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For Spring School on Function Spaces and Lineability 2015, click here

participate?

- Antoine de Saint-Exupery

Dear Colleague,

Following a longstanding tradition, the Faculty of Mathematics and Physics, Charles University in
Prague and the Academy of Seiences of the Czech Republic will organize the Spring School on
Variational Analysis V1. The School will be held in Paseky nad Jizerou, in a chalet in the Krkonose
Mountains, April 19 - 25, 2015,

The program will consist of series of lectures on
Variational Analysis
and its Applications
delivered by
[ Jonathan M. Borwein
The University of Newcastle, Australia

Theory and Applications of Convex and Non-convex Feasibility
_Problems

Maridn Fabian
Academy of Sciences of the Czech Republic, Prague, Czech Republic
Separable Reductions and Rich Families in Theory of Fréchet
Subdifferentials

Alexander Ioffe
Technion, Haifa, Israel
Variational Analysis and Optimization Theory

David Russell Luke
Georg-August-Universitat Géttingen, Germany.
Variational Methods in Numerical Analysis

The purpose of this meeting is to bring together researchers with common interest in the field. There
will be opportunities for informal discussions. Graduate students and others beginning their
mathematical career are encouraged to participate.
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Introduction

A feasibility problem requests solution to the problem

N
Find x € ()G,

i=1

where Gy, Gy, ... Cy are closed sets lying in a Hilbert space .
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where Gy, Gy, ... Cy are closed sets lying in a Hilbert space .

We consider iterative methods based on the non-expansive properties of
the metric projection operator

Pc(x) := argmin_c¢||x — c|

or reflection operator R¢c := 2P¢ — | on a closed convex set C.
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Introduction

A feasibility problem requests solution to the problem

N
Find x € ()G,

i=1

where Gy, Gy, ... Cy are closed sets lying in a Hilbert space .

We consider iterative methods based on the non-expansive properties of
the metric projection operator

Pc(x) := argmin_c¢||x — c|

or reflection operator R¢c := 2P¢ — | on a closed convex set C.

The two methods which we focus are on the method of alternating
projections (MAP) and the Douglas—Rachford method (DR).
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These methods work best when the projection on each set C; is easy to
describe or approximate. These methods are especially useful when the
number of sets involved is large as the methods are fairly easy to
parallelize.

The theory is pretty well understood when all sets are convex but much
less clear in the non-convex case. But as we shall see application of this
case has had may successes. So this is a fertile area for both pure and
applied study.
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Introduction

These methods work best when the projection on each set C; is easy to
describe or approximate. These methods are especially useful when the
number of sets involved is large as the methods are fairly easy to
parallelize.
The theory is pretty well understood when all sets are convex but much
less clear in the non-convex case. But as we shall see application of this
case has had may successes. So this is a fertile area for both pure and
applied study.
The five hours of lectures will cover the following topics.

@ Feasibility problems: convex theory, nonexpansivity, Fejér monotonicity

& convergence of MAP and variants.

The Douglas—Rachford Method: convex Douglas—Rachford iterations
and variants.

(2]

© Non-convex Douglas Rachford iterations and iterative geometry.

© Applications to completion problems: an introduction & detailed case
studies.

@ Each lecture will contain closing commentary, open questions, and
exercises.
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Motivation

The need to integrate and iterate real theory with real models for real
applications:

@ Good theoretical understanding

- you can not use what you do not know
- you can work inductively

@ Careful modelling of applications

- the model matters especially in the nonconvex case
- moving to application specific refinements

@ Good implementations

- starting with ‘general purpose agents’
- moving to application specific refinements
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WANT TO ISITAN INCOMPLETE VERSION
OF OUR WEBSITE. WHERE YOU CANT ZDOM?

DOWNLOAD DUR APP!

NO BUT ASK ME
AGAIN EYERY TIME

THE COWLATZ CONJECTORE STATES THAT IF YOU
PICK ANUMBER, AND IF ITSEVEN DIVIDE 1TBY
TWO AND IF 1T 0DD MULTIPLY IT BY THREE AND
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Lectures are available online at:

http://carma.newcastle.edu.au/DRmethods/paseky.html
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This lecture is based on Chapter 4.5: Convex Feasibility Problems
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Abstract

Let X be a Hilbert space and let C,,n=1,..., N be convex closed
subsets of X. The convex feasibility problem is to find some point
N
X € ﬂ Ch,
n=1

when this intersection is non-empty.
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Abstract

Let X be a Hilbert space and let C,,n=1,..., N be convex closed
subsets of X. The convex feasibility problem is to find some point

N
X € ﬂ Ch,
n=1

when this intersection is non-empty.

In this talk we discuss projection algorithms for finding such a feasibility
point. These algorithms have wide ranging applications including:

solutions to convex inequalities,

minimization of convex nonsmooth functions,
medical imaging,

computerized tomography, and

electron microscopy
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Projections

We start by defining projection to a closed convex set and its basic
properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then
for any x € X, there exists a unique element X € C such that

|Ix — x|| = d(C; x).
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Projections

We start by defining projection to a closed convex set and its basic
properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then
for any x € X, there exists a unique element X € C such that

lIx — x|| = d(C; x).

Proof. If x € C then X = x satisfies the conclusion. Suppose that

x ¢ C. Then there exists a sequence x; € C such that

d(C; x) =lim; o ||x — x;||. Clearly, x; is bounded and therefore has a
subsequence weakly converging to some X € X.
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Since a closed convex set is weakly closed (Mazur's Theorem), we have
x € C and d(C;x) = ||x — x||. We show such X is unique. Suppose that
z € C also has the property that d(C; x) = ||[x — z||. Then for any

t € [0,1] we have tx + (1 — t)z € C. It follows that

d(C;x) Ix = (tx+ (1 = )2)[| = [[t(x = %) + (1 = £)(x = 2]

<

< tlx =X+ (1 = t)]x = z[] = d(C; x).

That is to say

t—=|x—z—t(x—2)>=|x—z|* = 2t{x — z,x — z) + t?||x — z||?

is a constant mapping, which implies X = z. ®
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Projections

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then
for any x € X, x € C is a nearest point to x if and only if

x —x € N(C; x).
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Projections

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then
for any x € X, x € C is a nearest point to x if and only if

x —x € N(C; x).

Proof. Noting that the convex function f(y) = ||y — x||?/2 attains a
minimum at X over set C, this directly follows from the
Pshenichnii—-Rockafellar condition (Theorem 4.3.6):

0 € Of(X) + N(C; ).
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Projections

Geometrically, the normal cone characterization is:

X1
(o)

x—Xx€N(C;x) <= (x—Xx,c—Xx) <0 forall ceC.
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Projections

Geometrically, the normal cone characterization is:

0 € [r/2,7]

x—Xx€N(C;x) <= (x—Xx,c—Xx) <0 forall ceC.
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Projections

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X. For
any x € X the unique nearest point y € C is called the projection of x on
C and we define the projection mapping Pc by Pcx = y.
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Projections

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X. For
any x € X the unique nearest point y € C is called the projection of x on
C and we define the projection mapping Pc by Pcx = y.

We summarize some useful properties of the projection mapping in the
next proposition whose elementary proof is left as an exercise.

Proposition 4.5.4 (Properties of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X. Then
the projection mapping Pc has the following properties.

(i) for any x € C, Pcx = x;
(11) P% = Pc;
(iii) for any x,y € X, ||Pcy — Pcx|| < ||y — x||.
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Projections

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X.
Define

f(x) :sup{<x,y> - @ ‘y € C}.

