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Introduction

A feasibility problem requests solution to the problem

Find x ∈
N⋂

i=1

Ci ,

where C1,C2, . . .CN are closed sets lying in a Hilbert space H.

We consider iterative methods based on the non-expansive properties of
the metric projection operator

PC (x) := argminc∈C‖x − c‖

or reflection operator RC := 2PC − I on a closed convex set C .

The two methods which we focus are on the method of alternating
projections (MAP) and the Douglas–Rachford method (DR).
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Introduction

These methods work best when the projection on each set Ci is easy to
describe or approximate. These methods are especially useful when the
number of sets involved is large as the methods are fairly easy to
parallelize.
The theory is pretty well understood when all sets are convex but much
less clear in the non-convex case. But as we shall see application of this
case has had may successes. So this is a fertile area for both pure and
applied study.
The five hours of lectures will cover the following topics.

1 Feasibility problems: convex theory, nonexpansivity, Fejér monotonicity
& convergence of MAP and variants.

2 The Douglas–Rachford Method: convex Douglas–Rachford iterations
and variants.

3 Non-convex Douglas Rachford iterations and iterative geometry.

4 Applications to completion problems: an introduction & detailed case
studies.

Each lecture will contain closing commentary, open questions, and
exercises.
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Motivation

The need to integrate and iterate real theory with real models for real
applications:

Good theoretical understanding

- you can not use what you do not know
- you can work inductively

Careful modelling of applications

- the model matters especially in the nonconvex case
- moving to application specific refinements

Good implementations

- starting with ‘general purpose agents’
- moving to application specific refinements
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Introduction

Lectures are available online at:

http://carma.newcastle.edu.au/DRmethods/paseky.html

http://carma.newcastle.edu.au/DRmethods/paseky.html
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2. Convex Feasibility Problems
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Techniques of Variational Analysis

This lecture is based on Chapter 4.5: Convex Feasibility Problems
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Abstract

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be convex closed
subsets of X . The convex feasibility problem is to find some point

x ∈
N⋂

n=1

Cn,

when this intersection is non-empty.

In this talk we discuss projection algorithms for finding such a feasibility
point. These algorithms have wide ranging applications including:

solutions to convex inequalities,

minimization of convex nonsmooth functions,

medical imaging,

computerized tomography, and

electron microscopy
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Projections

We start by defining projection to a closed convex set and its basic
properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
for any x ∈ X , there exists a unique element x̄ ∈ C such that

‖x − x̄‖ = d(C ; x).

Proof. If x ∈ C then x̄ = x satisfies the conclusion. Suppose that
x 6∈ C . Then there exists a sequence xi ∈ C such that
d(C ; x) = limi→∞ ‖x − xi‖. Clearly, xi is bounded and therefore has a
subsequence weakly converging to some x̄ ∈ X .
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Since a closed convex set is weakly closed (Mazur’s Theorem), we have
x̄ ∈ C and d(C ; x) = ‖x − x̄‖. We show such x̄ is unique. Suppose that
z ∈ C also has the property that d(C ; x) = ‖x − z‖. Then for any
t ∈ [0, 1] we have tx̄ + (1− t)z ∈ C . It follows that

d(C ; x) ≤ ‖x − (tx̄ + (1− t)z)‖ = ‖t(x − x̄) + (1− t)(x − z)‖
≤ t‖x − x̄‖+ (1− t)‖x − z‖ = d(C ; x).

That is to say

t → ‖x − z − t(x̄ − z)‖2 = ‖x − z‖2 − 2t〈x − z , x̄ − z〉+ t2‖x̄ − z‖2

is a constant mapping, which implies x̄ = z . •
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Projections

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
for any x ∈ X , x̄ ∈ C is a nearest point to x if and only if

x − x̄ ∈ N(C ; x̄).

Proof. Noting that the convex function f (y) = ‖y − x‖2/2 attains a
minimum at x̄ over set C , this directly follows from the
Pshenichnii–Rockafellar condition (Theorem 4.3.6):

0 ∈ ∂f (x) + N(C ; x).

•
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Projections

Geometrically, the normal cone characterization is:

x̄

x

c

x − x̄ ∈ N(C ; x̄) ⇐⇒ 〈x − x̄ , c − x̄〉 ≤ 0 for all c ∈ C .
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Projections

Geometrically, the normal cone characterization is:

x̄

x

c

θ

θ ∈ [π/2, π]

x − x̄ ∈ N(C ; x̄) ⇐⇒ 〈x − x̄ , c − x̄〉 ≤ 0 for all c ∈ C .
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Projections

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . For
any x ∈ X the unique nearest point y ∈ C is called the projection of x on
C and we define the projection mapping PC by PCx = y .

We summarize some useful properties of the projection mapping in the
next proposition whose elementary proof is left as an exercise.

Proposition 4.5.4 (Properties of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
the projection mapping PC has the following properties.

(i) for any x ∈ C , PCx = x ;

(ii) P2
C = PC ;

(iii) for any x , y ∈ X , ‖PCy − PCx‖ ≤ ‖y − x‖.
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Projections

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X .
Define

f (x) = sup
{
〈x , y〉 − ‖y‖2

2

∣∣∣ y ∈ C
}
.

Then f is convex, PC (x) = f ′(x), and therefore PC is a monotone
operator.

Proof. It is easy to check that f is convex and

f (x) =
1

2
(‖x‖2 − ‖x − PC (x)‖2).

We need only show PC (x) = f ′(x).
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Fix x ∈ X . For any y ∈ X we have

‖(x + y)− PC (x + y)‖ ≤ ‖(x + y)− PC (x)‖,

so

‖(x + y)− PC (x + y)‖2 ≤ ‖x + y‖2 − 2〈x + y ,PC (x)〉+ ‖PC (x)‖2

= ‖x + y‖2 + ‖x − PC (x)‖2 − ‖x‖2

− 2〈y ,PC (x)〉,

hence f (x + y)− f (x)− 〈PC (x), y〉 ≥ 0. On the other hand, since
‖x − PC (x)‖ ≤ ‖x − PC (x + y)‖ we get

f (x + y)− f (x)− 〈PC (x), y〉 ≤ 〈y ,PC (x + y)− PC (x)〉
≤ ‖y‖ × ‖PC (x + y)− PC (x)‖
≤ ‖y‖2,

which implies PC (x) = f ′(x). •
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Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two convex sets. Let
X be a Hilbert space and let C and D be two closed convex subsets of
X . Suppose that C ∩ D 6= ∅. Define a function

f (c , d) :=
1

2
‖c − d‖2 + ιC (c) + ιD(d).

We see that f attains a minimum at (c̄ , d̄) if and only if c̄ = d̄ ∈ C ∩ D.
Thus, the problem of finding a point in C ∩ D becomes one of
minimizing function f .

We consider a natural descending process for f by alternately minimizing
f with respect to its two variables. More concretely, start with any
x0 ∈ D. Let x1 be the solution of minimizing

x → f (x , x0).
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Projection Algorithms as Minimization Problems

It follows from Theorem 4.5.2. that

x0 − x1 ∈ N(C ; x1).

That is to say x1 = PCx0. We then let x2 be the solution of minimizing

x → f (x1, x).

Similarly, x2 = PDx1. In general, we define

xi+1 =

{
PCxi i is even,

PDxi i is odd.
(1)

This algorithm is a generalization of the classical von Neumann projection
algorithm for finding points in the intersection of two subspaces.
We will show that in general xi weakly converge to a point in C ∩ D and when
int(C ∩ D) 6= ∅ we have norm convergence.
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Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X
and let T : C → X . We say that T is nonexpansive provided that
‖Tx − Ty‖ ≤ ‖x − y‖.

Definition 4.5.7 (Attracting Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and
let T : C → C be a nonexpansive mapping. Suppose that D is a closed
nonempty subset of C . We say that T is attracting with respect to D if for
every x ∈ C\D and y ∈ D,

‖Tx − y‖ ≤ ‖x − y‖.

We say that T is k-attracting with respect to D if for every x ∈ C\D and
y ∈ D,

k‖x − Tx‖2 ≤ ‖x − y‖2 − ‖Tx − y‖2.
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Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X . Then
PC : X → X is 1-attracting with respect to C .

Proof. Let y ∈ C . We have

‖x − y‖2 − ‖PCx − y‖2 = 〈x − PCx , x + PCx − 2y〉
= 〈x − PCx , x − PCx + 2(PCx − y)〉
= ‖x − PCx‖2 + 2〈x − PCx ,PCx − y〉
≥ ‖x − PCx‖2.

•

Note that if T is attracting (k-attracting) with respect to a set D, then
it is attracting (k-attracting) with respect to any subset of D.
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Attracting Mappings and Fejér Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (xi ) be a
sequence in X . We say that (xi ) is Fejér monotone with respect to C if

‖xi+1 − c‖ ≤ ‖xi − c‖, for all c ∈ C and i = 1, 2, . . .

Next we summarize properties of Fejér monotone sequences.

Theorem 4.5.10 (Properties of Fejér Monotone Sequences)

Let X be a Hilbert space, let C be a closed convex set and let (xi ) be a
Fejér monotone sequence with respect to C . Then

(i) (xi ) is bounded and d(C ; xi+1) ≤ d(C ; xi ).

(ii) (xi ) has at most one weak cluster point in C .

(iii) If the interior of C is nonempty then (xi ) converges in norm.

