Solutions to Selected Exercises in Chapter 4

Exercises from Section 4.1

4.1.1. (a) Suppose f : X — [—o00,+00] is lower semicontinuous. Let o € R, and and S :=
{z : f(z) < a}. Suppose (z,) C S and z,, — Z. Then liminf f(z,) > f(z) because f is lower
semicontinuous. Therefore, T € S and S is closed.

Now suppose each lower level set of f is closed. Let (z,t,) € epi f and suppose (xy,t,) — (T, 1).
For any € > 0, the set S := {z: f(x) < ¢+ €} is closed. Now x,, € S for all sufficiently large n,
therefore ¥ € S. This implies f(Z) <t + €. Because € > 0 was arbitrary, this implies f(Z) < t,
and so (7,t) € epi f, and we conclude that epi f is closed.

Finally, suppose epi f is closed. Suppose z, — Z. If liminf f(z,) = oo, then clearly f(z) <
liminf f(z,). Thus we suppose liminf f(z,) < oo. Let a be any real number such that
liminf f(z,) < a. Then (z,,«) € epi f for all sufficiently large n. Because epi f is closed, this
implies (Z, «) € epi f, and f(Z) < a. Hence liminf f(x,) < f(Z). Thus f is lower semicontinuous.

(b) Suppose epi f is weakly closed, and suppose z, — x weakly. In the case liminf f(z)) =
00, it is clear f(x) < liminf f(x)). So suppose liminf f(x)) < oco. Let @ € R be such that
liminf f(z)) < a. Then (x),«) is eventually in epi f. It then follows that (z,«) € epi f and so
f(x) < a. It follows that f is weakly-lower semicontinuous.

Conversely, suppose f is weakly-lower semicontinuous, and suppose (x),t)) € epif satisfies
(zx,ta) — (Z,1) weakly. Then liminf f(z)) < liminf¢y = ¢. Thus (Z,t) € epi f, and we deduce
that epi f is weakly closed.

The epigraph of a convex function is convex. Therefore epi f is weakly closed if and only if
it is (norm) closed. Consequently, by the previous parts of this exercise, f is weakly-lower
semicontinuous if and only if it is lower semicontinuous.

(c) This is similar to the corresponding parts of (a) and (b). O

4.1.2. (a) Clearly cl f < f and cl f is lower semicontinuous since it is closed. Now suppose
g < f, and g is lower semicontinuous. Then epi f C clepi f C epig. Thus g < cl f. Consequently,
cl f = sup{g : g is lower semicontinuous and g < f}.

For any o € X, it follows that

1 cl f(xg) <lim inf T
(1) F(zo) < lim ||mfxo||<5f( )
(because cl f is lower semicontinuous and so f(xo) < liminf, ,,, f(z). On the other hand,

suppose o < limg o infj,_z (<5 f(2). Then we choose § > 0 so that infj,_, <5 f(z) > 8 > a.
Consequently, (zg,«) & clepi f. Thus a < cl f(xg). It follows that

(2) cl f(zo) > 1561 \\xjorcloﬁ|<6f(x)'
It follows from (1) and (2) that f(zo) = limso infy—z)<s f(2)-

(b) For (i), consider f(0) := —oo and f(t) := +o00 when ¢t # 0. This function has no continuous
affine minorant. For (ii), let ¢op be the nonclosed linear subspace of all finitely supported sequences
in ¢p. Consider, for example, f : ¢g — (—o0,+00] for which f(z) := > a; if © € B, N coo,
and f(z) := +oo otherwise. Then f has no affine minorant because infp, f = —oo (simply
consider f(—1,—1,...,—1,0,0,...) so the suprema of the affine minorants is identically equal
—oo by convention. On the other hand, one can check that (clf)(z) = —o0 if x € B, and



(cl f)(xz) = +oo otherwise. Thus (ii) is not generally true. Part (iii) is true, indeed, cl f is
lower semicontinuous and proper, so let g € X and a < cl f(zg). According to the epi-point
separation theorem (4.1.21) there exist ¢ € X* so that ¢(z) + a — ¢(zo) < f(z) for all z € X.
Then a(-) := ¢(-) + a — ¢(xo) is an affine function, and a(zg) > a. It follows that cl f is the
suprema of affine functionals that minorize it.

(c) One can use the example from b(ii). A similar example is the function f : cg — (—00, +0]
for which f(z) := > @z if x € cpo, and f(z) := +oo otherwise. It is not hard to show that
clf=-—oc. O

4.1.3. See the solution to Exercise 2.1.5 which works in any normed linear space, and moreover
shows the domain of a convex function is convex. O

4.1.4. Suppose [ : X — (—o00,+00] is convex. If f = +oo, then epi f = () is convex. Otherwise,
let (z,t), (y,s) € epi f. Then for 0 < A <1 we have

Oz + (1 =XNy) <Af(x) + (1 =Nf(y) <M+ (1=N)s.

Therefore, \(x,t) + (1 — X)(y, s) € epi f as desired.

Conversely, suppose epi f is convex, if epi f = () then f = +oc is convex. Otherwise, suppose
x,y € dom f. Then (z, f(x)), (y, f(y)) € epi f. Thus for 0 < XA < 1, we have A\(z, f(x)) + (1 —
M (y, f(y)) € epi f. This implies

fz+ (1 =Ny) <Af(x) + (1 =N f(y),

as desired. 0

4.1.5. (a) Let S := ), Cq, where each C, is convex. Suppose z,y € S and 0 < A < 1. Then
x,y € Cy for each a. Therefore, Az + (1 — \)y € C, for each a because C, is convex. Then
Ax + (1 — Ay € S, and thus S is convex.

(b) Given f :=sup{fs : @ € A}, we have epi f = [, c4€Pi fo. Therefore epi f is convex (resp.
closed) if each f, is convex (resp. closed). Thus f is convex (resp. closed) when each f, is convex
(resp. closed).

(c) Let g := limsup f,. Fix 2, y and 0 < XA < 1. Then

gz +(1=ANy) = limsup fa(Az + (1 = A)y)

limsup[Afa(z) + (1 = A) fu(y)]
Aimsup fo(z) + (1 — N) hmaSUP fa(y)
Ag(x) + (1= AN)g(y).