Then f is convex, Pc(x) = f’(x), and therefore P¢ is a monotone
operator.
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Projections

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X.
Define

f(x) :sup{<x,y> - @ ‘y € C}.

Then f is convex, Pc(x) = f’(x), and therefore P¢ is a monotone
operator.

Proof. It is easy to check that f is convex and

f(x) = %(IIXH2 = |lx = Pe(x)II?)-

We need only show Pc(x) = f/(x).
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Fix x € X. For any y € X we have

[(x+y) = Pcx + ) < [[(x +y) = Pc()ll,

le]

A

I + yII* = 2(x + y, Pc(x)) + [|Pc(x)|®
Ix + 11?4+ lx = PeCOII* = lIx]?

2(y, Pc(x)),

hence f(x + y) — f(x) — (Pc(x),y) > 0. On the other hand, since

[Ix = Pl < [lx = Pe(x + y)|| we get

fix+y) = f(x) = (Pc(x),y)

[(x+y) = Pc(x+y)|®

(v, Pc(x 4 y) — Pc(x))
llyll x [[Pc(x +y) = Pc(x)l|
llyll?,

VAN VANVAN

which implies Pc(x) = f'(x). °
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Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two convex sets. Let
X be a Hilbert space and let C and D be two closed convex subsets of
X. Suppose that C N D # (). Define a function

f(c,d) = %Hc —d|? + ve(c) + tp(d).
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Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two convex sets. Let
X be a Hilbert space and let C and D be two closed convex subsets of
X. Suppose that C N D # (). Define a function

fc, d) = %Hc —d|? + 1c(e) + tn(d).

We see that f attains a minimum at (,d) if and only if ¢ =d € C N D.
Thus, the problem of finding a point in C N D becomes one of
minimizing function f.
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Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two convex sets. Let
X be a Hilbert space and let C and D be two closed convex subsets of
X. Suppose that C N D # (). Define a function

fc, d) = %Hc —d|? + 1c(e) + tn(d).

We see that f attains a minimum at (,d) if and only if ¢ =d € C N D.
Thus, the problem of finding a point in C N D becomes one of
minimizing function f.

We consider a natural descending process for f by alternately minimizing
f with respect to its two variables. More concretely, start with any
Xp € D. Let x; be the solution of minimizing

x = f(x,%0).
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Projection Algorithms as Minimization Problems

It follows from Theorem 4.5.2. that
xo —x1 € N(C;x1).
That is to say x1 = Pcxp. We then let x> be the solution of minimizing
x = f(x, x).

Similarly, x» = Ppxi. In general, we define

Pcx; 1 is even,
Xi+1 = .. (1)
Ppx; i is odd.

This algorithm is a generalization of the classical von Neumann projection
algorithm for finding points in the intersection of two subspaces.

We will show that in general x; weakly converge to a point in C N D and when
int(C N D) # 0 we have norm convergence.
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Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X
and let T: C — X. We say that T is nonexpansive provided that
[Tx =Tyl < llx =yl
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Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X
and let T: C — X. We say that T is nonexpansive provided that

[Tx = Tyl < lIx =yl

Definition 4.5.7 (Attracting Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and
let T: C — C be a nonexpansive mapping. Suppose that D is a closed
nonempty subset of C. We say that T is attracting with respect to D if for
every x € C\D and y € D,

ITx =yl < lx =yl

We say that T is k-attracting with respect to D if for every x € C\D and
y € D,
2 2 2
klix = Tx|I” < llx = y[I” = [ Tx =y~
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Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then
Pc: X — X is 1-attracting with respect to C.
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Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then
Pc: X — X is 1-attracting with respect to C.

Proof. Let y € C. We have

(x = Pcx,x + Pcx — 2y)

= (x—Pcx,x — Pcx+2(Pcx — y))
x — Pex||? + 2(x — Pcx, Pex — y)
[x — Pex|?.

Ix = ¥ = 1Pex = yII?

V
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Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then
Pc: X — X is 1-attracting with respect to C.

Proof. Let y € C. We have

(x = Pcx,x + Pcx — 2y)

= (x—Pcx,x — Pcx+2(Pcx — y))
x — Pex||? + 2(x — Pcx, Pex — y)
[x — Pex|?.

Ix = ¥ = 1Pex = yII?

V

Note that if T is attracting (k-attracting) with respect to a set D, then
it is attracting (k-attracting) with respect to any subset of D.
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Attracting Mappings and Fejér Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (x;) be a
sequence in X. We say that (x;) is Fejér monotone with respect to C if
Ixiv1 —c|]| < ||xi —c||, forallce Candi=1,2,...
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Attracting Mappings and Fejér Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (x;) be a
sequence in X. We say that (x;) is Fejér monotone with respect to C if
Ixiv1 —c|]| < ||xi —c||, forallce Candi=1,2,...

Next we summarize properties of Fejér monotone sequences.

Theorem 4.5.10 (Properties of Fejér Monotone Sequences)

Let X be a Hilbert space, let C be a closed convex set and let (x;) be a
Fejér monotone sequence with respect to C. Then

(i) (x;) is bounded and d(C; x;+1) < d(C; x;).
(ii) (x;) has at most one weak cluster point in C.
I

(iii) If the interior of C is nonempty then (x;) converges in norm.

)
(iv) (Pcx;) converges in norm.
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Proof. (i) is obvious.
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Proof. (i) is obvious.
Observe that, for any ¢ € C the sequence (||x; — c||*) converges and so
does

(IIxi* = 2(x;, c))- ()

Now suppose ¢, ¢; € C are two weak cluster points of (x;). Letting c in
(2) be ¢; and ¢, respectively, and taking limits of the difference, yields
(c1,¢c1 — @) = (e, c1 — p) so that ¢; = ¢, which proves (ii).
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Proof. (i) is obvious.
Observe that, for any ¢ € C the sequence (||x; — c||*) converges and so
does

(IIxi* = 2(x;, c))- ()

Now suppose ¢, ¢; € C are two weak cluster points of (x;). Letting c in
(2) be ¢; and ¢, respectively, and taking limits of the difference, yields
(c1,¢c1 — @) = (e, c1 — p) so that ¢; = ¢, which proves (ii).

To prove (iii) suppose that B,(c) C C. For any x;;1 # x;, simplifying

Xi+1 — Xi \ 12 Xitdl T X0y
xie1 = (€ = h ) |2 < lxi = (e — b
P ( l|Xip1 — x,||)” < b ( [[Xir1 — X:||)||

we have
2h||xi41 — xi|| < |lxi = cll* = |Ixie1 — <.
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For any j > i, adding the above inequality from / to j — 1 yields
2hllx — x| < [ — cl|* = | — cll.

Since (||x; — c||?) is a convergent sequence we conclude that (x;) is a
Cauchy sequence.
Finally, for natural numbers i, j with j > i, apply the parallelogram law
la— b]I> = 2[|a]|* + 2||b]|* — [|a + b]|* to a := Pcx; — x; and
b := Pcx; — x; we obtain
[Pexj — Pexil|? = 2[[Pexp — xil|* + 2] Pexi — x|
_ 4HM _ XJH2

< 2[|Pexj = xil|* + 2|[Pexi — x|

— 4l|Pex; — x®

< 2|[Pexi — xjl|* = 2[|Pexj — x|

< 2)/Pexi — xll2 — 20| Pox; — 5
We identify (Pcx;) as a Cauchy sequence, because
(I[xi = Pexil|) converges by (i). °
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Attracting Mappings and Fejér Sequences

The following example shows the first few terms of a sequence {x,}
which is Fejér monotone with respect to C = G; N G,.