(iv) (PCxi ) converges in norm.
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Proof. (i) is obvious.
Observe that, for any c ∈ C the sequence (‖xi − c‖2) converges and so
does

(‖xi‖2 − 2〈xi , c〉). (2)

Now suppose c1, c2 ∈ C are two weak cluster points of (xi ). Letting c in
(2) be c1 and c2, respectively, and taking limits of the difference, yields
〈c1, c1 − c2〉 = 〈c2, c1 − c2〉 so that c1 = c2, which proves (ii).
To prove (iii) suppose that Br (c) ⊂ C . For any xi+1 6= xi , simplifying

‖xi+1 −
(
c − h

xi+1 − xi
‖xi+1 − xi‖

)
‖2 ≤ ‖xi −

(
c − h

xi+1 − xi
‖xi+1 − xi‖

)
‖2

we have
2h‖xi+1 − xi‖ ≤ ‖xi − c‖2 − ‖xi+1 − c‖2.
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Proof. (i) is obvious.
Observe that, for any c ∈ C the sequence (‖xi − c‖2) converges and so
does

(‖xi‖2 − 2〈xi , c〉). (2)
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For any j > i , adding the above inequality from i to j − 1 yields

2h‖xj − xi‖ ≤ ‖xi − c‖2 − ‖xj − c‖2.

Since (‖xi − c‖2) is a convergent sequence we conclude that (xi ) is a
Cauchy sequence.
Finally, for natural numbers i , j with j > i , apply the parallelogram law
‖a− b‖2 = 2‖a‖2 + 2‖b‖2 − ‖a+ b‖2 to a := PCxj − xj and
b := PCxi − xj we obtain

‖PCxj − PCxi‖2 = 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4
∥∥∥PCxj + PCxi

2
− xj

∥∥∥
2

≤ 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4‖PCxj − xj‖2

≤ 2‖PCxi − xj‖2 − 2‖PCxj − xj‖2

≤ 2‖PCxi − xi‖2 − 2‖PCxj − xj‖2.

We identify (PCxi ) as a Cauchy sequence, because
(‖xi − PCxi‖) converges by (i). •
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Attracting Mappings and Fejér Sequences

The following example shows the first few terms of a sequence {xn}
which is Fejér monotone with respect to C = C1 ∩ C2.

C2

C1

x0

x1

x2

x3
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Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (xi ) in X is asymptotically
regular if

lim
i→∞

‖xi − xi+1‖ = 0.

Lemma 4.5.11 (Asymptotical Regularity of Projection Algorithm)

Let X be a Hilbert space and let C and D be closed convex subsets of X .
Suppose C ∩ D 6= ∅. Then the sequence (xi ) defined by the projection
algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

is asymptotically regular.
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Proof. By Lemma 4.5.8 both PC and PD are 1-attracting with respect
to C ∩D. Let y ∈ C ∩D. Since xi+1 is either PCxi or PDxi it follows that

‖xi+1 − xi‖2 ≤ ‖xi − y‖2 − ‖xi+1 − y‖2.

Since (‖xi − y‖2) is a monotone decreasing sequence, therefore the
right-hand side of the inequality converges to 0 and the result follows. •
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Convergence of Projection Algorithms

Now, we are ready to prove the convergence of the projection algorithm.

Theorem 4.5.12 (Convergence for Two Sets)

Let X be a Hilbert space and let C and D be closed convex subsets of X .
Suppose C ∩ D 6= ∅ (int(C ∩ D) 6= ∅). Then the projection algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

converges weakly (in norm) to a point in C ∩ D.
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Proof. Let y ∈ C ∩ D. Then, for any x ∈ X , we have

‖PCx − y‖ = ‖PCx − PCy‖ ≤ ‖x − y‖, and

‖PDx − y‖ = ‖PDx − PDy‖ ≤ ‖x − y‖.

Since xi+1 is either PCxi or PDxi we have that

‖xi+1 − y‖ ≤ ‖xi − y‖.

That is to say (xi ) is a Fejér monotone sequence with respect to C ∩ D.
By item (i) of Theorem 4.5.10 the sequence (xi ) is bounded, and
therefore has a weakly convergent subsequence. We show that all weak
cluster points of (xi ) belong to C ∩ D. In fact, let (xik ) be a subsequence
of (xi ) converging to x weakly.
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Taking a subsequence again if necessary we may assume that (xik ) is a
subset of either C or D. For the sake of argument let us assume that it is
a subset of C and, thus, the weak limit x is also in C . On the other hand
by the asymptotical regularity of (xi ) in Lemma 4.5.11 (PDxik ) = (xik+1)
also weakly converges to x . Since (PDxik ) is a subset of D we conclude
that x ∈ D, and therefore x ∈ C ∩ D. By item (ii) of Theorem 4.5.10
(xi ) has at most one weak cluster point in C ∩ D, and we conclude that
(xi ) weakly converges to a point in C ∩ D. When int(C ∩ D) 6= ∅ it
follows from item (iii) of Theorem 4.5.10 that (xi ) converges in norm. •
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Convergence of Projection Algorithms

Whether the alternating projection algorithm converged in norm without
the assumption that

int(C ∩ D) 6= ∅,
or more generally of metric regularity, was a long-standing open problem.

Recently Hundal constructed an example showing that the answer is
negative [5].

The proof of Hundal’s example is self-contained and elementary.
However, it is quite long and delicate, therefore we will be satisfied in
stating the example.
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Convergence of Projection Algorithms

Example 4.5.13 (Hundal)

Let X = ℓ2 and let {ei | i = 1, 2, . . . } be the standard basis of X . Define
v : [0,+∞) → X by

v(r) := exp(−100r3)e1 + cos
(
(r − [r ])π/2

)
e[r ]+2 + sin

(
(r − [r ])π/2

)
e[r ]+3,

where [r ] signifies the integer part of r and further define

C = {e1}⊥ and D = conv{v(r) | r ≥ 0}.

Then the hyperplane C and cone D satisfies C ∩ D = {0}.
However, Hundal’s sequence of alternating projections xi given by

xi+1 = PDPCxi

starting from x0 = v(1) (necessarily) converges weakly to 0, but not in
norm.
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Convergence of Projection Algorithms

A related useful example is the moment problem.

Example 4.5.14 (Moment Problem)

Let X be a Hilbert lattice1 with lattice cone D = X+. Consider a linear
continuous mapping A from X onto R

N . The moment problem seeks the
solution of A(x) = y ∈ R

N , x ∈ D.

Define C = A−1(y). Then the moment problem is feasible iff

C ∩ D 6= ∅.

A natural question is whether the projection algorithm converges in
norm.

This problem is answered affirmatively in [1] for N = 1 yet remains open
in general when N > 1.

1All Hilbert lattices are realized as L2(Ω, µ) in the natural ordering for some
measure space.
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Projection Algorithms for Multiple Sets

We now turn to the general problem of finding some points in

N⋂

n=1

Cn,

where Cn, n = 1, . . . ,N are closed convex sets in a Hilbert space X .

Let an, n = 1, . . . ,N be positive numbers. Denote

XN := {x = (x1, x2, . . . , xN) | xn ∈ X , n = 1, . . . ,N}

the product space of N copies of X with inner product

〈x , y〉 =
N∑

n=1

an〈xn, yn〉.

Then XN is a Hilbert space.
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Projection Algorithms for Multiple Sets

Define

C := C1 × C2 × · · · × CN , and

D := {(x1, . . . , xN) ∈ XN : x1 = x2 = · · · = xN}.

Then C and D are closed convex sets in XN and

x ∈
N⋂

n=1

Cn ⇐⇒ (x , x , . . . , x) ∈ C ∩ D.

Applying the projection algorithm (1) to the convex sets C and D defined
above we have the following generalized projection algorithm for finding
some points in

N⋂

n=1

Cn,

as we shall now explain.
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Projection Algorithms for Multiple Sets

Denote Pn = PCn
. The algorithm can be expressed by

xi+1 =
( N∑

n=1

λnPn

)
xi , (3)

where λn = an/
∑N

m=1 am.

In other words, each new approximation is the convex combination of the
projections of the previous step to all the sets Cn, n = 1, . . . ,N. It follows
from the convergence theorem in the previous subsection that the
algorithm (3) converges weakly to some point in

⋂N
n=1 Cn when this

intersection is nonempty.
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Projection Algorithms for Multiple Sets

Theorem 4.5.15 (Weak Convergence for N Sets)

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be closed convex
subsets of X . Suppose that

⋂N
n=1 Cn 6= ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑

n=1

λnPn

)
xi ,

converges weakly to a point in
⋂N

n=1 Cn.

Proof. This follows directly from Theorem 4.5.12. •
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Projection Algorithms for Multiple Sets

When the interior of
⋂N

n=1 Cn is nonempty we also have that the
algorithm (3) converges in norm. However, since D does not have
interior this conclusion cannot be derived from Theorem 4.5.12. Rather it
has to be proved by directly showing that the approximation sequence is
Fejér monotone w.r.t.

⋂N
n=1 Cn.

Theorem 4.5.16 (Strong Convergence for N Sets)

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be closed convex
subsets of X . Suppose that int

⋂N
n=1 Cn 6= ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑

n=1

λnPn

)
xi ,

converges to a point in
⋂N

n=1 Cn in norm.
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Proof. Let y ∈ ⋂N
n=1 Cn. Then

‖xi+1 − y‖ =
∥∥∥
( N∑

n=1

λnPn

)
xi − y

∥∥∥ =
∥∥∥

N∑

n=1

λn(Pnxi − Pny)
∥∥∥

≤
N∑

n=1

λn‖Pnxi − Pny‖ ≤
N∑

n=1

λn‖xi − y‖ = ‖xi − y‖.

That is to say (xi ) is a Fejér monotone sequence with respect to⋂N
n=1 Cn. The norm convergence of (xi ) then follows directly from

Theorems 4.5.10 and 4.5.15. •
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Commentary and Open Questions

We have proven convergence of the projection algorithm. It can be
traced to von Neumann, Weiner and before, and has been studied
extensively.

We emphasize the relationship between the projection algorithm and
variational methods in Hilbert spaces:

– While projection operators can be defined outside of the setting of
Hilbert space, they are not necessarily non-expansive.

– In fact, non-expansivity of the projection operator characterizes
Hilbert space in two more dimensions.

The Hundal example clarifies many other related problems regarding
convergence. Simplifications of the example have since been
published.

What happens if we only allow “nice” cones?

