗ by f∗(x) := ‖x‖2 +

∑∞
n=1(xi)

2n, f∗ is a continuous
convex function and supercoercive. However, f∗ is not bounded on 2B`2 , since f(2en) = 22n.
Therefore, f = f∗∗ cannot be supercoercive. For (c), consider f :=

√
‖ · ‖.

Exercises from Section 4.5

4.5.1. An elementary proof is as follows. Let εn → 0+. By the definition of the conjugate
choose xn ∈ X such that x∗(xn) − f(xn) ≥ f∗(x∗) − εn (then f(xn) is necessarily real-valued)
and f(xn) + f∗(x∗) ≤ x∗(xn) + εn. Now f∗∗ ≤ f and f∗∗ is proper, so f∗∗(xn) + f∗(x∗) ≤
x∗(xn) + εn. According to Proposition 4.4.1(b), xn ∈ ∂εnf∗(x∗). By Šmulian’s theorem, xn →
∇f∗(x∗). Therefore, ∇f∗(x∗) ∈ X, and we let x := ∇f∗(x∗). According to the Fenchel–Young
Proposition 4.4.1(a), we have f∗∗(x) = 〈x∗x〉 − f∗(x∗) and so

f(x) ≥ f∗∗(x) = 〈x∗, x〉 − f∗(x∗) = lim
n→∞

〈x∗, xn〉 − f∗(x∗)

≥ lim inf
n→∞

f(xn)− εn ≥ f(x) using lower semicontinuous property of f.

Thus f(x) = f∗∗(x) as desired.

4.5.2. (a) Choose (xn) ⊂ C such that ‖xn− x‖ → dC(x). Because (xn) is bounded the Eberlein-
Šmulian theorem ensures there is a subsequence (xnk

) that converges weakly to x̄. Because C is
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closed and convex, it is weakly closed and so x̄ ∈ C. The weak lower semicontinuity of the norm
implies lim infn→∞ ‖xn − x‖ ≥ ‖x̄− x‖ and so x̄ ∈ PC(x) as desired.
(b) Fix x ∈ X, and suppose PC(x) is not empty. If x ∈ C, then PC(x) = {x} is a singleton as

desired. So, suppose x 6∈ C, and suppose distinct y, z ∈ PC(x). Then 1
2(y + z) ∈ C by convexity,

and the strict convexity of the norm implies∥∥∥∥x− 1

2
(y + z)

∥∥∥∥ < 1

2
‖x− y‖+

1

2
‖x− z‖ = PC(x).

This contradiction implies PC(x) is a singleton.
Parts (a) and (b) together show that every closed convex subset of a strictly convex reflexive

Banach space is a Čebyšev set.

4.5.3. Let φ ∈ SX be a functional that does not attain its norm on BX , and let C := {x ∈ X :
φ(x) = 0}. Fix x̄ ∈ X such that φ(x̄) 6= 0. Say, φ(x̄) = α. It is elementary to check dC(x̄) = |α|.
Because φ does not attain its norm, we have α = |φ(x̄ − y)| < ‖x − y‖ for all y ∈ C. Thus
PC(x̄) = ∅.

4.5.4. Let A be a closed proximal subset of X. Now observe that ∇d2
A(x) = 0 whenever x ∈ A,

and ∇d2
A(xn) → 0 whenever dA(xn) → 0. When x 6∈ A, then ∇d2

A(x) = 2dA(x)∇dA(x), and so
by the hypothesis of the exercise, ∇dA is norm-to-weak∗ continuous at any x 6∈ A.
Suppose x 6∈ A. Then dA is Gâteaux differentiable at x. Let r := dA(x), and let x̄ ∈ PA(x).

Then r = ‖x− x̄‖ > 0. Let h := 1
r (x̄− x). Then

∇dA(x)(h) = lim
t→0

dA(x+ th)− dA(x)

t
.

However,

lim
t→0

dA(x+ th)− dA(x)

t
≤ lim

t→0+

‖x+ th− x̄‖ − r
t

= lim
t→0+

(
1− t

r

)
‖x− x̄‖ − r
t

= −1.

Thus ‖∇dA(x)‖ ≥ 1. However, because dA has Lipschitz constant 1, we conclude ‖∇dA(x)‖ = 1.
Now suppose xn → x. Then eventually xn 6∈ A, and ‖∇dA(xn)‖ = 1. Because the dual norm
has the weak∗-Kadec property, we deduce dA(xn) → dA(x), and thus ∇d2

A is norm-to-norm
continuous.

4.5.5. Let X be a reflexive Banach space. Suppose the dual norm on X∗ is strictly convex. Let
x ∈ X \{0}. Suppose φ,Λ ∈ SX∗ satisfy φ(x) = ‖x‖ = Λ(x). Then ‖φ+Λ‖ ≥ (φ+Λ)(x/‖x‖) = 2.
By the strict convexity of the dual norm, φ = Λ. Thus ∂‖x‖ is a singleton, and so ‖ · ‖ is Gâteaux
differentiable at x.
Conversely, suppose x, y ∈ SX∗ are such that ‖x+ y‖ = 2. Because of reflexivity, we can choose
φ ∈ SX so that φ(x+ y) = 2. Thus x, y ∈ ∂‖φ‖. By Gâteaux differentiability, x = y.
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