G

Tx3 X1

G o

.XO
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Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (x;) in X is asymptotically
regular if

_Iim ||X,' - X,'+1H =0.
11— 00



Convex Feasibility Problems
L]

Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (x;) in X is asymptotically
regular if

_Iim ||X,' - X,'+1H =0.
11— 00

Lemma 4.5.11 (Asymptotical Regularity of Projection Algorithm)

Let X be a Hilbert space and let C and D be closed convex subsets of X.
Suppose C N D = (). Then the sequence (x;) defined by the projection
algorithm

Pcx; i is even,
Xit1 = ..
Ppx; i is odd.

is asymptotically regular.
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Proof. By Lemma 4.5.8 both Pc and Pp are l-attracting with respect
to CND. Let y € CND. Since xj;1 is either Pcx; or Ppx; it follows that

Ixi+1 = xill* < I = y 12 = lIxisa = v

Since (||x; — y||?) is a monotone decreasing sequence, therefore the
right-hand side of the inequality converges to 0 and the result follows. ®
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Convergence of Projection Algorithms

Now, we are ready to prove the convergence of the projection algorithm.

Theorem 4.5.12 (Convergence for Two Sets)

Let X be a Hilbert space and let C and D be closed convex subsets of X.
Suppose CN D # O (int(C N D) # 0). Then the projection algorithm

Pcx; i is even,
Xit1 = ..
Ppx; i is odd.

converges weakly (in norm) to a point in C N D.
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Proof. Let y € CN D. Then, for any x € X, we have

[Pcx =yl = [[Pcx = Pyl < [lx —yl|,  and
1Pox = yll = [Pox = Poy|| < [Ix =yl

Since x;;1 is either Pcx; or Ppx; we have that
[xit1 =yl < lIxi =y

That is to say (x;) is a Fejér monotone sequence with respect to C N D.
By item (i) of Theorem 4.5.10 the sequence (x;) is bounded, and
therefore has a weakly convergent subsequence. We show that all weak
cluster points of (x;) belong to C N D. In fact, let (x;, ) be a subsequence
of (x;) converging to x weakly.
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Taking a subsequence again if necessary we may assume that (x;,) is a
subset of either C or D. For the sake of argument let us assume that it is
a subset of C and, thus, the weak limit x is also in C. On the other hand
by the asymptotical regularity of (x;) in Lemma 4.5.11 (Ppx;, ) = (Xj+1)
also weakly converges to x. Since (Ppx;,) is a subset of D we conclude
that x € D, and therefore x € C N D. By item (ii) of Theorem 4.5.10
(xi) has at most one weak cluster point in C N D, and we conclude that
(x;) weakly converges to a point in C N D. When int(CN D) # 0 it
follows from item (iii) of Theorem 4.5.10 that (x;) converges in norm. ®
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Convergence of Projection Algorithms

Whether the alternating projection algorithm converged in norm without
the assumption that
int(C N D) # 0,

or more generally of metric regularity, was a long-standing open problem.
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Convergence of Projection Algorithms

Whether the alternating projection algorithm converged in norm without
the assumption that
int(C N D) # 0,

or more generally of metric regularity, was a long-standing open problem.

Recently Hundal constructed an example showing that the answer is
negative [5].

The proof of Hundal's example is self-contained and elementary.
However, it is quite long and delicate, therefore we will be satisfied in

stating the example.
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Convergence of Projection Algorithms

Example 4.5.13 (Hundal)

Let X =45 and let {e; | i =1,2,...} be the standard basis of X. Define
v: [0, +00) — X by

v(r) := exp(—100r3)e; + cos ((r=1[rh7/2) €[]+2 +sin ((r— [r])7r/2)e[,]+3,

where [r] signifies the integer part of r and further define

C = {e;}* and D = conv{v(r) | r > 0}.

Then the hyperplane C and cone D satisfies C N D = {0}.
However, Hundal's sequence of alternating projections x; given by

Xiy1 = PpPcx;

starting from xo = v(1) (necessarily) converges weakly to 0, but not in
norm.
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Convergence of Projection Algorithms

A related useful example is the moment problem.

Example 4.5.14 (Moment Problem)

Let X be a Hilbert lattice! with lattice cone D = X*. Consider a linear
continuous mapping A from X onto R". The moment problem seeks the
solution of A(x) =y € RN x € D.

Define C = A~1(y). Then the moment problem is feasible iff
CnD#0.

A natural question is whether the projection algorithm converges in
norm.

This problem is answered affirmatively in [1] for N = 1 yet remains open
in general when N > 1.

LAIl Hilbert lattices are realized as Ly(€2, 11) in the natural ordering for some
measure space.
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Projection Algorithms for Multiple Sets

We now turn to the general problem of finding some points in

N
) G
n=1
where C,, n=1,..., N are closed convex sets in a Hilbert space X.
Let a,, n=1,..., N be positive numbers. Denote

XNV = {x=(xi,%0,...,xn) | Xa € X,n=1,...,N}

the product space of N copies of X with inner product

N

<X>Y> = Zan<xna)/n>'

n=1

Then X"V is a Hilbert space.
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Projection Algorithms for Multiple Sets

Define

Then C and D are closed convex sets in XV and

N
x € ﬂCn <~ (x,x,...,x) € CND.

n=1
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Projection Algorithms for Multiple Sets

Define

Then C and D are closed convex sets in XV and

N
x € ﬂCn <~ (x,x,...,x) € CND.

n=1

Applying the projection algorithm (1) to the convex sets C and D defined
above we have the following generalized projection algorithm for finding
some points in

as we shall now explain.
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Projection Algorithms for Multiple Sets
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Projection Algorithms for Multiple Sets

Denote P, = Pc,. The algorithm can be expressed by

Xip1 = (EN:)\,,P,,)X,-, (3)
n=1

where \, = a,,/zl'xz1 am-

In other words, each new approximation is the convex combination of the
projections of the previous step to all the sets C,,n=1,..., N. It follows
from the convergence theorem in the previous subsection that the
algorithm (3) converges weakly to some point in ﬂllyzl C, when this
intersection is nonempty.
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Projection Algorithms for Multiple Sets

Theorem 4.5.15 (Weak Convergence for  Sets)

Let X be a Hilbert space and let C,,n=1,..., N be closed convex
subsets of X. Suppose that ﬂ,’:’zl C, # 0 and )\, > 0 satisfies

ZN An = 1. Then the projection algorithm

n=1
N
Xit1 = (Z )\nPn)Xh
n=1

converges weakly to a point in ﬂnN:1 Cp.

Proof. This follows directly from Theorem 4.5.12. °
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Projection Algorithms for Multiple Sets

When the interior of ﬂllyzl C, is nonempty we also have that the
algorithm (3) converges in norm. However, since D does not have
interior this conclusion cannot be derived from Theorem 4.5.12. Rather it

has to be proved by directly showing that the approximation sequence is
Fejér monotone w.r.t. ﬂgzl Cp.
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Projection Algorithms for Multiple Sets

When the interior of ﬂllyzl C, is nonempty we also have that the
algorithm (3) converges in norm. However, since D does not have
interior this conclusion cannot be derived from Theorem 4.5.12. Rather it
has to be proved by directly showing that the approximation sequence is
Fejér monotone w.r.t. (N _; G,.