Bregman distance provides an alternative perspective into many
generalizations of the projection algorithm.
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Exercises

1 Let T : H → H be nonexpansive and let α ∈ [−, 1, 1]. Show that
(I + αT ) is a maximally monotone continuous operator.

2 (Common projections) Prove formula for the projection onto each of the
following sets:

1 Half-space: H := {x ∈ H : 〈a, x〉 = b}, 0 6= a ∈ H, b ∈ R.
2 Line: L := x + Ry where x , y ∈ H.
3 Ball: B := {x ∈ H : ‖x‖ ≤ r} where r > 0.
4 Ellipse in R

2: E := {(x , y) ∈ R
2 : x2/a2 + y 2/b2 = 1}.

Hint: PE (u, v) =
(

a2u

a2−t
, b2v

b2−t

)
where t solves

a2u2

(a2 − t)2
+

b2v 2

(b2 − t)2
= 1.

3 (Non-existence of best approximations) Let {en}n∈N be an orthonormal
basis of an infinite dimensional Hilbert space. Define the set
A := {e1/n + en : n ∈ N}. Show that A is norm closed and bounded but
dA(0) = 1 is not attained. Is A weakly closed?



Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

References

H.H. Bauschke & and J.M. Borwein. On the convergence of von
Neumann’s alternating projection algorithm for two sets.
Set-Valued Analysis 1(2):185–212 (1993).

J.M. Borwein & Q.J. Zhu. Techniques of Variational Analysis.
Springer (2013).

Y. Censor & A. Cegielski. Projection methods: an annotated
bibliography of books and reviews. Optimization, accepted for
publication. Preprint PDF.

R. Escalante & M. Raydan, Alternating projection methods.
SIAM Fundamentals of Algorithms (2011)

H.S. Hundal. An alternating projection that does not converge
in norm. Nonlinear Analysis: Theory, Methods & Applications
57(1):35–61 (2004).

Many resources (and definitions) available at:

http://www.carma.newcastle.edu.au/jon/ToVA/

http://math.haifa.ac.il/yair/revised-proj-meth-annotated-050914.pdf
http://www.carma.newcastle.edu.au/jon/ToVA/


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

3. Convex Douglas–Rachford
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Feasibility Problem

Given closed sets C1,C2, . . . ,CN ⊆ H the feasibility problem asks

find x ∈
N⋂

j=1

Cj .

Many problems can be cast is this form. Three examples:

1 Linear systems “Ax = b”: Cj = {x : 〈aj , x〉 = bj}.
2 Phase retrieval: C1 = {f : |f̂ | = m a.e.} and C2 = {f : f = 0 on D}.
3 Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility
problems. They work on the following principle:

1 While the intersection might be difficult to deal with directly, the
individual constraint sets are sufficiently “simple”.

2 “Simple” means we can efficiently compute nearest points.

3 Use an iterative scheme which employs nearest points to individual
constraint sets at each stage, and obtain a solution in the limit.
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Douglas, Rachford & Peaceman

Jim Douglas Jnr (1927 – ) Henry Rachford Donald Peaceman
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Algorithmic Building Blocks

Let S ⊆ H be non-empty. The (nearest point) projection onto S is the
(set-valued) mapping,

PSx :=

{
s ∈ S : ‖x − s‖ ≤ inf

s∈S
‖x − s‖

}
.

If S is closed and convex then projections exists uniquely with

PS(x) = p ⇐⇒ 〈x − p, s − p〉 ≤ 0 for all s ∈ S .

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x2

x1

x

p1

p2

r1

r2
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The Douglas–Rachford Algorithm

Given an initial point x0 ∈ H, the Douglas–Rachford method is the
fixed-point iteration given by

xn+1 ∈ TC1,C2xn where TC1,C2 :=
Id + RC2

RC1

2
.

We hope that (xn) converges to a fixed point of of the operator TC1,C2
.

xn

RC1
xn

RC2
RC1

xn

xn+1 = T1,2xn

C1

C2

C1 = {x ∈ H : ‖x‖ ≤ 1}, C2 = {x ∈ H : 〈a, x〉 = b}.
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Douglas–Rachford Fixed Points

Why FixTC1,C2? Assuming single-valueness of RC1 and RC2 we have:

x ∈ FixTC1,C2
⇐⇒ x =

x + RC2RC1x

2

The same argument for the set-valued case yields:

If x ∈ TC1,C2x then there is an element of PC1x contained in C1 ∩C2.
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⇐⇒ x =
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Tools from Nonexpansive Mapping Theory

Let T : H → H. Then T is:

nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, for all x , y ∈ H.

firmly nonexpansive if

‖Tx−Ty‖2+‖(I −T )x−(I −T )y‖2 ≤ ‖x−y‖2, for all x , y ∈ H.
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firmly nonexpansive if

‖Tx−Ty‖2+‖(I −T )x−(I −T )y‖2 ≤ ‖x−y‖2, for all x , y ∈ H.

Proposition (Nonexpansive properties)

The following are equivalent.

T is firmly nonexpansive.

I − T is firmly nonexpansive.

2T − I is nonexpansive.

T = αI + (1− α)R , for α ∈ (0, 1/2] and some nonexpansive R .

〈x − y ,Tx − Ty〉 ≥ ‖Tx − Ty‖2 for all x , y ∈ H.

Other characterisations.
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Let T : H → H. Then T is:

nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, for all x , y ∈ H.

firmly nonexpansive if

‖Tx−Ty‖2+‖(I −T )x−(I −T )y‖2 ≤ ‖x−y‖2, for all x , y ∈ H.

Nonexpansive properties of projections

Let C1,C2 ⊆ H be closed and convex. Then

PC1 := argminc∈C1
‖ · −c‖ is firmly nonexpansive.

RC1 := 2PC1 − I is nonexpansive.

TC1,C2 :=
1
2 (I + RC2RC1) is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations,
etc. Firmly nonexpansive maps need not be. E.g., Composition of two
projections onto subspace in R

2 (Bauschke–Borwein–Lewis, 1997).
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Tools from Nonexpansive Mapping Theory (cont.)

asymptotically regular if, for all x ∈ H,

‖T n+1
x − T

n
x‖ → 0.

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

Proof. Let z ∈ FixT then, for any x ∈ H, we have

‖T n+1
x − z‖2 + ‖(I − T )(T n

x)‖2

= ‖T (T n
x)− Tz‖2 + ‖(I − T )(T n

x)− (I − T )z‖2 ≤ ‖T n
x − z‖2.

Hence limn→∞ ‖T nx − z‖ exists, and thus ‖(I − T )(T nx)‖ → 0. •
A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let T : H → H be nonexpansive and asymptotically regular with FixT 6= ∅.
Set xn+1 = Txn. Then xn

w.
⇀ x such that x ∈ FixT .

→ Design a non-expansive operator with a useful fixed point set.
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Proof of Opial’s Theorem

Before proving this theorem, we require the following lemma.

Lemma (Demiclosedness)

Let T : H → H be nonexpansive and denote xn := T nx0 for some initial
point x0 ∈ H. Suppose xn

w .
⇀ x and xn − Txn → 0. Then x ∈ FixT .

Proof. Since T is nonexpansive,

‖x − Tx‖2 = ‖xn − Tx‖2 − ‖xn − x‖2 − 2〈xn − x , x − Tx〉
= ‖xn − Txn‖2 + 2〈xn − Txn,Txn − Tx〉+ ‖Txn − Tx‖2

− ‖xn − x‖2 − 2〈xn − x , x − Tx〉
≤ ‖xn − Txn‖2 + 2〈xn − Txn, Txn︸︷︷︸

xn+1

−Tx〉 − 2〈xn − x , x − Tx〉.

Since xn
w .
⇀ x and xn − Txn → 0, it follows that each term tends to 0. •
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Proof of Opial’s Theorem

Proof (Opial’s Theorem). Since T is non-expansive, for any y ∈ FixT ,
we have

‖T n+1x − y‖ ≤ ‖T nx − y‖ ≤ · · · ≤ ‖x − y‖.
Whence the sequence {xn}n∈N is Fejér monotone w.r.t the closed convex
set FixT . By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone
sequences) the sequence {xn}n∈N has at most one weak cluster point in
FixT . To complete the proof it suffices to show: (i) {xn}n∈N has at least
one cluster point; and (ii) that every cluster point of {xn}n∈N is
contained in FixT .

Indeed, as {xn} is bounded, it contains at least one weak cluster point.
Let z be any weak cluster point and denote by {xnk}k∈N a subsequence
weakly convergent to z . Since T is asymptotically regular,

‖xnk − Txnk‖ → 0.

By the Demiclosedness Lemma, z ∈ FixT . This completes the proof. •
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The Douglas–Rachford Algorithm

The basic result which we have proven is the following.

Theorem (Douglas–Rachford ‘56, Lions–Mercier ‘79, Eckstein–Bertsekas ‘92, . . . )

Suppose C1,C2 ⊆ H are closed and convex with non-empty intersection. Given
x0 ∈ H define

xn+1 := TC1,C2xn where TC1,C2 :=
I + RC2RC1

2
.

Then (xn) converges weakly to some x ∈ FixTC1,C2 with PC1x ∈ C1 ∩ C2.

Proof. Since C1 ∩ C2 ⊆ FixTC1,C2 , the latter is non-empty. Thus TC1,C2 is
(firmly) nonexpansive with a fixed point, hence asymptotically regular by the
previous lemma. The result follows from Opial’s Theorem. •

If the intersection is empty the iterates diverge: ‖xn‖ → ∞.

Bauschke–Combettes–Luke (2004): Thorough analysis of convex case.

Hesse et al. & Bauschke et al. (2014): Convergence is strong for
subspaces, and the rate is linear whenever their sum is closed.

Phan (arXiv:1401.6509v3): If dimH < ∞ and riC1 ∩ riC2 6= ∅ then
convergence in linear.
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The Douglas–Rachford Algorithm

The following generalization include potentially empty intersections. Let

V := C1 − C2, v := PV (0), F := C1 ∩ (C2 + v).