The proof for limits is similar, but easier.
(d) Consider f(t) :=t and g(t) := —t. Then min{ f, g}(¢t) = —|¢| is not convex. O

VARVAN

4.1.8. A proof for the convexity of dc (that works in any normed space) can be found in
Fact 2.1.6. Clearly the epigraph of §¢ is convex, so d¢ is convex. O

4.1.9. For ¢y let A = ¢, that is A := {(z;) € ¢o : @ > 0, i € N}. Let B be the ray
{tx —y :t >0} where z = (47%) and y = (27%). Fix t > 0. For i > 2!, we have t4~" — 27 < 0.
Therefore, AN B = (.



Now suppose ¢ € ¢1 \ {0} is bounded below on A, say ¢ = (s;). Then s; > 0 for all ¢ (otherwise
if s;, < 0, then we choose ne;, € cg and ¢(ne;,) — —oo as n — 0o. Since ¢ # 0, we know s; > 0
for some i. Therefore, ¢p(x) > 0. Consequently,

Jim o (tz —y) = to(x) — ¢(y) = oo

Thus ¢ cannot separate A and B. The proof in the case of ¢, is similar. O

4.1.11. (a) Clearly a separating family is total since it can separate z from 0 when z # 0.
Conversely, if S is total, and = # y, then we choose ¢ € S so that ¢(z — y) # 0, and then
( ) # ¢(y) so S is separating.
(b) Let {hy}22; be norm dense in Sx. Choose ¢, € Sx+ so that ¢, (x,) = 1. Now let z € X\ {0}.
Let h = z/||z||. Now choose h,, such that ||k, — h|| < 1/2. Then ¢,(h) > 1/2, and so ¢,(x) > 0.
(c) The standard basis {ey }22; of ¢; will work. In general, any countable norm-dense set in Bx
will work as a separating family for X*. Indeed, if ¢ € X* vanishes on a norm-dense set in By,
it vanishes on Bx and must be the zero-functional. [

4.1.13. Alaoglu’s theorem (4.1.6) ensures Bx+« is weak*-compact. Thus, the weak*-closure of
Bx is contained in Bx=«+. Suppose the containment is proper, say z** € Bx«« \ C where C is
the weak*-closure of Byx. Notice that C is convex. Thus, according to the weak*-separation
theorem (4.1.22), there exists ¢ € Bx+ such that ¢(z**) > supy ¢ = 1 which is contraction. Thus

4.1.18. Observe that f is convex as a maximum of two convex functions. Observe that domdf =
{(z1,21) : x1 > 0} U{(0,z2) : |z2| > 1} which is not convex. Indeed, f is continuous at each
point in the first set of the union (which is the interior of the domain of f), while when |z3| < 1,
we have lim;_,o+[f(0,2z2 + t) — f(0,22)]/t = —o0 and so Jf is empty at those points, while if
lzo| > 1, 0f(0,20) = {(s,z2/|22| : s < 0}. O

4.1.19.(a) Let 2,y € U, 0 < A < 1 and let ¢ € Of(Ax + (1 — AN)y). Now let a := f(Azx + (1 —
A)y) —o(Ax+ (1 —N)y). Then the subdifferential inequality implies a4+ ¢(u) < f(u) for all u € U,
and so

fOz+(1-=Ny) = oAz +(1-Ny)+a
= Mo(z) +a)+ (1= N)(e(y) +a)
< Af(@)+ (1 =Nfy)

as desired.

(b) In the case X is finite-dimensional, the converse to (a) is true. Indeed, f is continuous on U
by Theorem 2.1.12 and hence the max formula (2.1.19) ensure df(z) # () for all © € U. However,
when X is infinite dimensional, it fails. Indeed, we let f be a discontinuous linear functional on
X. Then df(z) = () because f is not bounded below on any open subset of X. O

4.1.20. (b) Suppose 0 € int C, it is clear that 0 € core C. Now suppose 0 € core C. Given h € X,
there exists 0 > 0 such that 0 +th € C for 0 <t < 4. Then for ¢t = 1/n where 1/n < § we have

%hEC, and so h € nC. Thus UnC’:X.

n=1



Now suppose C' is absorbing. By the Baire category theorem, nC' has nonempty interior for some
n, thus uw + rBx C nC for some u € X and r > 0. Because 0 € C, this implies t(u + rBx) C C
for 0 <t < 1/n. Because C' is absorbing (and convex with 0 € C) s(—u) € C for 0 < s < 1/m
for some m € N. Now choose k = max{n,m}. Then +(—u) € C and }(u+ rBx) C C. By the
convexity of C|

iBX = %1k(—u) + %1k(u +rBx)cCC
and so 0 € int C.

(c) This is straighforward. Clearly (1/n,1/n%) & C forn =1,2,... and so (0,0) ¢ int C. We now
show (0,0) € coreC. Indeed, let (x,y) € R%. If y = 0, then t(x,y) € C for all t > 0. If z = 0,
again t(z,y) € C for all t > 0. Thus suppose x # 0, y # 0 and so y = kz for some k # 0. For
|t| < |k/x| we have

t(z,y) = t(x, kx) = (tx,thx) € C since |thx| > t*2°.

Thus, (0,0) € coreC. O

4.1.21. (a) As suggested, define A : cgo — R by A(x) := > x; where x = (z;). Then A is a linear
functional, and we consider u,, € cgp, such that the i-th coordinate of u,, is 1/n for i =1,2,...,n,
and 0 otherwise. Then w,, — 0, but A(u,) =1 and A(0) = 0 and so A is not continuous.

(b) Let {en};2, denote the standard coordinate (Schauder) basis of ¢g. Extend this to an
algebraic (Hamel) basis of ¢y, say {by} er. Then an extension of of A to ¢y is A(ey) = 1 when
by = e, for some n € N and A(e,) = 0 otherwise. O

4.1.22. (a) = (c): Suppose X = R”, with standard basis {e1,ea,...,e,}, and |J,~, kC = E.
Then there exist §; > 0 such that te; € C when |t| < §;. By the convexity of C, (z1, 22, ...,2,) € C
whenever |z;| < §/n where 0 := min{d1,d2,...,d,}. Thus 0 € int C.