Theorem 4.5.16 (Strong Convergence for  Sets)

Let X be a Hilbert space and let C,,n=1,..., N be closed convex
subsets of X. Suppose that int ﬂnNzl C, # () and )\, > 0 satisfies

ZN An = 1. Then the projection algorithm

n=1
N
Xit1 = (Z )\nPn>Xi,
n=1

.. N .
converges to a point in (),_; C, in norm.
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Proof. Lety € N\, C,. Then

N N
b=yl = [(3o AP )xi =y = |32 An(Poxi — Py
n=1 n=1
N N
< Y MallPaxi = Payll <) Xallxi =yl = 6 = vll-
n=1 n=1

That is to say (x;) is a Fejér monotone sequence with respect to

ﬂ,’:’zl C,. The norm convergence of (x;) then follows directly from
Theorems 4.5.10 and 4.5.15. L4
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Commentary and Open Questions

@ We have proven convergence of the projection algorithm. It can be
traced to von Neumann, Weiner and before, and has been studied
extensively.

@ We emphasize the relationship between the projection algorithm and
variational methods in Hilbert spaces:

— While projection operators can be defined outside of the setting of
Hilbert space, they are not necessarily non-expansive.

— In fact, non-expansivity of the projection operator characterizes
Hilbert space in two more dimensions.

@ The Hundal example clarifies many other related problems regarding
convergence. Simplifications of the example have since been
published.

o What happens if we only allow “nice” cones?

@ Bregman distance provides an alternative perspective into many
generalizations of the projection algorithm.
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Exercises

© Let T :H — H be nonexpansive and let « € [—,1,1]. Show that
(I +«T) is a maximally monotone continuous operator.

@ (Common projections) Prove formula for the projection onto each of the
following sets:

Half-space: H:={x € H :(a,x) =b},0#acH, beR.
Line: L := x+ Ry where x,y € H.
Ball: B:={x € H : ||x]| < r} where r > 0.
Ellipse in R*: E := {(x,y) € R*: x*/a® + y*/b* = 1}.
2

. 2
Hint: Pe(u,v) = ( 5%, bgjt> where t solves

0000

a2u? b%v?

R CEn

© (Non-existence of best approximations) Let {e,},cn be an orthonormal
basis of an infinite dimensional Hilbert space. Define the set
A:={e1/n+ e, : n € N}. Show that A is norm closed and bounded but
da(0) = 1 is not attained. Is A weakly closed?
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find x € [ G-
j=1

Many problems can be cast is this form. Three examples:
@ Linear systems "Ax = b": G = {x: (aj,x) = b;}.
@ Phase retrieval: C; = {f : |f|=mae.} and G = {f: f =0 on D}.
© Matrix completion problems: more on this later!
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Feasibility Problem

Given closed sets Gy, Gy, ..., Cy € H the feasibility problem asks

N
find x € [ G-
j=1

Many problems can be cast is this form. Three examples:
@ Linear systems "Ax = b": G = {x: (aj,x) = b;}.
@ Phase retrieval: C; = {f :|f|=ma.e}and G = {f:f=0on D}.
© Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility
problems. They work on the following principle:

@ While the intersection might be difficult to deal with directly, the
individual constraint sets are sufficiently “simple”.

@ "Simple” means we can efficiently compute nearest points.

@ Use an iterative scheme which employs nearest points to individual
constraint sets at each stage, and obtain a solution in the limit.
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Douglas, Rachford & Peaceman

Jim Douglas Jnr (1927 —)  Henry Rachford  Donald Peaceman
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Algorithmic Building Blocks

Let S C H be non-empty. The (nearest point) projection onto S is the
(set-valued) mapping,

Psx := {s €S:|x—s| <inf|x— 5|}
ses
If S is closed and convex then projections exists uniquely with
Ps(x)=p <= (x—p,s—p) <O0forallseS.

The reflection w.r.t. S is the (set-valued) mapping,

Rs = 2P5 — 1.

X1

X2
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Algorithmic Building Blocks

Let S C H be non-empty. The (nearest point) projection onto S is the
(set-valued) mapping,

Psx := {s €S:|x—s| <inf|x— 5|}
ses
If S is closed and convex then projections exists uniquely with
Ps(x)=p <= (x—p,s—p) <O0forallseS.

The reflection w.r.t. S is the (set-valued) mapping,

Rs = 2P5 — 1.

n

n)
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The Douglas—Rachford Algorithm

Given an initial point xo € H, the Douglas—Rachford method is the
fixed-point iteration given by

Id + R¢,Re,

Xn+1 € Tc,,c,xn Where T, ¢, = >

We hope that (x,) converges to a fixed point of of the operator T¢, c,.

G

G

Xn

G={xeH: |x[| <1}, G={xeH:(ax)=b}
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The Douglas—Rachford Algorithm

Given an initial point xo € H, the Douglas—Rachford method is the
fixed-point iteration given by

Id + R¢,Re,

Xn+1 € Tc,,c,xn Where T, ¢, = >

We hope that (x,) converges to a fixed point of of the operator T¢, c,.

G

< Xnt1 = T12Xn

G

Xn

G={xeH: |x[| <1}, G={xeH:(ax)=b}
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Douglas—Rachford Fixed Points

Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

X+ RCZRQX
X=—"

x € FixT¢, c, <— >

The same argument for the set-valued case yields:
o If x € T, ¢, x then there is an element of P¢, x contained in G; N G,.
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Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

X+ RCZRQX
X=—"
2
<~ X = RC2 RQX

x € FixT¢, c, <—

The same argument for the set-valued case yields:
@ If x € T, ¢, x then there is an element of Pc, x contained in G; N G,.
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Douglas—Rachford Fixed Points

Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

_ X+ Re,Re, x
x € FixT¢, c, > x=-rrerar

2
= x = Rg,Re, x
<~ X = 2PC2RC1X — R(_‘IX

The same argument for the set-valued case yields:
@ If x € T, ¢, x then there is an element of Pc, x contained in G; N G,.
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Douglas—Rachford Fixed Points

Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

. X+ Re, Re, x
x € Fix Te,.c, = x = - tera”

2
= x = Re,Re, x
<~ X = 2PC2RC1X — R(_‘IX
— X =2Pc,Re,x — 2P, x + x

The same argument for the set-valued case yields:

@ If x € T¢, ¢, x then there is an element of P¢, x contained in G; N G,.
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Douglas—Rachford Fixed Points

Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

X —+ RCZRQX
B 2
X = RC2 RQX

x € Fix TC1-,C2

X = 2PC2RC1X - R(_‘IX
X =2Pc,Re,x — 2P, x + x

rree

PQX = PC2 RQX

The same argument for the set-valued case yields:

o If x € T¢, ¢, x then there is an element of P¢, x contained in G; N G,.
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Douglas—Rachford Fixed Points

Why Fix T¢, ¢,? Assuming single-valueness of R¢, and R¢, we have:

X+ RCZRQX
X=——
2
X = RC2 RQX

x € Fix TC1-,C2

x =2P¢,Re,x — Re x

X =2Pc,Re,x — 2P, x + x
PQX = PCZRQX
Pexe G N G.

Frree

The same argument for the set-valued case yields:

o If x € T, ¢, x then there is an element of P¢, x contained in G; N G,.
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Tools from Nonexpansive Mapping Theory

Let T:H —H. Then T is:
@ nonexpansive if

[Tx = Ty|[| <|lx —yl|l, forallx,yecH.

e firmly nonexpansive if

ITx=TylP+ (/= T)x— (I = T)y||* < [ x—yl?,  forall x,y € H.
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Tools from Nonexpansive Mapping Theory

Let T:H —H. Then T is:
@ nonexpansive if

[Tx = Ty|[| <|lx —yl|l, forallx,yecH.

e firmly nonexpansive if

ITx=TylP+ (/= T)x— (I = T)y||* < [ x—yl?,  forall x,y € H.