Theorem (Bauschke–Combettes–Luke 2004)

Suppose C1,C2 ⊆ H are closed and convex. Given x0 ∈ H define
xn+1 := TC2,C1

xn. Then the following hold.

(a) xn − xn+1 = PC1xn − PC2RC1 → v and PC1xn − PC2PC1 → v .

(b) If C1 ∩ C2 6= ∅ then (xn) converges weakly to a point in

FixTC1,C2 = C1 ∩ C2 + NV (0);

otherwise, ‖xn‖ → +∞.

(c) Exactly one of the following alternatives holds:

(i) F = ∅, ‖PC1xn‖ → +∞ and ‖PC2PC1xn‖ → +∞.
(ii) F 6= ∅, the sequence (PC1xn) and (PC2PC1xn) are bounded and their

weak cluster points are best approximation pairs relative to (C1,C2).
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The Douglas–Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map A : X → R
M

and a point y ∈ R
M has constraints:

C1 := H+, C2 := {x ∈ H : A(x) = y}.

The following theorem gives conditions for norm convergence.

Theorem (Borwein–Sims–Tam 2015)

Let H be a Hilbert lattice, C1 := H+, C2 be a closed affine subspace with
finite codimensions, and C1 ∩ C2 6= ∅. For x0 ∈ H define xn+1 = TC1,C2

xn.
Let Q denote the projection onto the subspace parallel to C2. Then (xn)
converges in norm whenever:

(a) C1 ∩ range(Q) = {0},
(b) Q(C2 − C1) ⊆ C1 ∪ (−C1) and Q(C1) ⊆ C1.

(c) C2 has codimension 1.

For codimension greater than 1?
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Pierra’s Product Space Reformulation

For our constraint sets C1,C2, . . . ,CN ⊆ H we define

D := {(x , x , . . . , x) ∈ HN : x ∈ H}, C :=
N∏

j=1

Cj .

We now have an equivalent two set feasibility problem since

x ∈
N⋂

j=1

Cj ⊆ H ⇐⇒ (x , x , . . . , x) ∈ D ∩ C ⊆ HN .

Moreover the projections onto the new sets can be computed whenever
PC1

,PC2
, . . . ,PCN

. Denote x = (x1, x2, . . . , xN) they are given by

PDx =


 1

N

N∑

j=1

xi




N

and PCx =

N∏

j=1

PCj
xj .
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N∏

j=1

Cj .

We now have an equivalent two set feasibility problem since

x ∈
N⋂

j=1

Cj ⊆ H ⇐⇒ (x , x , . . . , x) ∈ D ∩ C ⊆ HN .

Moreover the projections onto the new sets can be computed whenever
PC1

,PC2
, . . . ,PCN

. Denote x = (x1, x2, . . . , xN) they are given by

PDx =


 1

N

N∑

j=1

xi




N

and PCx =
N∏

j=1

PCj
xj .
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A Many-set Douglas–Rachford Scheme?

A Many-set Douglas–Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the
problem in the original space? i.e., Without recourse to a product space
formulation?

An obvious candidate is the following: Given x0 ∈ H define

xn+1 = TA,B,Cxn where TA,B,C =
I + RCRBRA

2
.

A similar argument shows:

(xn) converges weakly to a point x ∈ FixTA,B,C .

Unfortunately, it is possible that PAx ,PBx ,PCx 6∈ A ∩ B ∩ C .
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A Many-set Douglas–Rachford Scheme?

xn+1 = TA,B,Cxn where TA,B,C =
I + RCRBRA

2
.

Let x0 = (−
√
3,−1) & 2 ≤ α ≤ ∞.

Define constraints:

A := {λ(0, 1) : |λ| ≤ α},
B := {λ(

√
3, 1) : |λ| ≤ α},

C := {λ(−
√
3, 1) : |λ| ≤ α}.

Then A ∩ B ∩ C = {0}.

We have x0 ∈ FixTA,B,C . However,

PAx0,PBx0,PCx0 6= 0.
A

B

C

x0 = RCRBRAx0

0

PAx0

PBx0

PCx0
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A Common Framework

Theorem (Borwein–Tam 2013)

Let C1, . . . ,CN ⊆ H be closed convex sets with nonempty intersection,
let Tj : H → H and denote T := TM . . .T2T1. Suppose the following
three properties hold.

(i) T is nonexpansive and asymptotically regular,

(ii) FixT = ∩M
j=1 FixTj 6= ∅,

(iii) PCj
FixTj ⊆ Cj+1 for each j = 1, . . . ,N.

Then, for any x0 ∈ H, the sequence xn := T nx0 converges weakly to some
x such that PC1x = PC2x = · · · = PCN

x . In particular, PC1x ∈ ⋂N
i=1 Ci .

Proof sketch. Denote CN+1 := C1.

1 (i) + (ii) =⇒ (xn) converges weakly to some x ∈ ∩FixT .

2 (iii) + convex projection inequality yields

〈x − PCj+1
x ,PCj

x − PCj+1
x〉 ≤ 0 for all j
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A Common Framework

To complete the proof observe

1

2

N∑

j=1

‖PCj+1
x − PCj

x‖2

= 〈x , 0〉+ 1

2

N∑

j=1

(
‖PCj+1

x‖2 − 2〈PCj+1
x ,PCj

x〉+ ‖PCj
x‖2
)

=

〈
x ,

N∑

j=1

(PCj
x − PCj+1

x)

〉
−

N∑

j=1

〈PCj+1
x ,PCj

x〉+
N∑

j=1

‖PCj+1
x‖2

=

N∑

j=1

〈
x , (PCj

x − PCj+1
x)
〉
−

N∑

j=1

〈PCj+1
x ,PCj

x − PCj+1
x〉

=
N∑

j=1

〈x − PCj+1
x ,PCj

x − PCj+1
x〉 ≤ 0.

•
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Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each Ti : H → H is firmly nonexpansive and asymptotically
regular. Then TmTm−1 . . .T1 is also asymptotically regular.

The proof can be found in:
H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang.
Compositions and convex combinations of asymptotically regular
firmly nonexpansive mappings are also asymptotically regular, Fixed
Point Theory and Applications 2012, 2012:53.
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Cyclic Douglas–Rachford Method

Corollary (Borwein–Tam 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 := (TCN ,C1TCN−1,CN
. . .TC2,C3TC1,C2)︸ ︷︷ ︸

=:T[1 2 ... N]

xn where TCj ,Cj+1
=

I + RCj+1
RCj

2
.

Then (xn) converges weakly to a point x such that PC1
x = · · · = PCN

x .

Borwein–Tam

(arXiv:1310.2195): Analysed behaviour for empty intersections.

Using Hundal (2004): There exists a hyperplane and convex cone
with nonempty intersection such that convergence is not strong.

Bauschke–Noll–Phan (2014): If dimH < ∞ and ∩N
j=1 riCj 6= ∅ then

convergence is linear.

Bauschke–Noll–Phan (2014): If FixT[1 2 ...N] is bounded linearly
regular and Cj +Cj+1 is closed, for each j , then convergence is linear.
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Three Methods: An Example

Consider the following examples with C2 := 0× R, and

C1 := epi(exp(·) + 1) or epi((·)2 + 1).

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

MAP DR cyclic DR
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Averaged Douglas–Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=
1

N




N∑

j=1

TCj ,Cj+1


 xn where TCj ,Cj+1

=
I + RCj+1

RCj

2
.

Then (xn) converges weakly to a point x such that PC1x = · · · = PCN
x .

Proof sketch. For x0 ∈ H, set x0 = (x0, . . . , x0) ∈ HN . Apply the
theorem to the product-space iteration

xn+1 = PD

(
N∏

i=1

TCi ,Ci+1

)
xn ∈ D ⊆ HN . •
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Cyclically Anchored Douglas–Rachford Method

Choose the first set C1 to be the anchor set, and think of

N⋂

j=1

Cj = C1 ∩




N⋂

j=2

Cj


 .

Theorem (Bauschke–Noll–Phan 2014)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=

N∏

j=2

TC1,Cj
xn where TC1,Cj

=
I + RCj

RC1

2
.

Then (xn) converges weakly to a point x such that PC1
x ∈ ⋂N

j=1 Cj .

Bauschke–Noll–Phan (2014): If dimH < ∞ and ∩N
j=1 riCj 6= ∅ then

convergence is linear.
Bauschke–Noll–Phan (2014): For subspaces, if FixTC1,Cj

is bounded
linearly regular and C1 + Cj is closed then convergence is linear.
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Averaged Anchored Douglas–Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=
1

N − 1




N∑

j=1

TC1,Cj


 xn where TC1,Cj

=
I + RCj

RCi

2
.

Then (xn) converges weakly to a point x such that PC1
x ∈ ⋂N

j=1 Cj .

Proof sketch. Use the product space (as we did for the averaged DR
iteration) up the iteration:

xn+1 = PD

(
N∏

i=1

TC1,Cj

)
xn ∈ D ⊆ HN−1. •
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Commentary and Open Questions

The (classical) Douglas–Rachford method better than theory
suggests performance on non-convex problems. Consequently many
variants and extensions have recently been proposed.

Even in the convex setting there are many subtleties and open
questions.

Norm convergence for realistic moment problems with codimension
greater than 1?

Experimental comparison of the variants needed.
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Exercises

1 Let Tj : H → H be firmly nonexpansive, for j = 1, . . . , r , and define
T := Tr . . .T2 T1. If FixT 6= ∅ show that T is asymptotically regular.

2 Show that the cyclic DR method becomes MAP in certain cases. Hence
find an example where convergence in cyclic DR is only weak.