(c) = (b): Let f: X — R be a linear functional. Then J,~, kf 1 (=1,1) = Upsy [k, k) =
X. By the hypothesis, f~!(—1,1) has 0 in its interior. Thus there exists § > 0 so that f(0Bx) C
(—1,1). Therefore

-y lz—yl _ 1
@)= 1 =11 =l = |r (5222 25 < S
| )= T 5 5!
That is, f has Lipschitz constant %.
(b) = (a): Suppose X is not finite dimensional. Let {e,} er be an algebraic basis of X.
Fix a countable set {ey,,e,,...} in this basis and define a linear functional f on X by setting
f(ey,) :=Elley, ||. Then f(vy) — 1 while v, — 0 where vy, = ey, /(k]|e, |])- O

Suppose C' is a closed convex set, and suppose T = Y .o, \jz; where z; € C and
= 1. Fix x¢ € C, and write

Yp = Z)\i.%'i—i- (1 — Z ) xQ-
=1

i=n-+1

4.1.23. (a)
Xi >0, >\

Then y, — Z, and so & € C'. Thus closed convex sets in Banach spaces are convex series closed.



Suppose U is an open convex set and suppose Z = Y .2, \jz; where z; € U and \; > 0, Y \; = 1.
Suppose T ¢ U. By the separation theorem (4.1.17) we choose ¢ € X* so that ¢(z) > ¢(z) for
all z € U. Then ¢(z — ;) > 0 for ¢ € N, and therefore

0>¢<{Z‘—i)\i$i> =0.

i=1

This contradiction shows that open convex subsets of Banach spaces are convex series closed. It
now follows easily that a Gs-set, is convex series closed as it is an intersection of convex series
closed sets.

(b) We will prove this by induction on the dimension of E. Indeed, this is true of convex sets in
E where dim EF = 1 because those sets are intervals or singletons. Suppose we have shown the
result for all Euclidean spaces of dimension less than n. Let dim E = n and suppose C' C F is a
convex series closed set. Suppose T = Y .2, \iz; where z; € C and \; > 0, > A; = 1. Suppose
Z ¢ riC. Then then we choose ¢ € F such that

r={(¢,z) > (¢,z) forall z € C.
This implies ¢(x;) = ¢(Z) for all i. Consequently, x; C C N ¢~ (r) for i € N. Now C N ¢~ 1(r)

is a translate of a convex set in a Euclidean space of dimension less than n. By the induction
hypothesis, z € CN¢~1(r), and so & € C. The result now follows using mathematical induction.

(c) Suppose S is a convex series closed set. If int.S = () there is nothing to do. By tranlating S,
we assume 0 € int S Thus, there exists r > 0 so that

0 € rBx C§CS+2BX.

1
Multiplying the previous inclusions by 5 fori =1,2,... we obtain

It then follows that

r 1 1 1 r
-B -S+-S+...+ =S+ —Bx.
2XC2 —1-4 + +2z +2H_1X
Thus for any u € §Bx, there exist s1,s2,...,5; € S such that
1 1 1 r
u e §SI+132++581+FBX

Let uy, := Y 1" 27%s; it follows that u, — u. Because S is convex series closed, it follows that
u € S. That is §Bx C S, or 0 € int S as desired.

(d) It is easy to verify an open map is onto, so suppose 7' : X — Y is onto. By translation and
dilation it suffices to show T'(Bx) has nonempty interior. Suppose y € Y\ {0}, and choose z € X
such that 77 = y. Then for 0 <t < 1/||z||, we have

ty =tTz =T(tx) € T(Bx) because ||tz| < 1.

Thus 0 € coreT(Bx) C coreT(Bx), and so 0 is in the interior of T'(Bx), and by part (c),
0 € int T(Bx) as desired.



Further notes Clearly the proof of part (b) used finite dimensionality in a crucial fashion. This is
not artificial: for example ¢y is not convex series closed in c¢y. Moreover, this cog C ¢y example
confirms some additional property such as closed or open as used in (a) above is needed in infinite
dimensional spaces. |

4.1.28. Suppose z,y € X and x # y. Write y = x + h. By the three-slope inequality (2.1.1),
fl+h)— f(z) f(x+nh) — f(z)

< limsup

17| n—s00 n||h|]
K
< limsup | + nh| + |f(z)|
n—s00 n||h||
K K
< limsup ][ + Knflpll + [f@)] _ 4
n—s00 nl|h||
Thus f(y) — f(z) < K||y — z||. Similarly, f(z) — f(y) < K||z — y| and we are done. O

4.1.29. Consider = := (1,0). Then r(1,0) ¢ C for all » > 0. Therefore, v-(1,0) = +o00. Now
consider x, := (1,1/n). Then ¢(1,1/n) € C for all t > \/n, and so y¢(1,1/n) = 0 for each n.
Thus, x, — x, but liminf, . vo(z,) < vo(x). O

4.1.30. For part (a), see the solution to Exercise 2.1.13. For part (b), suppose x € core C, then
0 € coreC — z. Thus for u € X, we can write u = th for some t > 0 and h € C — z. Then
Yo—z(u) < 1/t and the conclusion follows.

(c) Let € X then A(z) = a. If @ < 1, then x € C, and if a > 1, then a~ !z € C, and so
0 € coreC. However, y¢ is not continuous since there exists x,, — 0 so that A(z,) > 1, and
hence yco(xy,) > 1. The closure of C' contains 0 in its interior, hence it cannot be contained in
fr 7o) < 11

(d) Because 0 € core C, and C s closed, there exists r > 0 so that 7By C C. Then y¢(z) < 1||z||
for all z € X. Consequently, 7¢ is Lipschitz with Lipschitz constant 1/r by Exercise 4.1.28.
Clearly, C C {x € X : y¢(z) < 1}. On the other hand if x ¢ C, because C' is closed it follows
from the separation theorem that vo(x) > 1. Thus C = {x € X : y¢(z) < 1}. Then, clearly,
{r e X :vo(x) <1} CintC and {z € X : yo(x) = 1} is the boundary of C. O

4.1.31. It is clear that o¢,(-) < o¢,(-) when Cy C Cy. Conversely, suppose C1 ¢ Ca. Then we
choose z € C1 \ Cy. By the basic separation theorem (4.1.12) there exists * € X* such that
x*(Z) > supg, v*. Then o¢, (2*) > o¢,(z*). By contraposition, o¢, (-) < o¢,(-) implies C; C Cs.