Proposition (Nonexpansive properties)

The following are equivalent.
@ T is firmly nonexpansive.
| — T is firmly nonexpansive.
2T — | is nonexpansive.
T =al + (1 —a)R, for a € (0,1/2] and some nonexpansive R.
(x—y, Tx — Ty) > || Tx — Ty||? for all x,y € H.

Other characterisations.




Convex Douglas—Rachford
®

Tools from Nonexpansive Mapping Theory

Let T:H —H. Then T is:
@ nonexpansive if

[Tx = Ty|[| <|lx —yl|l, forallx,yecH.

e firmly nonexpansive if

ITx=TylP+ (/= T)x— (I = T)y||* < [ x—yl?,  forall x,y € H.

Nonexpansive properties of projections

Let Ci, G C H be closed and convex. Then

® Pc, :=argmin . || - —c|| is firmly nonexpansive.
@ R¢, :=2P¢, — | is nonexpansive.

o Tc.c, = 3(I + Rg,Re,) is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations,
etc. Firmly nonexpansive maps need not be. E.g., Composition of two
projections onto subspace in R? (Bauschke—Borwein—Lewis, 1997).
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Tools from Nonexpansive Mapping Theory (cont.)

@ asymptotically regular if, for all x € H,

||T"+1x — T"x|| = 0.

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.
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Tools from Nonexpansive Mapping Theory (cont.)

@ asymptotically regular if, for all x € H,

||T"+1x — T"x|| = 0.

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

Proof. Let z € Fix T then, for any x € H, we have
1T — 2| + (1 = TY(T™%)?

—IT(T"%) = T2+ (1 = TX(T"%) — ( = T)zl? < | T — 21>
Hence lim,— o | T"x — z|| exists, and thus ||(/ — T)(T"x)|| — 0. ®
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Tools from Nonexpansive Mapping Theory (cont.)

@ asymptotically regular if, for all x € H,

||T"+1x — T"x|| = 0.

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

Proof. Let z € Fix T then, for any x € H, we have
[T % = 2|+ [|(1 = T)(T")|°
= IT(T"%) = Tz|P + (1 = T)(T"x) = (I = Tz||*> < || T"x — z||*.

Hence lim,— o | T"x — z|| exists, and thus ||(/ — T)(T"x)|| — 0. ®

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let T : H — H be nonexpansive and asymptotically regular with Fix T = ().
Set x,+1 = Tx,. Then x, S x such that x € Fix T.

— Design a non-expansive operator with a useful fixed point set.
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Proof of Opial's Theorem

Before proving this theorem, we require the following lemma.

Lemma (Demiclosedness)

Let T : H — H be nonexpansive and denote x, := T"xg for some initial
point xp € . Suppose x, — x and x, — Tx, — 0. Then x € Fix T.
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Proof of Opial's Theorem

Before proving this theorem, we require the following lemma.

Lemma (Demiclosedness)

Let T : H — H be nonexpansive and denote x, := T"xg for some initial
point xp € . Suppose x, — x and x, — Tx, — 0. Then x € Fix T.

Proof. Since T is nonexpansive,
|Ix — TX||2 = [|x, — TX||2 — |Ixn — X||2 —2(xp — x,x — Tx)
= |IX0 — Tx|I? + 2(xs — Txp, Ty — TX) + || Tx, — Tx]|?
— ||xn — x||2 = 2(xp — x,x — Tx)
< ||xn — Tan2 + 2(xp — Txp, Txp —TX) — 2(xp — x,x — TX).
~—

Xn+1

Since x, % x and x, — Tx, — 0, it follows that each term tends to 0. ®
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Proof of Opial's Theorem

Proof (Opial's Theorem). Since T is non-expansive, for any y € Fix T,
we have
1T % =yl < I T"x =y < - < Ix = yll.

Whence the sequence {x,},en is Fejér monotone w.r.t the closed convex
set Fix T.
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Proof (Opial's Theorem). Since T is non-expansive, for any y € Fix T,
we have
1T % =yl < I T"x =y < - < Ix = yll.

Whence the sequence {x,},en is Fejér monotone w.r.t the closed convex
set Fix T. By Th. 4.5.10(jii) of Lect. | (Properties of Fejér monotone
sequences) the sequence {x,},cn has at most one weak cluster point in
Fix T. To complete the proof it suffices to show: (i) {x,}nen has at least
one cluster point; and (ii) that every cluster point of {x,}nen is
contained in Fix T.
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Proof of Opial's Theorem

Proof (Opial's Theorem). Since T is non-expansive, for any y € Fix T,
we have
1T % =yl < I T"x =y < - < Ix = yll.

Whence the sequence {x,},en is Fejér monotone w.r.t the closed convex
set Fix T. By Th. 4.5.10(jii) of Lect. | (Properties of Fejér monotone
sequences) the sequence {x,},cn has at most one weak cluster point in
Fix T. To complete the proof it suffices to show: (i) {x,}nen has at least
one cluster point; and (ii) that every cluster point of {x,}nen is
contained in Fix T.

Indeed, as {x,} is bounded, it contains at least one weak cluster point.
Let z be any weak cluster point and denote by {x,, }ken a subsequence
weakly convergent to z. Since T is asymptotically regular,

Ixn, — Txn. ]| = 0.

By the Demiclosedness Lemma, z € Fix T. This completes the proof. ®



Convex Douglas—Rachford

The Douglas—Rachford Algorithm

The basic result which we have proven is the following.

Theorem (Douglas—Rachford ‘56, Lions—Mercier ‘79, Eckstein—Bertsekas ‘92, ...)

Suppose Ci, C; C H are closed and convex with non-empty intersection. Given
Xo € H define

I + R, Re,

Xnt1 = T¢,,Xn Where Tg ¢, i= 2

Then (x,) converges weakly to some x € Fix T¢, ¢, with P, x € Gi N G,.
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Suppose Ci, C; C H are closed and convex with non-empty intersection. Given
Xo € H define

| + RCZ Rcl

Xnt1 = T¢,,Xn Where Tg ¢, i= 2

Then (x,) converges weakly to some x € Fix T¢, ¢, with P, x € Gi N G,.

Proof. Since G N G, C Fix T¢,,c,, the latter is non-empty. Thus T¢, ¢, is
(firmly) nonexpansive with a fixed point, hence asymptotically regular by the
previous lemma. The result follows from Opial's Theorem. ®
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The Douglas—Rachford Algorithm

The basic result which we have proven is the following.

Theorem (Douglas—Rachford ‘56, Lions—Mercier ‘79, Eckstein—Bertsekas ‘92, ...)

Suppose Ci, C; C H are closed and convex with non-empty intersection. Given
Xo € H define

| + RCZ Rcl

Xnt1 = T¢,,Xn Where Tg ¢, i= 2

Then (x,) converges weakly to some x € Fix T¢, ¢, with P, x € Gi N G,.

Proof. Since G N G, C Fix T¢,,c,, the latter is non-empty. Thus T¢, ¢, is
(firmly) nonexpansive with a fixed point, hence asymptotically regular by the
previous lemma. The result follows from Opial's Theorem. ®

@ If the intersection is empty the iterates diverge: |[x,|| — oo.

@ Bauschke—Combettes—Luke (2004): Thorough analysis of convex case.

@ Hesse et al. & Bauschke et al. (2014): Convergence is strong for
subspaces, and the rate is linear whenever their sum is closed.

@ Phan (arXiv:1401.6509v3): If dimH < oo and ri Gy Nri G # () then
convergence in linear.
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The Douglas—Rachford Algorithm

The following generalization include potentially empty intersections. Let

V=G -G, v = Py(0), F=Gn(G+v).