3 (Hard) Prove or disprove: The Douglas–Rachford algorithm converges in
norm for the moment problem when the affine set has codimension 2.
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4. Non-Convex Douglas–Rachford
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Newcastle in Lonely Planet!
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The Rest is Software

“It was my luck (perhaps my bad luck) to be the world chess champion
during the critical years in which computers challenged, then surpassed,
human chess players. Before 1994 and after 2004 these duels held little
interest.” — Garry Kasparov, 2010

Likewise much of current Optimization Theory.
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Abstract

The Douglas–Rachford iteration scheme, introduced half a century
ago in connection with nonlinear heat flow problems, aims to find a
point common to two or more closed constraint sets.

Convergence is ensured when the sets are convex subsets of a Hilbert
space, however, despite the absence of satisfactory theoretical
justification, the scheme has been routinely used to successfully solve
a diversity of practical optimization or feasibility problems in which
one or more of the constraints involved is non-convex.

As a first step toward addressing this deficiency, we provide
convergence results for a proto-typical non-convex
(phase-recovery) scenario: Finding a point in the intersection of
the Euclidean sphere and an affine subspace.
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a diversity of practical optimization or feasibility problems in which
one or more of the constraints involved is non-convex.

As a first step toward addressing this deficiency, we provide
convergence results for a proto-typical non-convex
(phase-recovery) scenario: Finding a point in the intersection of
the Euclidean sphere and an affine subspace.
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An Interactive Presentation

Much of my lecture will be interactive using the interactive geometry
package Cinderella and the HTML applets

www.carma.newcastle.edu.au/~jb616/reflection.html

www.carma.newcastle.edu.au/~jb616/expansion.html

www.carma.newcastle.edu.au/~jb616/lm-june.html

http://www.cinderella.de/
www.carma.newcastle.edu.au/~jb616/reflection.html
www.carma.newcastle.edu.au/~jb616/expansion.html
www.carma.newcastle.edu.au/~jb616/lm-june.html
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Those Involved

Brailey Sims Fran Aragon

0
Thanks also to Ulli Kortenkamp, Matt Skerritt and Chris Maitland
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Phase Reconstruction

Projectors and Reflectors: PA(x) is the metric projection or nearest point
and RA(x) reflects in the tangent: x is red.

2007 Elser solving
Sudoku with
reflectors.

“All physicists and a good
many quite respectable
mathematics are
contemptuous about proof.”
– G.H. Hardy (1877–1947)

2008 Finding exoplanet
Fomalhaut in Piscis
with projectors.
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The story of Hubble’s 1.3mm error
in the “upside down” lens (1990).

And Kepler’s hunt for exo-planets
(launched March 2009).

We wrote:
“We should add, however, that
many Kepler sightings in particular
remain to be ‘confirmed’. Thus
one might legitimately wonder
how mathematical robust are the
underlying determinations of
velocity, imaging, transiting,
timing, micro-lensing, etc.?

http://experimentalmath.info/blog/2011/

09/where-is-everybody/

http://www.opticsinfobase.org/viewmedia.cfm?uri=OPN-2-4-28&seq=0
http://news.discovery.com/space/kepler-exoplanet-controversy-erupts.html
http://kepler.nasa.gov/
http://experimentalmath.info/blog/2011/09/where-is-everybody/
http://experimentalmath.info/blog/2011/09/where-is-everybody/
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Why Does it Work?

In a wide variety of large hard problems (protein folding, 3SAT, Sudoku) A is non-convex but DR
and “divide and concur” (below) works better than theory can explain. It is:

RA(x) := 2PA(x) − x and x 7→ x + RB (RA(x))

2
.

Consider the simplest case of a line B of height h and the unit circle A. With zn := (xn, yn) the
iteration becomes

xn+1 := cos θn, yn+1 := yn + h − sin θn, (θn := arg zn).

For h = 0: We prove convergence to one of the two points in A ∩ B iff we do not start on the
vertical axis (where we have chaos). For h > 1: (infeasible) it is easy to see the iterates go to
infinity (vertically). For h = 1: We converge to an infeasible point. For h ∈ (0, 1): The pictures
are lovely but proofs escaped us for 9 months. Two representative Maple pictures follow:

An ideal problem for introducing
early undergraduates to research,
with many many accessible ex-
tensions in 2 or 3 dimensions.
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Interactive Phase Recovery in Cinderella

Recall the simplest case of a line B of height h and the unit circle A.
With zn := (xn, yn) the iteration becomes

RA(x) := 2PA(x)− x and x 7→ x + RB (RA(x))

2
.

A Cinderella picture of two steps from (4.2,−0.51) follows:

http://www.carma.newcastle.edu.au/~jb616/reflection.html
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Divide and Concur

Serial (L) & Parallel (R).

To find a point in the intersection of M-sets Ak and in X we can instead
consider the subset A :=

∏M

k=1 Ak and the linear subset

B := {x = (x1, x2, . . . , xM) : x1 = x2 = · · · = xM},

of the product Hilbert space X̃ :=
(∏M

k=1 X
)
. We observe

RA(x) =
M∏

k=1

RAk
(xk),

hence the reflection may be ‘divided’ up and

PB(x) =
(
x1 + x2 + · · ·+ xM

M
, . . . ,

x1 + x2 + · · ·+ xM

M

)
,

so that the projection and reflection on B are averaging (‘concurrences’),
hence the name. In this form the algorithm is suited to parallelization.
We can also compose more reflections in serial—we still observe iterates
spiralling to a feasible point.
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CAS+IGP: The Grief is in the GUI

http://www.carma.newcastle.edu.au/~jb616/expansion.html
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CAS+IGP: The Grief is in the GUI

Accuracy after

taking input

from Maple

Numerical

errors in using

double precision

http://www.carma.newcastle.edu.au/~jb616/expansion.html
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The Route to Discovery

Exploration first in Maple and then in Cinderella (SAGE)

ability to look at orbits/iterations dynamically is great for insight
allows for rapid reinforcement and elaboration of intuition

Decided to look at ODE analogues

and their linearizations
hoped for Lyapunov like results

x
′(t) =

x(t)

r(t)
− x(t), y

′(t) = h − y(t)

r(t)
,

where r(t) :=
√

x(t)2 + y(t)2, is a reasonable
counterpart to the Cartesian formulation
—replacing xn+1 − xn by x ′(t), etc.—as in Figure.

Searched literature for a discrete version

found Perron’s work

http://www.carma.newcastle.edu.au/~jb616/lm-june.html
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The Basis of the Proof

Theorem (Perron)

If f : N× R
m → R

m satisfies

lim
x→0

‖f (n, x)‖
‖x‖ = 0,

uniformly in n and M is a constant n × n matrix all of whose eigenvalues lie
inside the unit disk, then the zero solution (provided it is an isolated solution)
of the difference equation,

xn+1 = Mxn + f (n, xn),

is exponentially asymptotically stable; that is, there exists δ > 0,K > 0 and
ζ ∈ (0, 1) such that ‖x0‖ < δ then ‖xn‖ ≤ K‖x0‖ζn.

In our case:

M =





α2 −α
√
1− α2 0 . . . 0

α
√
1− α2 α2 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




,

and the spectrum of the gradient comprises 0, and α2 ± iα
√
1− α2.
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The Basis of the Proof

Explains spin
for height in
(0, 1)
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What We Can Now Show

Theorem (Borwein–Sims 2009)

For the case of a sphere in n-space and a line of height α (normalized so that we have
x(2) = α, a = e1, b = e2):

(a) If 0 ≤ α < 1 then the Douglas–Rachford scheme is locally convergent at each of
the critical points ±

√
1− α2a+ αb.

(b) If α = 0 and the initial point has x0(1) > 0 then the scheme converges to the
feasible point (1, 0, 0, . . . , 0).

(c) When L is tangential to S at b (i.e., when α = 1), starting from any initial point
with x0(1) 6= 0, the scheme converges to a point yb with y > 1.

(d) If there are no feasible solutions (i.e., when α > 1) then for any non-zero initial
point xn(2) and hence ‖xn‖ diverge at at least linear rate to +∞.

The same result applies to the sphere S and any affine subset B.

For non-affine B things are substantially more complex — even in R2.
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Algorithms Appears to be Stable
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Three and Higher Dimensions

xn+1(1) = xn(1)/ρn,

xn+1(2) = α+ (1− 1/ρn)xn(2), and

xn+1(k) = (1− 1/ρn)xn(k), for k = 3, . . . ,N

where ρn := ‖xn‖ =
√
xn(1)2 + · · ·+ xn(N)2.
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An “Even Simpler” Case

Intersection at
(

1√
2
, 1√

2

)
.

If (xn, yn) ∈ P1 ∪ P2 ∪ P3 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤ 1

2
|(xn, yn − (x∗, y∗)|2.

If (xn, yn) ∈ P4 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤ |(xn, yn − (x∗, y∗)|2.

If (xn, yn) ∈ P5 ∪ P6 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤
(
5

2
−

√
2 +

1

2

√
29− 20

√
2

)

︸ ︷︷ ︸
≈1.51

|(xn, yn − (x∗, y∗)|2.

Ra
nd
om

po
in
ts
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Aragón–Borwein Region of Convergence
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The Search for a Lyapunov Function

Recent progress has been made by Joël Benoist. His idea is to search for a
Lyapunov function V such that ∇V is perpendicular to the DR trajectories.
That is,

〈∇V (xn, yn), (xn−1, yn−1)− (xn, yn)〉 = 0.

Expressing (xn−1, yn−1) is terms of (xn, yn) gives the PDE:

(y − λ)
∂V

∂x
(x , y) +

−λ
√
1− x2 + 1− x2

x

∂V

∂y
(x , y) = 0.

One solution to this PDE is the following:

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.
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The Search for a Lyapunov Function

Denote the solution (x∗, y∗) := (
√
1− h2, h). Recall the Benoist’s

Lyapunov candidate function

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.

In the right half-space it is shown that:

1 (V decreases along DR trajectories): For all ǫ > 0,

sup
‖(x,y)−(x∗,y∗)‖≥ǫ

(V (T (x , y))− V (x , y)) < 0.