Further notes. Let C; := Bx and Cy := int Bx. Then o¢, < o¢, but C1 ¢ Cq, so we cannot
remove the closure assumption. More drastically, let Cy := span{ej, eg,e3,...} N2Bx and C; :=

Bx where X = ¢y. Then o¢, < oc, but C1 ¢ Cs. Convexity is crucial as well. Indeed, let
C1 := Bx and Cy := 2Sx. Then o¢,(-) < o¢,(+), but C; ¢ Cs. O

4.1.32. Suppose f and g are proper convex functions on X with f > —g that additionally satisfy
either
dom f Ncont g # ()

or f and g are both lower semicontinuous and

0 € core(dom g — dom f).



Then there is an affine function «, say a = z* + r for some z* € X* and r € R such that
—g < a < fon X. See Figure 1.2 for a sketch. If z € X is such that f(z) = —g(z), then
—z* € Jg(z) and z* € f(z). O

4.1.33. Let C be a closed convex set. Then z* € N¢(Z) if and only if 2* € 9d¢(Z) if and only if
(*,y —z) < dc(y) — dc(z) for all y € X if and only if (z*,y —z) < dc(y) — dc(z) for all y € C
as desired. 0O

4.1.34. Let C be a nonempty closed convex set and let K be a nonempty compact convex set
that is disjoint from C. Consider the distance function dco. Then do is continuous and so it
attains its minimum on K say dc(zg) = r > 0 where zg € K. Consider S := K + §Bx and
soS:={r+y:x € K,y c §Bx}. Then S convex, has nonempty interior and is disjoint from
C. By the separation theorem (4.1.17) we find ¢ € Sx+ such that sup;,g¢ < infe¢. Now
supg ¢ +1/2 < sup;y ¢ ¢ and so we are done. O

4.1.38. Suppose 0 € 9f(z). Then f(y) — f(z) > (0,y —z) = 0, and so f(y) > f(z) for all
y € X. Conversely, suppose f has a local minimum at Z. Then for each y € X, there exists § > 0,
depending on y, so that f(z + th) > f(z) where h:=y —Z and 0 <¢ < ¢. In the case 6 > 1, we
have f(y) = f(z + h) and so f(y) > f(z) as desired. In the case § < 1, we observe

f@) < f(@+oh) = f((1-0)x+x+h))
< @=0)f(@)+df(y)
to conclude f(y) > f(Z), as desired. O
4.1.39. Suppose f : X — [—00,+00] is a convex function, and let = € X. If f(x) is empty,

there is nothing to do. Suppose 9f(x) is not empty. Let ¢, € Of(x) and suppose ¢q —>y+ ¢.
Then for any y € X,

¢(y) — o(z) = lim ¢a(y) — d(z) < f(y) = f(2).
Thus 0f(x) is weak*-closed. Let ¢, A € 0f(x). Suppose 0 < A < 1, then for y € X,
Ao+ (1 =NA)(y) = (Ao + (L= AA)(z) = Ad(y—=z)+ (1 - A)A(y — =)
< Alf(y) = f(2)]

+(1 = N[f(y) — f(=)]
f(y) — f(z).

This completes the proof. |

4.1.40. Proposition 4.1.4 shows f is continuous at zq if and only if it is Lipschitz in a neighbor-
hood of xy and the proof of Proposition 4.1.25 shows this occurs if and only if 9 f is bounded on a
neighborhood of zy. Exercise 4.1.39 ensures that 0f is weak*-closed. Because 0f(z) is bounded
when f is continuous at x, it follows from Alaoglu’s theorem that df is weak*-compact. O

4.1.45.(a) Let f(t) := —V/t and g(t) = —/—t. Then f +g = d), so d(f + g)(0) = R. Howerver,
9f(0) =0 = 9g(0).



(b) Let g(x,y) :== —/z and A : R — R? be defined by A(z,y) := (0,y). Then go A = 0 ans so
(g o A)(0) = {0}, but dg(0) = 0 and so A*dg(0) = 0. O

4.1.46. (a) Follows because continuous convex functions are locally Lipschitz and directionally
differentiable on the interior of their domains, and hence so is the difference of two such functions.

(b) Using the inner product,

f) = gswl(e,n) — e —yz—y) iy F)
= Ssw{{r,a) — {£,2) +20,0) ~ (hy) 1y € F}

1
= Sup{@:,y) —5llll*:y e F} :
Thus f is convex as a supremum of convex functions.

1 *
(c) See Section 4.4 for properties of conjugate functions. Part (b) shows f = <2|| [ 5F()>

and then using the fact that f** is the convex closure of f we obtain

7= (G124 800)) =gomw (G174 30)) = 5112+ S0

0

4.1.47. Let g(t) := tsin(1/t) for ¢ > 0, and ¢(¢) := 0 otherwise. Then ¢ is continuous but not
of bounded variation in any neigborhood of 0. Indeed, consider points t, := 1/(2nm — 37/2)
and sy, := 1/(2nm — w/2). Then |g(t,) — g(sn)| > 1/nmw. Given any neighborhood U of 0, there
exists NV such that sy,t, € U for all n > N and the claim follows. Now let f := fo t)dt. Then
f'(z) = g(x) for all z, and so f is locally Lipschitz because f’ is continuous, but f is not locally
DC otherwise we would write f = h — k where h and k are convex functions on a neighborhood
of 0. Then f" = k!, — k', is of bounded variation because hy and k. are monotone.