Theorem (Bauschke—Combettes—Luke 2004)

Suppose C;, C; C H are closed and convex. Given xyg € H define
Xnt1 1= T¢,,cXn- Then the following hold.

(a) xp — Xnt1 = Pc,xn — Pc,Re, — v and Pg x, — Pc,Pc, — v.
(b) If GG N G # 0 then (x,) converges weakly to a point in

Fix TC17C2 =GnNnG+ N\/(O),

otherwise, ||x,| — +o0.
(c) Exactly one of the following alternatives holds:
(i) F=0,||Pc,xn]| = 400 and ||Pc, Pc,xn|| — +o00.

(i) F # 0, the sequence (Pc,xn) and (Pc,Pc,x») are bounded and their
weak cluster points are best approximation pairs relative to (Ci, G3).
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The Douglas—Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture | for linear map A : X — RM
and a point y € RM has constraints:

C:=HT, G ={xeH: Ax) =y}
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The Douglas—Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture | for linear map A : X — RM
and a point y € RM has constraints:

C:=HT, G ={xeH AX) =y}

The following theorem gives conditions for norm convergence.

Theorem (Borwein-Sims—Tam 2015)

Let H be a Hilbert lattice, C; := H ™, G, be a closed affine subspace with
finite codimensions, and C; N G, # 0. For xg € H define x,11 = T, ¢, Xn-
Let @ denote the projection onto the subspace parallel to C,. Then (xj,)
converges in norm whenever:

(a) G nrange(Q) = {0},

(b) Q(Cz — Cl) - Cl U (—Cl) and Q(Cl) - Cl.

(c) G has codimension 1.

For codimension greater than 17
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Pierra's Product Space Reformulation

For our constraint sets C;, G, ..., Cy C H we define

N
D:={(x,x,...,x) € HN : x € H}, C:ZHCj.
j=1
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Pierra's Product Space Reformulation

For our constraint sets C;, G, ..., Cy C H we define
N
D:={(x,x,...,x) eH" : xeH}, C ::HCj.
j=1

We now have an equivalent two set feasibility problem since

N
xEﬂCJ-Q’H — (x,x,...,x)eDNnCCH"
j=1

Moreover the projections onto the new sets can be computed whenever
Pc,, Pc,, ..., Pc,. Denote x = (x1, %2, ...,xn) they are given by

N

N
1
PDX: N;X,' and PcX: HPCJXJ
J:
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A Many-set Douglas—Rachford Scheme?

A Many-set Douglas—Rachford Scheme?
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formulation?
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I + RcRgRa

Xp+1 = TA,B7Cx,, where TA,B,C = 5



Convex Douglas—Rachford

A Many-set Douglas—Rachford Scheme?

A Many-set Douglas—Rachford Scheme?

Is there a Douglas—Rachford variant which can be used to solve the
problem in the original space? i.e., Without recourse to a product space
formulation?

An obvious candidate is the following: Given xg € H define

I + RcRgRa

Xp+1 = TA,B7Cx,, where TA,B,C = 5

A similar argument shows:

@ (x,) converges weakly to a point x € Fix Ta g c.
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A Many-set Douglas—Rachford Scheme?

A Many-set Douglas—Rachford Scheme?

Is there a Douglas—Rachford variant which can be used to solve the
problem in the original space? i.e., Without recourse to a product space
formulation?

An obvious candidate is the following: Given xg € H define

I + RcRgRa

Xp+1 = TA,B7Cx,, where TA,B,C = 5

A similar argument shows:
@ (x,) converges weakly to a point x € Fix Ta g c.
@ Unfortunately, it is possible that Pax, Pgx, Pcx € AN BN C.



Convex Douglas—Rachford

A Many-set Douglas—Rachford Scheme?

Xn+1 = TaB,cXn Where Tapc =

I+ RcRgRa

2
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A Many-set Douglas—Rachford Scheme?

I+ RcReR
Xn41 = TaB,cXn Where Tapc = %,

Let xo = (—V/3,-1) & 2 < a < 0.
Define constraints:

A:={\0,1): |\ < a},

Bi= (V3 1): N <a},

C:={A\~V3,1): |\ < a}.

B
c

Then AN BN C = {0}.

We have xg € Fix T4 g,c. However,

Paxo, Pexo, Pcxo # 0. A )
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| + RcRgR
Xn41 = TaB,cXn Where Tapc = %,

Let xo = (—V/3,-1) & 2 < a < 0.
Define constraints:

A:={\0,1): |\ < a}, RsRaxo

Bi= (V3 1): N <a},

C:={A\~V3,1): |\ < a}.

B
c

Then AN BN C = {0}.

We have xg € Fix T4 g,c. However,

Paxo, Pexo, Pcxo # 0. A )

Raxo
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A Many-set Douglas—Rachford Scheme?

| + RcRgR
Xn41 = TaB,cXn Where Tapc = %,

Let xo = (—V/3,-1) & 2 < a < 0.
Define constraints:

A:={\0,1): |\ < a}, ReRaxo

Bi= (V3 1): N <a},

C:={A\~V3,1): |\ < a}.

c

Then AN BN C = {0}.

We have xg € Fix T4 g,c. However,

Paxo, Pexo, Pcxo # 0.

A = RcReRaxo | 4

Raxo
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A Many-set Douglas—Rachford Scheme?

| + RcRgR,
Xn41 = TaB,cXn Where Tapc = %,
Let xo = (—V/3,-1) & 2 < a < 0.
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A:={\0,1): |\ < a}, ReRaxo

B :={\V3,1): |\ < a},
C:={A\~V3,1): |\ < a}.

Then AN BN C = {0}.

We have xg € Fix T4 g,c. However,

Paxo, Pexo, Pcxo # 0.

X0 = RcRBRAXO
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| + RcRgR,
Xn41 = TaB,cXn Where Tapc = %,
Let xo = (—V/3,-1) & 2 < a < 0.
Define constraints:
A:={\0,1): |\ < a}, ReRaxo

B :={\V3,1): |\ < a},
C:={A\~V3,1): |\ < a}.

Then AN BN C = {0}.

We have xg € Fix T4 g,c. However,

Paxo, Pexo, Pcxo # 0.

X0 = RcRBRAXO

Raxo
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A Common Framework

Theorem (Borwein—Tam 2013)

Let Ci,...,Cy € H be closed convex sets with nonempty intersection,
let Tj: H — # and denote T := Ty ... To T1. Suppose the following
three properties hold.

(i) T is nonexpansive and asymptotically regular,

(i) Fix T = ﬁj"il Fix T; # 0,

(ii) Pc FixT; € Cjyq foreach j=1,...,N.
Then, for any xp € H, the sequence x, := T"xy converges weakly to some
x such that Pc,x = Pg,x = -+ - = Pc,x. In particular, P, x € ﬂ,NZI G.




Convex Douglas—Rachford
{ ]

A Common Framework

Theorem (Borwein—Tam 2013)

Let Ci,...,Cy € H be closed convex sets with nonempty intersection,
let Tj: H — # and denote T := Ty ... To T1. Suppose the following
three properties hold.

(i) T is nonexpansive and asymptotically regular,

(i) Fix T = ﬁj"il Fix T; # 0,

(ii) Pc FixT; € Cjyq foreach j=1,...,N.
Then, for any xp € H, the sequence x, := T"xy converges weakly to some
x such that Pc,x = Pg,x = -+ - = Pc,x. In particular, P, x € ﬂ,NZI G.