2 V (T (x , y)) = V (x , y) if and only if (x , y) = (x∗, y∗).
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1 (V decreases along DR trajectories): For all ǫ > 0,

sup
‖(x,y)−(x∗,y∗)‖≥ǫ

(V (T (x , y))− V (x , y)) < 0.

2 V (T (x , y)) = V (x , y) if and only if (x , y) = (x∗, y∗).
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Global Convergence with a Half-Space Constraint

Consider the two-set feasibility problem given by a closed set Q ⊆ R
m,

and the half-space

H := {x ∈ R
m : 〈a, x〉 ≤ b}.

where b ∈ R, and a ∈ R
m with ‖a‖ = 1.

In this case, the Douglas–Rachford iteration simplifies to

xk+1 =

{
qk if 〈a, 2qk − xk〉 ≤ b,

qk + (〈a, xk〉+ b − 2〈a, qk〉)a otherwise,

where, at each iteration, a point qk ∈ PQ(xk) is selected.

Motivated by experimental evidence, we first consider the case in which
the set Q is finite.
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Global Convergence with a Half-Space Constraint

H

L

x0

q1

q2

q3

q4

Fig. 1 A Douglas–Rachford
iteration in R

2 with the set
Q = {q1, q2, q3, q4} finds a
solution in eight iterations.
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Fig. 2 The alternating projection
algorithm fails to find a solution
for any initial point in the set
P−1
Q (q1) where Q = {q1, q2}.
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Global Convergence with a Half-Space Constraint

Theorem (Aragón Artacho–Borwein–Tam, 2015)

Suppose Q is a compact set. Let {xk} be a Douglas–Rachford sequence
and qk ∈ PQ(xk) for all k ∈ N. Then either:

(i) d(qk ,H) → 0 and the set of cluster points {qk} is non-empty and
contained in Q ∩ H, or

(ii) d(qk ,H) → β for some β > 0 and H ∩ Q = ∅.
Moreover, in the latter case, ‖xk‖ → +∞.

It is worth noting that:
1 The set Q is not assumed to satisfy any (local) regularity properties

(e.g., strongly regular intersection, prox-regularity, . . . ).
2 The behaviour of the method does not depend on how qk is chosen.

The result holds for any choice.
3 The theorem remains true if one assume that the function

x 7→ ιQ(x) + d(x ,H),

has compact lower-level sets.
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Global Convergence with a Half-Space Constraint

This theorem allows us to deduce global convergence of the
Douglas–Rachford method applied to a sphere and a half-space (instead
of an affine line).

Example (Global convergence for the sphere and half-space)

Let Q be the unit sphere and H a half-space in R
2. By symmetry, we

may assume a = (0, 1). Let x0 6= 0 with x0(1) > 0. Then xk(1) > 0 and
qk = xk

‖xk‖ for all k ∈ N, and the iteration becomes

xk+1(1) =
xk (1)

‖xk‖
, xk+1(2) =






xk (2)
‖xk‖

if
(

2
‖xk‖

− 1
)
xk (2) ≤ b,

(
1− 1

‖xk‖

)
xk (2) + b otherwise.

If Q ∩ H 6= ∅ (or equivalently b ≥ −1) then the previous theorem ensures
d(qk ,H) → 0. It then follows that either:

1 qk0 ∈ H ∩ Q for some k0 ∈ N (i.e., a solution is found in finitely
many iterations), or

2 qk(2) → b and hence qk → (
√
1− b2, b) ∈ Q ∩ H.
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Global Convergence with a Half-Space Constraint

Specialising to the finite case, we have the following.

Corollary (Aragón Artacho–Borwein–Tam, 2015)

Suppose Q is finite. Let {xk} be a Douglas–Rachford sequence and
qk ∈ PQ(xk) for all k ∈ N. Then either:

(i) {xk} and {qk} are eventually constant and the limit of {qk} is
contained in H ∩ Q 6= ∅, or

(ii) H ∩ Q = ∅ and ‖xk‖ → +∞.

This corollary explains our previous example.

First global convergence result for the Douglas–Rachford applicable
to discrete/combinatorial constraint sets.

Bauschke & Noll (2014) proved if the constraints are finite unions of
convex sets, then method is locally convergent (in neighbourhoods
of strong fixed points).
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Global Convergence with a Half-Space Constraint

We give one further example from binary linear programming.

Example (Knapsack lower bound feasibility)

The classical 0-1 knapsack problem is the binary program

min {〈c , x〉 | x ∈ {0, 1}n, 〈a, x〉 ≤ b} ,

for vectors a, c ∈ R
m
+ and b ≥ 0.

The 0-1 knapsack lower-bound feasibility problem is the problem with
constraints

H := {x ∈ R
n | 〈a, x〉 ≤ b}, Q := {x ∈ {0, 1}n | 〈c , x〉 ≥ λ},

where λ ≥ 0. As a decision problem it is NP-complete.

Applied to this problem, the corollary shows that the Douglas–Rachford
method either finds a solution in finitely many iterations, or none exists
and the norm of the Douglas–Rachford sequence diverges to infinity.
Note that, in general, PQ usually cannot be computed efficiently.
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Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?

http://www.carma.newcastle.edu.au/~jb616/halfline.html


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?

http://www.carma.newcastle.edu.au/~jb616/halfline.html


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?

http://www.carma.newcastle.edu.au/~jb616/halfline.html


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?

http://www.carma.newcastle.edu.au/~jb616/halfline.html


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?

http://www.carma.newcastle.edu.au/~jb616/halfline.html


Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Exercises

1 (A lemma toward global convergence) The Douglas–Rachford iteration for
the line and circle with α = 1/

√
2. Is given by

xn+1 =
xn

ρn
, yn+1 = α+

(
1− 1

ρn

)
yn = α+ (ρn − 1) sin θn,

where ρn =
√

x2
n + y 2

n and θn = arg(xn, yn). Show if

(x0, y0) ∈ {(x , y) : y ≤ 0 < x},
then yn > 0 for some n ∈ N.

2 (Existence of 2-cycles) Consider the sets

C1 := {(x , y) : x2 + y
2 = 1} and C2 := (x1, 0) : x1 ≤ a}.

Show that for each a ∈ (0, 1) there is a point x such that TC1,C2x 6= x and
T 2

C1,C2
x = x . What happens instead if C2 is merely the singleton {(a, 0)}?

3 Investigate the behavior of the Douglas–Rachford algorithm applied to
two set feasibility problems with one of the sets finite (assume whatever
structure you see fit on the other set).

4 (Very Hard) Complete the guided exercise (next slide) of Benoist’s global
convergence proof
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Guided Exercise: Benoist’s Global Convergence Proof

Consider the Lyapunov candidate function

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.

Let ∆ :=]0, 1]× R and define G : ∆ → ∆ by

G (x , y) := V ◦ T − V ,

where T is the DR operator.

Consider W : [0, 1[×[0, 1[→ R defined using a change of variables on G :

W (u, v) := G (a, b) where u2 = 1− a2 and v2 =
b2

a2 + b2
.
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Guided Exercise: Benoist’s Global Convergence Proof

Prove the following two lemmas.

Lemma 0

Show that W may be expressed as

W (u, v) := A(u)− A(v) +
√
1− u2B(v) +

u2 − h2

2
,

where A(t) := 1+h
2 ln(1 + t) + 1−h

2 ln(1− t)− h,B(t) := t(h−t)√
1−t2

.

Lemma 1

There exists a unique real number µ such that 0 < µ < h: (i) B is
increasing on [0, µ] from 0 to B(µ), and (ii) B is decreasing in [µ, 1[ from
B(µ) to −∞ with B(h) = 0.

Hint: Consider B ′(t).
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Guided Exercise: Benoist’s Global Convergence Proof

Prove the following lemma.

Lemma 2

For all v ∈ [0, 1[, we have W (0, v) < 0.

Hint: Show that

W (0, v) = −1

2
h2 + S(v)h + R(v),

where S(t) := 1
2 ln
(

1−t
1+t

)
+ t√

1−t2
+ t, R(t) : − 1

2 ln(1− t2)− t2√
1−t2

.

Argue that there exists a unique v∗ < 0.8 such that S(v∗) = 1, and
distinguish three cases: (i) v∗ ≤ v < 1, (ii) 0 < v ≤ v∗, and (iii) v = 0.
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Guided Exercise: Benoist’s Global Convergence Proof

Using Lemmas 1 and 2 to prove the following.

Proposition 1.

For all (u, v) ∈ [0, 1[×[0, 1[ we have

W (u, v) ≤ 0 with equality if and only if u = v = h.

Hint: Show that

∂W (u, v)

∂u
> 0 ⇐⇒ B(u) > B(v).

Distinguish four cases: (i) h ≤ v < 1, (ii) µ < v < h, (iii) v = µ, and (iv)
0 ≤ v < µ.



Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Guided Exercise: Benoist’s Global Convergence Proof

Using Proposition 1 prove the following.

Proposition 2.

For all ǫ > 0 we have

sup
(x,y)∈∆(ǫ)

G (x , y) < 0,

where ∆(ǫ) := {(x , y) ∈ ∆ : d((x , y), (
√
1− h2, h)) > ǫ}.

Hint: If sup(x,y)∈∆(ǫ) G (x , y) ≥ 0, use Proposition 1 to argue the
existence of a subsequence such that W (unk , vnk ) = G (xnk , ynk ) → 0 such
that unk , vnk → (u, v) for some u and v .
Distinguish two cases: (i) u 6= 1 and v 6= 1, (ii) u = 1 or v = 1.
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Guided Exercise: Benoist’s Global Convergence Proof

Using Proposition 2 prove the main result.

Theorem (Benoist, 2015)

If (x0, y0) ∈ ∆ then the Douglas–Rachford sequence converges to
(
√
1− h2, h).

Hint: By telescoping, show that

∑

n∈N

G (xn, yn)

converges and deduce G (xn, yn) → 0 which contradicts Proposition 2.
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5. Applications to Matrix Completion
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Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas–Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.