For an example where f is twice differentiable, proceed similarly with g(t) := #?sin(1/¢2) for
t > 0 and g(t) := 0 otherwise. Then ¢’(0) = 0 and so g is everywhere differentiable and g is not of

bounded variation as one can check with points t,, := 1/1/2nm — 37/2 and s,, :== 1//2n7 — 7w/

The remaining details are similar.
4.1.49. See solution to Exercise 2.4.20. O

Exercises from Section 4.2

4.2.1. Let C := {x € cp : |zy| < n2,n € N} where we denote z := (). Let (e,)%; denote
the standard coordinate basis of ¢y. Let f := dc. Then 0 € 9f(0), and so we suppose ¢ € df(0).
Then

(p,ten, —0) < f(ten,) — f(0) =0 whenever |t| < 1/n.
Therefore, (¢, e,) =0 for all n € N. Thus ¢ = 0. This shows 9f(0) = {0}.
However, for h := (n~ 1), the (k + 1)-th coordinate of k=1h = m > 1/(k + 1)%, and so
f(k7h) = co. Therefore

kli)r{.lof <O+;h) — f(0) =0



and f is not Gateaux differentiable at 0.

(b) Observe that 0 € dd(0) C 9f(0). Therefore, ddc(0) = {0} and so d¢ is Gateaux differen-
tiable at 0 because its subdifferential is a singleton (Corollary 4.2.5).

Further notes. Observe that the function d¢ in (b) is not Fréchet differentiable at 0. If it were,
its derivative must equal 0 (the Gateaux derivative). However,

dc (Zen) —do(0 =,
tsn nt % (2 ”2 O iming 2 — 12
n n
and so if the Fréchet derivative of d¢ exists at 0, it cannot be 0, and hence does not exist. O

4.2.2. Let ¢ be a discontinuous linear functional on X, and define f := ¢?. Fix h € X. Then
#(h) = a for some a € R, and so f(th) = t2a? for any t € R. Consequently,
Lim[f(0 + th) — £(0)]/t = lim(t*a?)/t = 0.
t—0 t—0
Thus Vf(0) = 0 as a Gateaux derivative.

No, f is not lower semicontinuous on X, otherwise f would be continuous at 0 because it is
Gateaux differentiable at 0 (Proposition 4.2.2). O

4.2.3. Let A : X — R be a discontinuous linear functional. Let f : X — [0, +o0] be defined by
f(z) := A%(x) when |A(x)| <1 and f(z) := +oo otherwise. We claim the Gateaux derivative of
f at 0is 0. Indeed, fix h € Sx; then A(x) = k, where k; € R, then

th) — k2
lim 205 f(o)zlim—leimtkgzo.
t—0 t t—0 t—0
Because A is not continuous, {z : |[A(z)| < 1} has empty interior. O

4.2.4. (a) = (b): Let D C X be dense in X such that D C |J32, nC. Given h € D, then 1h € C
for some n € N. Suppose ¢ € 96¢(0). Then

b (;h> — $(0) < bc (;h> —60(0) = 0.

Therefore, ¢(x) < 0 for all = in the dense subset D of X. Therefore ¢ = 0.

(b) = (c): Let f :=d¢. Observe that 0 € 9f(0) C 90¢(0) = {0}, and so 9f(0) = {0}.

(c) = (a): We suppose (a) is not true and proceed by contraposition. Because |J;-; nC' is not
dense in X, the complement of the closure is a nonempty open set, and so we choose h € X and
r > 0 such that (h+rBx) N (U nC) = 0. Then 4+(h+rBx) N (s nC) = 0 for all k € N,
for otherwise we would have

1 1

%h—i—éru:m:ﬁ for some k,m € N, uw € Bx, ¢ € C.

Then h + ru = kmz and so h + ru € kmC which is a contradiction. Consequently, d¢ (%h) > %r
for all k € N (since 1 (h + rBx) N (U nC) = 0 for all k € N). Therefore, f/(0;h) > r, and the
max formula (4.1.10) ensures df(0) # {0}, thus (c) does not hold. O



4.2.5.(a) = (b): Let K be as given, and let f := Jk, the indicator function of K. Then f is
not continuous at 0 since 0 is not in the interior of the domain of f. However, 9f(0) = {0} by
Exercise 4.2.4.

(b) = (a): Here is an argument slightly different from the suggestion in the hint. Let f be a
function as given in (b), and let ¢ € df(0). By replacing f with f — ¢ — f(0), we may assume
that 0f(0) = {0} and f(z) > f(0) =0 for all x € X. Now f is not continuous at 0, because f is
not Gateaux differentiable at 0 (Proposition 4.2.2). Let K = {z € Bx : f(z) < 1}. Then K is a
closec covnex set with 0 € K, but 0 ¢ int K.

If U2, nK is norm dense in X, then we are done. So we suppose not, and choose h € X and
r > 0 such that h + rBx N (J,~,; nC) = 0. Choose ¢, € Sx- separating nC and h + rBx so
that sup,,c A, +7 < A, (h). By the weak*-compactness of Bx+ we let A be the weak*-limit point
of a convergent subnet of A,,. Then A(h) > r (since 0 € nC, sup, o A, > 0 and so A,h > r for
each n). Moreover, supy A = 0, otherwise if A(Z) = a > 0 for some z € C, then A, (Z) > «/2 for
infinitely many n, and so r > limsup,, A, — oo which is impossible. Therefore, A(z) < 0 for all
zeC.

We will obtain a contradiction by showing A € 9f(0) (since A # 0). Indeed, suppose x € dom f,
then choose 0 < t < 1 so small that [[tz|| < 1 and ¢tf(x) < 1. Then, f(tx) < (1—-t)f(0)+tf(x) <1
and so tz € C. Thus A(tx) < 0. Consequently, A(x) — A(0) <0 < f(x) — f(0) as required. O

4.2.6. (a) Let C be a closed convex set with empty interior and let z € C'. Replacing C' with
C — z it suffices to show f is not Fréchet differentiable at 0 where f := d¢. Because 0 € 9f(0),
it is the candidate for the derivative. Suppose f is Fréchet differentiable at 0. Then there exists

n € N so that 1 1
£0+R) = £(0) = (0,m)] < JIhl| whenever [la] < -

Thus do(h) < ||h]|/4 whenever ||h| < 1/n. Now consider the closed convex set nC' which also
has empty interior. Fix h € Sx. Then we find o € C such that ||xg — n~1h|| < 1/(3n). Thus
nxog € nC and ||nzg — h|| < 1/3. Thus d,c(h) < 1/3 for each h € Sx.