Proof sketch. Denote Cyy1 := C.
@ (i) + (i) = (xn) converges weakly to some x € NFix T.
@ (iii) + convex projection inequality yields

(x = Pc,,,x, Pc,x — Py, x) < 0 for all j
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A Common Framework

To complete the proof observe

N

1

5D IPG.x = Pox|?
j=1

N
0)+ 5 3= (1PG.uxI" ~ 2P, Pox) + 1P
j=1
N N N
= <X72(’DCJX - PCj+1X)> Z(PC+1X7 PCjX> + Z ||PCj+1X||2
j=1 j=1 j=1
N N
= Z (x,(Pcx — Pc,, %)) — Z(PC X, Pe,x — Pcy,, x)
j=1 j=1
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Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each T; : H — H is firmly nonexpansive and asymptotically
regular. Then T, T,_1... Ty is also asymptotically regular.
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Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each T; : H — H is firmly nonexpansive and asymptotically
regular. Then T, T,_1... Ty is also asymptotically regular.

The proof can be found in:

H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang.
Compositions and convex combinations of asymptotically regular
firmly nonexpansive mappings are also asymptotically regular, Fixed
Point Theory and Applications 2012, 2012:53.
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Cyclic Douglas—Rachford Method

Corollary (Borwein—Tam 2013)

Let G, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define

I+ Rg..Rg
—s

Xnt+1 = (TCN:CI Vg @y oo @@ T515C2)Xn where TCj7Cj+1 =

=Tu2...n

Then (x,) converges weakly to a point x such that Pc,x = -+ = P¢,x.

@ Borwein—Tam
(arXiv:1310.2195): Analysed behaviour for empty intersections.

e Using Hundal (2004): There exists a hyperplane and convex cone
with nonempty intersection such that convergence is not strong.

@ Bauschke—Noll-Phan (2014): If dimH < oo and ﬂj’-Vzl ri G; # 0 then
convergence is linear.

@ Bauschke—Noll-Phan (2014): If Fix Tj;2 .. n is bounded linearly
regular and C; + Cj41 is closed, for each j, then convergence is linear.
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Three Methods: An Example

Consider the following examples with C, := 0 x R, and

C1 = epi(exp(:) + 1) or epi((-)? +1).

G G G
M A
G G G
AN , WA
G G y G =
MAP DR cyclic DR
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Averaged Douglas—Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let i, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define

| + RQ+1RQ

N
1

Xp1 ::N E Tc.,Con | X where Tc c., = >
j=1

Then (x,) converges weakly to a point x such that Pc,x = -+ = Pc,x.
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Averaged Douglas—Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let i, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define

| + RQ+1RQ

N
1

Xp1 ::N E Tc.,Con | X where Tc c., = >
j=1

Then (x,) converges weakly to a point x such that Pc,x = -+ = Pc,x.

Proof sketch. For xo € H, set xg = (xo,...,%) € H". Apply the
theorem to the product-space iteration

N
Xni1 = Pp (H TC,,C,H> x, € D CHN. .

i=1
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Cyclically Anchored Douglas—Rachford Method

Choose the first set C; to be the anchor set, and think of

N N
Ne-an(Ne
j=1 j=2
Theorem (Bauschke—Noll-Phan 2014)
Let Ci, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define
N
| + Rc.Rc
X4l = H Tc,.Xn where Tc ¢ = #1
Jj=2
Then (x,) converges weakly to a point x such that P¢ x € ﬂszl G.

@ Bauschke—Noll-Phan (2014): If dimH < oo and ﬂj’-Vzl ri G; # () then
convergence is linear.

@ Bauschke—Noll-Phan (2014): For subspaces, if Fix T¢, ¢ is bounded
linearly regular and C; + G is closed then convergence is linear.
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Averaged Anchored Douglas—Rachford Method

The scheme also has a parallel counterpart:

Let CGi, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define

I+ RCjRC,-

N
1
Xp+1 = m Zl TC1,CJ' Xn Where TCI’CJ. = 2
j=

Then (x,) converges weakly to a point x such that P¢ x € ﬂszl G-
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Averaged Anchored Douglas—Rachford Method

The scheme also has a parallel counterpart:

Let CGi, G, ..., Cy € H be closed and convex with non-empty
intersection. Given xy € H define

I+ RCjRC,-

N
1
Xp+1 = m Zl TC1,CJ' Xn Where TCI’CJ. = 2
j=

Then (x,) converges weakly to a point x such that P¢ x € ﬂszl G-

Proof sketch. Use the product space (as we did for the averaged DR
iteration) up the iteration:

N
Xni1 = Pp <H Tchcj) x, € DCHNL .
i=1
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Commentary and Open Questions

@ The (classical) Douglas—Rachford method better than theory
suggests performance on non-convex problems. Consequently many
variants and extensions have recently been proposed.

@ Even in the convex setting there are many subtleties and open
questions.

o Norm convergence for realistic moment problems with codimension
greater than 1?7

@ Experimental comparison of the variants needed.
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Exercises

© Let T; : H — H be firmly nonexpansive, for j =1,...,r, and define
T:=T,... T2 T1. If Fix T # () show that T is asymptotically regular.

@ Show that the cyclic DR method becomes MAP in certain cases. Hence
find an example where convergence in cyclic DR is only weak.

© (Hard) Prove or disprove: The Douglas—Rachford algorithm converges in
norm for the moment problem when the affine set has codimension 2.
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Newcastle in Lonely Planet!

Nov 1st

Dec 23rd
Dec 16th
Dec 14th
Dec 13th

chmely

40 images in this story

Travel sxperts Lonely Planet
have namead the top 10 cities.
for 2011 in their annual travel |
bible. Bast in Travel 2011 The ||
top-listed cities win points for
their local cultures, value for
money, and averall va-va-
voom. So which cities make
the cut? Find out here, from 10
to 1

What do you think of the list?
Tell us here!

Related links: Lonely
Planet destination videos
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The Rest is Software
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“It was my luck (perhaps my bad luck) to be the world chess champion
during the critical years in which computers challenged, then surpassed,
human chess players. Before 1994 and after 2004 these duels held little

... THIS WONT LET YOUR BRAIN

WTROLUSBDEWCEE YOU KNOW.
SURE — T JusT
WANT THE. HARDWARE.

interest.” — Garry Kasparov, 2010
WHILE YOURE DOING THE | | A USB PORT?
SURGERY, CAN YOU ALSO
! JUSTWIRE 1T
IMPLANT THIS IN MY ARME UPD SOME
NERVES,

&

j;ﬁ

f

THE REST IS 50FTWARE; IM SURE.

THERE WILL BE A PROTECT TO PATCH
TGETHER Wemnmv.
PH = YOURE YEAH; HowD
A LINUX YOU Knew'?
USER, T SEE. ~

A

@ Likewise much of current Optimization Theory.
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Abstract

@ The Douglas—Rachford iteration scheme, introduced half a century
ago in connection with nonlinear heat flow problems, aims to find a
point common to two or more closed constraint sets.
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Abstract

@ The Douglas—Rachford iteration scheme, introduced half a century
ago in connection with nonlinear heat flow problems, aims to find a
point common to two or more closed constraint sets.

o Convergence is ensured when the sets are convex subsets of a Hilbert
space, however, despite the absence of satisfactory theoretical
justification, the scheme has been routinely used to successfully solve
a diversity of practical optimization or feasibility problems in which
one or more of the constraints involved is non-convex.
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Abstract

@ The Douglas—Rachford iteration scheme, introduced half a century
ago in connection with nonlinear heat flow problems, aims to find a
point common to two or more closed constraint sets.

o Convergence is ensured when the sets are convex subsets of a Hilbert
space, however, despite the absence of satisfactory theoretical
justification, the scheme has been routinely used to successfully solve
a diversity of practical optimization or feasibility problems in which
one or more of the constraints involved is non-convex.