In particular, consider matrix completion in the context of:

1 Positive semi-definite matrices.

2 Stochastic matrices.

3 Euclidean distance matrices, esp. those in protein reconstruction.

4 Hadamard matrices together with their specialisations.

5 Nonograms – a Japanese number “painting” game.

6 Sudoku – a Japanese number game.

The framework is flexible and there are many other actual and potential
applications. Our exposition will highlight the importance of the model.
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Matrix Completion

From herein, we consider H = R
m×n equipped with the trace inner

product and induced (Frobenius) norm:

〈A,B〉 := tr(ATB), ‖A‖F :=
√
tr(ATA) =

√√√√
n∑

j=1

m∑

i=1

a2ij .

A partial matrix is an m × n array for which only entries in certain
locations are known.

A completion of the partial matrix A = (aij) ∈ R
m×n, is a matrix

B = (bij) ∈ R
m×n such that if aij is specified then bij = aij .

Abstractly matrix completion is the following:

Given a partial matrix, find a completion which
belongs to some prescribed family of matrices.
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Matrix Completion: Example

Suppose the partial matrix D = (Dij) ∈ R
4×4 is known to contains the

pair-wise distances between four points x1, . . . , xm ∈ R
2. That is,

Dij = ‖xi − xj‖2.

D =




0 3.1 ? ?
3.1 0 ? ?
? ? 0 4.3
? ? 4.3 0




x1

x2

x3

x4

four points in R
2

−→ Reconstruct D from known entries and a priori information.
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Matrix Completion Preliminaries

It is natural to formulate matrix completions as the feasibility problem:

find X ∈
N⋂

i=1

Ci ⊆ R
m×n.

Let A be the partial matrix to be completed. We (mostly) choose

C1 to be the set of all matrix completions of A.
C2, . . . ,CN s.t. their intersection equals the prescribed matrix family.

Let Ω denote the set of indices for the entry in A is known. Then

C1 := {X ∈ R
m×n : Xij = Aij for all (i , j) ∈ Ω}.

The projection of X ∈ R
m×n onto C1 is given pointwise by

PC1
(X )ij =

{
Aij , if (i , j) ∈ Ω,

Xij , otherwise.

The remainder of the talk will focus on choosing C2, . . . ,CN .
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Positive Semi-Definite Matrices

Denote the symmetric matrices by S
n, and the positive semi-definite

matrices by S
n
+. Our second constraint set is

C2 := S
n
+ = {X ∈ R

n×n : X = XT , yTXy ≥ 0 for all y ∈ R
n}.

The matrix X is a PSD completion of A if and only if X ∈ C1 ∩ C2.

Theorem (Higham 1986)

For any X ∈ R
n×n, define Y = (X + XT )/2 and let Y = UP be a polar

decomposition of Y (i.e., U unitary, P ∈ S
n
+.). Then

PC2(X ) =
Y + P

2
.

An important class of PSD matrices are the correlation matrices.
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Positive Semi-Definite Matrices: Correlation Matrices

For random variables X1,X2, . . . ,Xn, the ij-th entry of the corresponding
correlation matrix contains the correlation between Xi and Xj . This is
incorporated into C1 by enforcing that

(i , i) ∈ Ω with Aii = 1 for i = 1, 2, . . . , n. (4)

Moreover, whenever (4) holds for a matrix its entries are necessarily
contained in [−1, 1].
Apply this formulation for different starting points yields:

X0 := Y . X0 :=
1
2 (Y + Y T ) ∈ S5. X0 := YY T ∈ S5.

Figure. Distribution of entries for correlation matrices generated by
choosing different initial points. Y is a random matrix in [−1, 1]5×5.
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Stochastic matrices

Recall that a matrix A = (Aij) ∈ R
m×n is said to be doubly stochastic if

m∑

i=1

Aij =
n∑

j=1

Aij = 1,Aij ≥ 0. (5)

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

C2 :=

{
X ∈ R

m×n|
m∑

i=1

Xij = 1 for j = 1, . . . , n

}
,

C3 :=



X ∈ R

m×n|
n∑

j=1

Xij = 1 for i = 1, . . . ,m



 ,

C4 := {X ∈ R
m×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}.

The matrix X is a double stochastic matrix completing A if and only if

X ∈ C1 ∩ C2 ∩ C3 ∩ C4.
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Stochastic matrices

C2 :=

{
X ∈ R

m×n|
m∑

i=1

Xij = 1 for j = 1, . . . , n

}
,

C4 := {X ∈ R
m×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}.

Denote e = (1, 1, . . . , 1) ∈ R
m. Since C2 applies to each column

independently, a column-wise formula for PC2
is given by

PE (x) = x +
1

m

(
1−

m∑

i=1

xj

)
e where E := {x ∈ R

m : eT x = 1}.

The projection of X onto C4 is given pointwise by

PC4
(X )ij = max{0,Xij}.

Singly stochastic matrix completion can be consider by dropping C3.

Related work of Thakouda applies Dykstra’s algorithm to a two set
model. The corresponding projections are less straight-forward.
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Hadamard Matrices

A matrix H = (Hij) ∈ {−1, 1}n×n is said to be a Hadamard matrix of
order n if 1

HTH = nI .

A classical result of Hadamard asserts that Hadamard matrices exist only
if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy
to find. For example,

[
1
]
,

[
1 −1
1 1

]
.

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all n ∈ N.

1There are many equivalent characterizations and many local experts.
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Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
– an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

C1 := {X ∈ R
n×n|Xij = ±1 for i , j = 1, . . . , n},

C2 := {X ∈ R
n×n|XTX = nI}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2.

The projection of X on C1 is given by pointwise rounding to ±1.

Proposition (A projection onto C2)

Let X = USV T be a singular value decomposition. Then

√
nUV T ∈ PC2(X ).
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Hadamard Matrices

Let H1 and H2 be Hadamard matrices. We say H1 are H2 are:

Distinct if H1 6= H2,

Equivalent if H2 can be obtained from H1 by performing row/column
permutations, and/or multiplying rows/columns by −1.

For order 4n:

Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

Number of Inequivalent Hadamard matrices is OEIS A00729:

1, 1, 1, 1, 5, 3, 60, 487, 13710027, ...

With increasing order, the number of Hadamard matrices is a faster than
exponentially decreasing proportion of total number of ±1–matrices
(there are 2n

2 ±1–matrices or order n).

http://oeis.org/A206712
http://oeis.org/A007299
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Checking if two Hadamard matrices are equivalent can be cast as a
problem of graph isomorphism (McKay ’79).

In Sage use is isomorphic(graph1,graph2).



Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Hadamard Matrices

We give an alternative formulation. Define:

C1 := {X ∈ R
n×n|Xij = ±1 for i , j = 1, . . . , n},

C3 := {X ∈ R
n×n|XTX = ‖X‖F I}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2 = C1 ∩ C3.

Proposition (A projection onto C3)

Let X = USV T be a singular value decomposition. Then

√
‖X‖FUV T ∈ PC3

(X ).
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1
12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0

A more obvious formulation is can be less effective.
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Skew-Hadamard Matrices

Recall that a matrix X ∈ R
n×n is skew-symmetric if XT = −X . A

skew-Hadamard matrix is a Hadamard matrix H such that (I − H) is
skew-symmetric. That is,

H + HT = 2I .

Skew-Hadamard matrices are of interest, for example, in the construction
of various combinatorial designs. The number of inequivalent
skew-Hadamard matrices of order 4n is OEIS A001119 (for n = 2, 3, . . . ):

1, 1, 2, 2, 16, 54, . . .

It is convenient to redefine the constraint C1 to be

C1 = {X ∈ R
n×n|X + XT = 2I , Xij = ±1 for i , j = 1, . . . , n}.

A projection of X onto C1 is given pointwise by

PC1(X ) =

{
−1 if i 6= j and Xij < Xji ,

1 otherwise.

http://oeis.org/A001119
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Skew-Hadamard Matrices

Table: Number of skew-Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1
12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1
12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2

Adding constraints can help.
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Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to
the constraints:

Each row contains the numbers 1 through 9 exactly once.

Each column contains the numbers 1 through 9 exactly once.

Each 3× 3 sub-block contains the numbers 1 through 9 exactly once.

Figure. An incomplete Sudoku (left) and its unique solution (right).

The Douglas–Rachford algorithm applied to the natural integer
feasibility problem fails (exception: n2 × n2 Sudokus where n = 1, 2).
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Sudoku Puzzles: A Binary Model5

Let E = {ej}9j=1 ⊂ R
9 be the standard basis. Define X ∈ R

9×9×9 by

Xijk =

{
1 if ijth entry of the Sudoku is k ,
0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any X ∈ ⋂5
i=1 Ci .

5Veit Elser was the first to realise the usefulness of this binary formulation for
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Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by C ⊂ R
m the set of all vector whose entries are permutations of

c1, c2, . . . , cm ∈ R. Then for any x ∈ R
m,

PCx = [C]x ,

where [C]x is the set of vectors y ∈ C such that ith largest index of y
has the same index in y as the ith largest entry of x , for all indices i .

[C]x be computed efficiently using sorting algorithms.

Choosing c1 = 1 and c2 = · · · = cm = 0 gives2

PEx = {ei : xi = max{x1, . . . , xm}}.

Formulae for PC1
,PC2

,PC3
and PC4

easily follow.

PC5
is given by setting the entries corresponding to those in the

incomplete puzzle to 1, and leaving the remaining untouched.
2A direct proof of this special case appears in Jason Schaad’s Masters thesis.
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Sudoku Puzzles:Algorithm Details

1 Initialize: x0 := (y , y , y , y , y) ∈ D for some random y ∈ [0, 1]9×9×9.

2 Iteration: By setting

xn+1 := TD,Cxn =
xn + RCRDxn

2
.

3 Termination: Either if a solution is found, or 10000 iteration have
been performed. More precisely, round(PDxn) (PDxn pointwise
rounded to the nearest integer) is a solution if

round(PDxn) ∈ C ∩ D.