On the other hand, because nC has empty interior, we know %B x ¢ nC. Thus we choose ¥
with ||yo|| < 1/4 so that yo & nC. According to the basic separation theorem (4.1.12) there exists
¢ € Sx+ so that sup,, o ¢ < ¢(yo) < 1/3. This contradicts the property that d,c(h) < 1/3 for each
h € Sx (since we can take hy € Sx with ¢(hg) > 2/3 and then if x € nC satisfies ||z — hg|| < 1/3,
we get the contradiction ¢(z) > 1/3). Hence we conclude d¢ is not Fréchet differentiable at 0.

(b) Exercise 4.2.1(b) gives an explicit example on ¢y where d¢ is Gateaux differentiable at 0 € C,
but C' is a closed convex set with empty interior. Exercise 4.2.4 can be used to produce similar
examples on any infinite dimensional separable Banach space using a set C' as in Example 4.2.6.

Further notes. The fact that do can be Gateaux differentiable at some = € C for C as in (a)
makes the statement not quite as obvious as it might seem at first glance. However, when C' is
a closed convex set with nonempty interior, then d¢ is not Gateaux differentiable at any z in
the boundary of C. Indeed, let Z € bnd C'. According to the separation theorem (4.1.15), there
exists ¢ € Sx- such that supy ¢ = ¢(z) and (¢, x) < (¢, x) for every x € int C. Thus ¢ # 0, and
¢ € 0dc(Z); indeed for fixed x € X and any y € C,

(0,2 —Z) = (2 —y) +(d,y —T) < (g, —y) < [lz—y].

Taking the infimum over y € C, shows ¢ € d¢(Z) as claimed. Because 0 € dd¢(7), it follows that
ddc(Z) is not a singleton, and so d¢ is not Gateaux differentiable at z. O
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4.2.7. This modifies the proof given for the Fréchet differentiable case, essentially replacing norm
convergence with weak*-convergence.
(a) = (e): Suppose that (e) does not hold, then there exist €, — 07, ¢, € O, f(x0), ¢ € Of (x0),
h € Sx and € > 0 such that
(pn, — ¢, h) > € for all n.

Let t,, = 2¢, /€. Then

|
IN

tne — €n < Op(tnh) — o(tnh) — €,
< flzo +tuh) — f(zo) — O(thy).

A

and so (a) does not hold.

(e) = (d): Suppose ¢y, € O, f(xn), Ay, € O, f(yn) where (z,,) and (y,) converge in norm to xg
and €, — 0. Because f is continuous at xg, we know that f has Lipschitz constant, say M,
on By, (xg) for some r > 0 (Proposition 4.1.4). In the case ||z, — z¢|| < r, one can check that
lpn|| < M + €,/r. Consequently, ¢y, (x,) — ¢n(zo) — 0. Thus, for y € X, one has

Sn(y) — dn(x0) = n(y) — dn(zn) + dn(zn) — Pn(o0)
f(y) = f(wn) + €n + dn(Tn) — Pn(z0)
fy) = f(@o) + en + | f(an) = f(@0)| + [¢n(x0) — dn (o).

Consequently, g, € 0, f(0) where ¢, = en + | £(2n) — F(30)| + |n(Tn) — du(z0)] and &, - OF.
According to (d), ¢, =+ ¢. Similarly, A, —,+ ¢ and so (c) holds.

(d) = (c): Letting A,, = ¢ and y, = xo, we see that (c) follows directly from (d).

(c) = (b): This follows because the continuity of f at zp, implies f is continuous in a neigh-
borhood of zp (Proposition 4.1.4), and so by the max formula (4.1.10), df(x,) is eventually
nonempty whenever x,, — xg.

(b) = (a) We prove the contrapositive. So we suppose f is not Gateaux differentiable at .
Then there exist t,, | 0, h € Bx and € > 0 such that

<
<

f(zo + tuh) — f(xo) — d(tnh) > €t, where ¢ € Of(zp).
Let ¢, € Of(x¢ + t,h) (for sufficiently large n by the max formula (4.1.10)). Now,
¢n(tnh) > f(xO + tnh) - f(xO) > ¢(tnh) + ety

and so ¢y, A+ ¢. Thus (b) fails. O

4.2.9. (a) Let for f := || -||1 the usual norm on /1, consider z* := (27%) € £;. Then ¢ € Of (z*) if
and only if ||¢]| =1 and ¢(x*) = 1. Thus ¢ = (1,1,1,...) € ls. Therefore, Of (z*) N ey = 0.

(b) Observe that the proof of the weak® epi-separation theorem (4.1.23) works the same zj; €
dom f as it does for z; € cont f. Thus let z;; € dom f. Given € > 0, apply the weak™ epi-
separation theorem (4.1.23) with a = f(z{) — € to find xp € X such that

(ko, 2" —x0) < f(z¥) —a= f(z") — f(x;) + € forall z* € X™.

Therefore z¢ € 0. f(z) N X as desired. O
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Exercises from Section 4.3

4.3.1. The ‘if’ part was done, as suggested for the converse let (x;) be any Cauchy sequence in
X. Define the function f(z) := lim;_,~ d(x;, ). Then f is lower semicontinuous with infx f = 0.
Let € € (0,1). Choose z € X such that f(z) < e. Applying Ekeland’s variational principle (4.3.1)
with A = 1, there exists y € X such that

F(y) +ed(z.y) < f(z) and f(z) +ed(z,y) > f(y) for all 2 € X.

In particular, f(y) < € and f(zy,) + ed(xn,y) > f(y). Taking the limit on the left-hand side of
this equation, we get ef(y) > f(y). Because f(y) > 0 this implies f(y) = 0, that is, =, — y.
Thus (X, d) is complete. O

4.3.2. The contractivity of the mapping implies there can be at most one fixed point. As
suggested, let f(x) :=d(x,¢(x)). Then f is lower semicontinuous and bounded below on X. Let
z € X be such that f(z) < infx f + e. Applying Ekeland’s variational principle (4.3.1) to f with
A=1and 0 < e <1—k, there exists y € X such that f(x)+ ed(z,y) > f(y) for all z € X. In
particular, with = ¢(y), we have

d(p(y), d(9(y)) + €d(d(y),y)) = d(y, (v)),
or in other words, d(¢(y), ¢(¢(y)) > (1 — €)d(y, ¢(y)) > kd(y, ¢(y)) which is a contradiction. [

4.3.5. Let 0 < ¢ < 1. Suppose g € Sx and ¢g € Sx« satisfy ¢o(zg) > 1 — €2/2. Then
$o € Oc22]|T0l|- According to the Brgndsted—Rockafellar theorem (4.3.2) there exists x € X with
|z — xol] < €/2 and ¢ € O||z|| with ||¢ — ¢o|| < €. Now let Z = x/||z| and ¢ = ¢. Then ||z| =1,
||l = 1 and ¢(Z) = 1 as desired. O

4.3.6.(a) Let 0 < € < 1. Fix x¢p € bnd(C) and choose x1 € X \ C such that ||x; — x¢|| < e. By
the basic separation theorem (4.1.12) we choose z{; € Sx~ so that oc(xf) < (z§, z1). Because
||z1—x0|| < €, it follows that (z(, x0) > oc(xf) —e€ and thus xf € O f (zo) where f := dc. Applying
the Brgndsted—Rockafellar theorem (4.3.2) with A = /e we obtain z € dom f and z* € Jf(x)
such that ||z — x| < /e and ||z* — z§|| < /e. In particular, z* # 0, and (z*, z) = oc(x*).

(b) Suppose o¢(zf) < oo and let 0 < € < ||zo||?. Choose z¢ € C such that (zf, z0) > oc(xf) — €.
Then x € Ocf(x) where f := dc. Asin (a), we apply the Brgndsted-Rockafellar theorem (4.3.2)
with A = /e to find x € dom f and z* € 9f(z) such that ||z — z¢|| < /e and ||z* — z{|| < Ve. In
particular, z* # 0, and (z*, z) = oc(x™). O

Exercises from Section 4.4
4.4.11. See solution to Exercise 2.3.12(a)(i). O

4.4.12. Using the definition and subdifferential sum rule (4.1.19), we observe

Neyne, ($) = a(501 ($) + dcy (SU)) = ddc, (SC) + ddc, (l‘) = N¢, (l‘) + Ne, (x)
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4.4.14. See solution to Exercise 2.3.12(a)(iii). O

4.4.20. (a) Suppose X is reflexive, then the properness and coercivity of f imply that K := {z :
f(z) < M} is nonempty and bounded for some M > 0. Because f is lower semicontinuous and
convex, K is weakly closed and convex. Therefore K weakly compact. Now f is bounded below
on K, therefore, let (x,) C K be such that f(x,) — infx f. According to the Eberlein-Smulian
theorem, (x,, ) converges weakly to Z for some subsequence and some z. Because f is weakly
lower semicontinuous, this implies liminf f(z,,) > f(Z). Thus f(Z) = infgx f. Outside of K,
f(z) > M, and so f(Z) is an absolute minimum for f.

Conversely, suppose X is not reflexive. According to James’ theorem (4.1.27) there is a functional
¢ € Sx+ that does not attain its norm on Bx. Then f := ¢ + dp, does not attain its minimum
on X. Indeed, infx f = —1, but there is no € Bx such that |¢(z)| = 1.

(b) For each ¢ € X*, f — ¢ is supercoercive. Now f — ¢ attains its minimum at z for some
z € X. Thus, ¢ € 0f(7).

(¢) No. For example let f be defined by f(z) := (suppen [2(n) — 1)+ Yo%, 5=|2(n) — 1/* where
x = (z(n)) € ¢g. Then f is a continuous (in fact bounded on bounded sets) and supercoercive
convex function that does not attain its minimum. Indeed, f(x) > 1 for all x € ¢p, and for
xn = (1,1,...,1,0,...), we have lim,, o f(z,) = 1. Consequently, 0 ¢ range df. More generally,
in any nonreflexive space, consider f := |- [|?. Using James’ theorem (4.1.27), one can show that
the subdifferential map is not onto. O

4.4.21. (a) Because f is Lipschitz, there exists K > 0 so that dom f* C KBx«. According to
the hypothesis, we choose N € N so that f(¢) < f*(¢) + € for each ¢ € 0f(X) C KBx~, and
n > N. Now let x € X, and let ¢ € f(x). Then for each n > N, one has

[H(0) = ¢(x) — f(2) = f(9) — €= d(x) — fulr) — €

Therefore, f(x) — e < fp(z) < f(x) for all z € X, and all n > N.

(b) Let g € X. Given € > 0, and any number a < f(z¢) it suffices to show that there exists N
such that f,(xg) > o — € for all n > N. Now choose ¢ € X* such that ¢(z) — ¢(z9) < f(z) — «
for all x € X. Then f*(¢) < ¢(x9) — a and so ¢ € dom f*. Now choose N € N so that
X (@) < f*(¢) — e for n > N. Now, for all n > N,

¢(x0) —a = f7(d) 2 f1(6) — € = d(wo) — fulxo) — €

Therefore, f,,(zo) > a — €.
(c) We conclude that fon| - ||? converges uniformly (resp. pointwise) to f provided that f is
Lipschitz (resp. lower semicontinuous proper) and convex because

1
2\* __ px e
(fonll- 119" = 7+ oIl Il
converges uniformly (resp. pointwise) to f* (where || - ||« denotes the dual norm to || - ||). O

4.4.22. We first prove Fact 4.4.4(b). Suppose f is continuous at zg, then there exist ¢ > 0 and
M > 0 so that f(x) < M for x € xy + §Bx (Proposition 4.1.4). Now suppose z** € X** and
||lx** — zo|| < §. According to Goldstine’s theorem (Exercise 4.1.13) there is a net (x,) C dBx
with 24 —+ (2** — 29). The weak*-lower -semicontinuity of f** implies that

(™) < liminf f**(zo + ) = liminf f(zo + z4) < M.
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Thus f** is bounded above on a neighborhood of z**, and thus it is continuous at z** (Proposi-
tion 4.1.4).