Taking round(·) is valid since the solution is binary.
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Sudoku Puzzles: An Experiment

We consider the following test libraries frequently used by programmers
to test their solvers.

1 Dukuso’s top95 and top1465.

2 First 1000 puzzles from Gordan Royle’s minimum Sudoku – puzzles
with 17 entries (the best known lower bound on the entries required
for a unique solution).

3 reglib-1.3 – 1000 test puzzle suited to particular human style
techniques.

4 ksudoku16 and ksudoku25 – a collection around 30 instances
(various difficulties) generated with KSudoku. Contains larger
16× 16 and 25× 25 puzzles.3

3Generating “hard” instances is a difficult problem.
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Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas–Rachford method
top95 top1465 reglib-1.3 minimal1000 ksudoku16 ksudoku25
86.53 93.69 99.35 99.59 92 100

If a instance was solved, the solution was usually found within the
first 2000 iterations.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku4 cannot be solved reliably (20.2% success rate) by
the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Other “difficult” Sudoku puzzles do
not cause the Douglas–Rachford
method any trouble.

AI escargot = 98.5% success
rate.

Figure. Distance to the solution by iterations

4This is a modified version of an example due to Veit Elser.
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Other “difficult” Sudoku puzzles do
not cause the Douglas–Rachford
method any trouble.

AI escargot = 98.5% success
rate.

Figure. Distance to the solution by iterations

4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single entry
is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any single
entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Is the Douglas–Rachford method hindered by
an abundance of ‘near’ solutions?
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Computational Results: Performance Comparison

We compared the Douglas–Rachford method to the following solvers:

1 Gurobi binary program – Solves the same binary model using integer
programming techniques.

2 YASS (Yet another Sudoku solver) – First applies a reasoning
algorithm to determine possible candidates for each empty square. If
this does not completely solve the puzzle, a deterministic recursive
algorithm is used.

3 DLX – Solves an exact cover formulation using the Dancing Links
implementation of Knuth’s Algorithm X (non-deterministic,
depth-first, back-tracking).

Table. Average Runtime (seconds).5

top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25
DR 1.432 0.279 0.509 5.064 4.011

Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -

5Some solvers are only designed to handle 9× 9 puzzles.
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Nonograms

A nonogram puzzle consists of a blank m × n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

1 Each pixel must be either black or white.

2 If a row (resp. column) has a cluster-size sequences s1, . . . , sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
si black pixels.

1

2 4 1 2 2

2 3 1 1 5 4 1 5 2 1

1 2

2

1

1

2

2 4

2 6

8

1 1

2 2
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Nonograms

We model nonograms as a binary feasibility problem. The m × n grid is
represented as a matrix A ∈ R

m×n with

A[i , j ] =

{
0 if the (i , j)-th entry of the grid is white,
1 if the (i , j)-th entry of the grid is black.

Let Ri ⊂ R
m (resp. Cj ⊂ R

n) denote the set of vectors having
cluster-size sequences matching row i (resp. column j). The constraints
are:

C1 = {A : A[i , :] ∈ Ri for i = 1, . . . ,m},
C2 = {A : A[:, j ] ∈ Cj for j = 1, . . . , n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

A ∈ C1 ∩ C2.
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Nonograms: Computational Results

From 1000 random replications, the following nonograms were solved in
every instance.

0 2 4 6 8

0

2

4

6

8

0 5 10 15
0
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15

0 2 4 6 8 10 12 14
0
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A spaceman. A dragonfly. A moose.
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A parrot. The number π. “Hello from CARMA”.
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Nonograms: Computational Details

Computing the projections onto C1 and C2 is difficult.

We do not know an efficient way to do so.

Our approach: Pre-compute all legal cluster size sequences (slow).

Only a few Douglas–Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections
but require many more iterations.

This suggests the following:

Trade-off between simplicity of projection operators and the number
of iterations required.
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Nonograms: An example

Iteration: 0 (random initialisation)
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Nonograms: An example

Iteration: 1
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Nonograms: An example

Iteration: 2
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Nonograms: An example

Iteration: 3
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Nonograms: An example

Iteration: 4
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Nonograms: An example

Iteration: 5
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Nonograms: An example

Iteration: 6 (solved)
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GCHQ’s 2015 Christmas Puzzle

5Kudos to Veit Elser who made us aware of the puzzle.
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GCHQ’s 2015 Christmas Puzzle

======== DR Nonogram Solver ========

Precomputing row/column clusters...

Precomputing done!

Time spent precomputing: 33.9s

Running DR...

Solution found!

Iterations: 10

Time spent running DR: 9.9s

Total time: 43.8s

====================================
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GCHQ’s 2015 Christmas Puzzle

The solution is a QR code which directs to the following website.
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Protein Conformation Determination and EDMs

Proteins are large biomolecules comprising of multiple amino acid chains.

Generic amino acid Myoglobin

They participate in virtually every cellular process, and knowledge of
structural conformation gives insights into the mechanisms by which they
perform.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6Å). For 1PTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dij) ∈ R
m×m is a Euclidean distance matrix (EDM) if there

exists points p1, . . . , pm ∈ R
q such that

Dij = ‖pi − pj‖2.

When this holds for points in R
q, we say that D is embeddable in R

q.

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in R
s where s := 3,

knowing only short inter-atomic distances.
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A Feasibility Problem Formulation

Denote by Q the Householder matrix defined by

Q := I − 2vvT

vT v
,where v =

[
1, 1, . . . , 1, 1 +

√
m
]T ∈ R

m.

Theorem (Hayden–Wells 1988)

A nonnegative, symmetric, hollow matrix X , is a EDM iff X̂ ∈ R
(m−1)×(m−1) in

Q(−X )Q =

[
X̂ d

dT δ

]
(∗)

is positive semi-definite (PSD). In this case, X is embeddable in R
q where

q = rank(X̂ ) ≤ m − 1 but not in R
q−1.

Let D denote the partial EDM (obtained from NMR), and Ω ⊂ N×N the
set of indices for known entries. The problem of low-dimensional EDM
reconstruction can thus be case as a feasibility problem with constraints:

C1 = {X ∈ R
m×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ R
m×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.
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A Feasibility Problem Formulation

Recall the constraint sets:

C1 = {X ∈ R
m×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ R
m×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.

Now,

C1 is a convex set (intersection of cone and affine subspace).

C2 is convex iff m ≤ 2 (in which case C2 = R
m×m).

For interesting problems, C2 is never convex.
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Computing Projections and Reflections

Recall the constraint sets:

C1 = {X ∈ R
m×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ R
m×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.

The projection onto C1 is given (point-wise) by

PC1
(X )ij =

{
Dij if (i , j) ∈ Ω,

max{0,Xij} otherwise.

The projection onto C2 is the set

PC2
(X ) =

{
−Q

[
Ŷ d

dT δ

]
Q : Q(−X )Q =

[
X̂ d

dT δ

]
,

X̂ ∈ R(m−1)×(m−1),
d ∈ Rm−1, δ ∈ R,

Ŷ ∈ PS3
X̂

}
,

where Ss is the set of PSD matrices of rank s or less.

Computing PSs
(X̂ ) = spectral decomposition → threshold eigenvalues.
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The Algorithmic Approach

The reconstruction approach can be summarised as follows:

Reconstruct
EDM using

Douglas–Rachford

Convert EDM
to points in R

3

Partial EDM

Random
initialization

Draw using
Swiss-PdbViewer6

1http://spdbv.vital-it.ch/
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Experiment: Six Test Proteins

Experiment: We consider the simplest realistic protein conformation
determination problem.

NMR experiments were simulated for proteins with known conformation
by computing the partial EDM containing all inter-atomic distances < 6Å.

Table: Six proteins from the RCSB Protein Data Bank.7

Protein # Atoms # Residues Known Distances

1PTQ 404 50 8.83%
1HOE 581 74 6.35%
1LFB 641 99 5.57%
1PHT 988 85 4.57%
1POA 1067 118 3.61%
1AX8 1074 146 3.54%

2http://www.rcsb.org/



Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein Problem Size Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7) 0.02 (0.02) 0.08 (0.09)
1HOE 168,490 -72.7 (-69.3) 0.19 (0.26) 2.88 (5.49)
1LFB 205,120 -47.6 (-45.3) 3.24 (3.53) 21.68 (24.00)
1PHT 236,328 -60.5 (-58.1) 1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1) 34.09 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-43.5) 9.69 (10.36) 58.55 (62.65)

The reconstructed EDM is compared to the actual EDM using:

Relative error (decibels) = 10 log10

(‖PAxn − PBRAxn‖2
‖PAxn‖2

)
.

The reconstructed points in R3 are then compared using:

RMS Error =

(
m∑

k=1

‖zk − zactualk ‖2
)1/2

, Max Error = max
k=1,...,m

‖zk − zactualk ‖,

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins

1HOE (actual) 1LFB (actual) 1POA (actual)
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Experiment: Six Test Proteins

1HOE (actual) 1LFB (actual) 1POA (actual)

1HOE (-72.7dB) 1LFB (-60.5dB) 1POA (-49.3dB)

1HOE is good, 1LFB is mostly good, and 1POA has two good pieces.
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Experiment: Six Test Proteins

Let’s take a closer look at the bad 1POA reconstructions.
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Experiment: Six Test Proteins

Let’s take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.
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Experiment: Six Test Proteins

Let’s take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.

The reconstructed protein’s clusters splits actual conformation nicely
in two ’halves’.
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Experiment: A Better Stopping Criterion?

Optimising our implementation gave a ten-fold speed-up. We performed
the following experiment:

Figure: Relative error by iterations (vertical axis logarithmic).

For < 5, 000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

Early termination to blame? −→ Terminate when error < −100dB.



Introduction and Outline Convex Feasibility Problems Convex Douglas–Rachford Non-Convex Douglas–Rachford Applications to Matrix Completion

A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB
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A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps, -100dB (perfect!)

Similar results observed for the other test proteins.
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