Conversely, if f** is continuous at zg € X, then so is f because f**|x = f (Proposition 4.4.2(a)).
We now prove Fact 4.4.4(c). Suppose f is Fréchet differentiable at xo. Let € > 0, the according
to Proposition 4.2.7 there exists § > 0 so that

F(o + )+ F(ao — h) — 2f(z0) < ellh] if [1h]] < 6.

Now suppose h € X** and ||h|| < §. Then there exist h, € X with ||ha]| = ||h]| < § and hq —w+ h
by Goldstine’s theorem (Exercise 4.1.13). Using the weak*-lower semicontinuity of f** and the
fact f**|x = f (Proposition 4.4.2(a)) we have

[T (xo+h) + [ (zo—h)—2f"(z0)
< lim f* (20 + ha) + 7 (@0 — ha) — 2 (z0)

= liénf(xo + ha) + f(zo — ha) — 2f (z0) < €||R]|.

Applying Proposition 4.2.7 we conclude that f** is Fréchet differentiable at xg.
The converse, as in (b), follows from Proposition 4.4.2(a). O

4.4.23. (a) (i) = (ii): If f is supercoercive, it is clear f — y* is supercoercive for each y* € X*.

The Moreau-Rockafellar theorem (4.4.11) implies the equivalence of (ii) and (iii).

We now show (ii) = (i) when X is finite dimensional. Indeed, suppose by what of contradiction
there exists (z,) C X such that ||z,| — oo but limsup f(x,)/||z.|| < K for some K > 0. Let
Un, = Tp/||zn||, and by passing to a subsequence as necessary, we suppose u, — u. Now let ¢ € Sx
be such that ¢(u) = 1. Then let y* = 3K¢. Now f — y* is coercive, and for n sufficiently large
y*(up) > 2K and (f —y*)(x,) > 0 and so f(z,) > y*(zy) > 2K]||z,|| which is a contradiction.

For (b), define the conjugate function f* by f*(z) := ||z||? + Y02 (z:)*", f* is a continuous
convex function and supercoercive. However, f* is not bounded on 2By,, since f(2e,) = 22"
Therefore, f = f** cannot be supercoercive. For (c), consider f := /|| - | O

Exercises from Section 4.5

4.5.1. An elementary proof is as follows. Let €, — 07. By the definition of the conjugate
choose z, € X such that z*(z,) — f(xn) > f*(z*) — €, (then f(z,) is necessarily real-valued)
and f(zn) + f*(z*) < z*(zp) + €. Now f** < f and f* is proper, so f**(z,) + f*(z*) <
x*(2) + €n. According to Proposition 4.4.1(b), x, € O, f*(*). By Smulian’s theorem, x, —
Vf*(x*). Therefore, Vf*(z*) € X, and we let x := V f*(x*). According to the Fenchel-Young
Proposition 4.4.1(a), we have f**(z) = (z*z) — f*(«*) and so

f@) > @) = (ata) — ) = lim (@) - )

> liminf f(x,) — €, > f(z) using lower semicontinuous property of f.
n—o0

Thus f(x) = f**(z) as desired. O

4.5.2. (a) Choose (z,,) C C such that ||z, —z|| = dc(z). Because (x,,) is bounded the Eberlein-
Smulian theorem ensures there is a subsequence (x,, ) that converges weakly to z. Because C is
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closed and convex, it is weakly closed and so & € C'. The weak lower semicontinuity of the norm
implies lim inf,,_, ||z, — 2| > ||Z — z|| and so Z € Po(z) as desired.

(b) Fix z € X, and suppose Po(z) is not empty. If z € C, then Po(z) =
desired. So, suppose x ¢ C, and suppose distinct y, z € Po(z). Then %(y +
and the strict convexity of the norm implies

{z} is a singleton as
z) € C by convexity,

1 1 1
v =5+ 2)|| < 5le gl + 5o 2l = Po(e).

2

This contradiction implies Po(z) is a singleton.
Parts (a) and (b) together show that every closed convex subset of a strictly convex reflexive
Banach space is a CebySev set. O

4.5.3. Let ¢ € Sx be a functional that does not attain its norm on By, and let C := {z € X :
¢(z) = 0}. Fix T € X such that ¢(z) # 0. Say, ¢(Z) = . It is elementary to check do(z) = |a.
Because ¢ does not attain its norm, we have a = |¢(Z — y)| < |z — y| for all y € C. Thus
Po(z) = 0. |

4.5.4. Let A be a closed proximal subset of X. Now observe that Vd? (z) = 0 whenever z € A,
and Vd%(z,) — 0 whenever d4(x,) — 0. When x ¢ A, then Vd?(z) = 2da(x)Vda(z), and so
by the hypothesis of the exercise, Vd4 is norm-to-weak* continuous at any x ¢ A.

Suppose & ¢ A. Then d, is Gateaux differentiable at z. Let r := da(x), and let Z € Py(z).
Then r = ||z — Z|| > 0. Let h := 2(z — 2). Then

T

T dA(x—i-th)—dA(x)
Vda(z)(h) = lim " -

However,

. lxe+th—2z||—r
lim

lim <
t—0 t t—0+ t
1—Ylz—z| -7
g (s
t—0+ t

Thus [|[Vda(z)|| > 1. However, because d4 has Lipschitz constant 1, we conclude ||Vda(z)| = 1.

Now suppose x, — . Then eventually z,, ¢ A, and ||Vda(zy)|| = 1. Because the dual norm
has the weak*-Kadec property, we deduce da(z,) — da(z), and thus Vd% is norm-to-norm
continuous. O

4.5.5. Let X be a reflexive Banach space. Suppose the dual norm on X* is strictly convex. Let
x € X\{0}. Suppose ¢, A € Sx~ satisfy ¢(x) = ||z|| = A(z). Then ||[p+Al > (¢+A)(z/|z]) = 2.
By the strict convexity of the dual norm, ¢ = A. Thus 9||z|| is a singleton, and so || - || is Gateaux
differentiable at x.

Conversely, suppose x,y € Sx« are such that ||z + y|| = 2. Because of reflexivity, we can choose
¢ € Sx so that ¢(x 4+ y) = 2. Thus z,y € J||¢||. By Gateaux differentiability, z = y. O
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