@ As a first step toward addressing this deficiency, we provide
convergence results for a proto-typical non-convex
(phase-recovery) scenario: Finding a point in the intersection of
the Euclidean sphere and an affine subspace.
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An Interactive Presentation

@ Much of my lecture will be interactive using the interactive geometry
package Cinderella and the HTML applets
e www.carma.newcastle.edu.au/~jb616/reflection.html
o www.carma.newcastle.edu.au/~jb616/expansion.html
o www.carma.newcastle.edu.au/~jb616/1m-june.html

Thelinteractive
Geometry Software

s i P 18
vy peviers

e bt L
e if c—
it b}

e ]
M, am | e g b
[ S —

g
e T e


http://www.cinderella.de/
www.carma.newcastle.edu.au/~jb616/reflection.html
www.carma.newcastle.edu.au/~jb616/expansion.html
www.carma.newcastle.edu.au/~jb616/lm-june.html
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Those Involved

Brailey Sims Fran Aragon

OThanks also to Ulli Kortenkamp, Matt Skerritt and Chris Maitland
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Phase Reconstruction

Projectors and Reflectors: Pa(x) is the metric projection or nearest point
and Ra(x) reflects in the tangent: x is red.

2008 Finding exoplanet
Fomalhaut in Piscis
with projectors.

projection (black) and reflection (blue) of point (red) on
boundary (blue) of ellipse (rellow)

“All physicists and a good
Vi Fu, P, many quite respectable
2007 Elser solving mathematics are

Sudoku with contemptuous about proof.”
— G.H. Hardy (1877-1947)

reflectors.
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The story of Hubble's 1.3mm error
in the “upside down” lens (1990).

And Kepler's hunt for exo-planets
(launched March 2009).

Feeling the heat: Kepler scientists justify why some sxoplanet data nesds to be held back fornow. Imags: & "Hot Jupiter
exoplanst closs to its host star (BS0)

One of the biggest astronomical stores to unfold over the last decade or so 15 the story of exoplanets (or "extra-
solar planets”). The theoty of the formation of our solar system predicts that there should be many more such
systems out there. And there certamly are, i fact, 461 at time of wniting


http://www.opticsinfobase.org/viewmedia.cfm?uri=OPN-2-4-28&seq=0
http://news.discovery.com/space/kepler-exoplanet-controversy-erupts.html
http://kepler.nasa.gov/
http://experimentalmath.info/blog/2011/09/where-is-everybody/
http://experimentalmath.info/blog/2011/09/where-is-everybody/

The story of Hubble's 1.3mm error
in the “upside down” lens (1990).

And Kepler's hunt for exo-planets

(launched March 2009).

We wrote:

“We should add, however, that
many Kepler sightings in particular
remain to be ‘confirmed’. Thus
one might legitimately wonder
how mathematical robust are the
underlying determinations of
velocity, imaging, transiting,

timing, micro-lensing, etc.?

http://experimentalmath.info/blog/2011/

09/where-is-everybody/
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Acadamic rigour, journalistic fsir
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26 September 2011, 8.89%am AEST

The exoplanet that wasn't. Or
was [t?

An exoplanet called Fomaihaut b has been phatoaraphed in an unexpected spet — sais it
even an exoplanet al all? NASShp e v nasa.ooy

A distant planet that made its name as the world's first directly
photographed exoplanat is at the centre of an astronomical stoush, after it
weered off course and new doubts were raised about its existence

It was in 2008 that Hubble astronomer Paul Kalas fram the University of
California at Berkeley and NASA announced that Fomalhaut b had been
photographed orbiting a star called Fomalhaut around 25 light years from
Earth


http://www.opticsinfobase.org/viewmedia.cfm?uri=OPN-2-4-28&seq=0
http://news.discovery.com/space/kepler-exoplanet-controversy-erupts.html
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Why Does it Work?

In a wide variety of large hard problems (protein folding, 3SAT, Sudoku) A is non-convex but DR
and “divide and concur” (below) works better than theory can explain. It is:

Ra(x) := 2Pa(x) — x and x> M.

Consider the simplest case of a line B of height h and the unit circle A. With z, := (xn, yn) the
iteration becomes

Xpi1 1= €0SOpn, Yni1 :=yn+h —sinb,, (0, :=argz,).

P
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Why Does it Work?

In a wide variety of large hard problems (protein folding, 3SAT, Sudoku) A is non-convex but DR
and “divide and concur” (below) works better than theory can explain. It is:

Ra(x) := 2Pa(x) — x and x> M.

Consider the simplest case of a line B of height h and the unit circle A. With z, := (xn, yn) the
iteration becomes

Xpi1 1= €0SOpn, Yni1 :=yn+h —sinb,, (0, :=argz,).
For h = 0: We prove convergence to one of the two points in AN B iff we do not start on the
vertical axis (where we have chaos). For h > 1: (infeasible) it is easy to see the iterates go to

infinity (vertically). For h = 1: We converge to an infeasible point. For h € (0, 1): The pictures
are lovely but proofs escaped us for 9 months. Two representative Maple pictures follow:

/‘-
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Why Does it Work?

In a wide variety of large hard problems (protein folding, 3SAT, Sudoku) A is non-convex but DR
and “divide and concur” (below) works better than theory can explain. It is:

Ra(x) := 2Pa(x) — x and x+— M.

Consider the simplest case of a line B of height h and the unit circle A. With z, := (xn, yn) the
iteration becomes

Xpi1 1= €0SOpn, Yni1 :=yn+h —sinb,, (0, :=argz,).
For h = 0: We prove convergence to one of the two points in AN B iff we do not start on the
vertical axis (where we have chaos). For h > 1: (infeasible) it is easy to see the iterates go to

infinity (vertically). For h = 1: We converge to an infeasible point. For h € (0, 1): The pictures
are lovely but proofs escaped us for 9 months. Two representative Maple pictures follow:

/‘-

An ideal problem for introducing
early undergraduates to research,
with many many accessible ex-
tensions in 2 or 3 dimensions.

P
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Interactive Phase Recovery in Cinderella

Recall the simplest case of a line B of height h and the unit circle A.
With z, := (xp, ya) the iteration becomes

x + Rg (Ra(x)) .

Ra(x) :=2Pa(x) — x and x — >

Show Construction

H=2
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Interactive Phase Recovery in Cinderella

Recall the simplest case of a line B of height h and the unit circle A.
With z, := (xp, ya) the iteration becomes

x + Rg (Ra(x)) .
2

A Cinderella picture of two steps from (4.2, —0.51) follows:

Ra(x) :=2Pa(x) — x and x —

Show Construction

H=2
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Recall the simplest case of a line B of height h and the unit circle A.
With z, := (xp, ya) the iteration becomes

x + Rg (Ra(x)) .
2

A Cinderella picture of two steps from (4.2, —0.51) follows:

Ra(x) :=2Pa(x) — x and x —

Show Construction

H=2



http://www.carma.newcastle.edu.au/~jb616/reflection.html

Non-Convex Douglas—Rachford
L]

Interactive Phase Recovery in Cinderella

Recall the simplest case of a line B of height h and the unit circle A.
With z, := (xp, ya) the iteration becomes

x + Rg (Ra(x)) .
2

A Cinderella picture of two steps from (4.2, —0.51) follows:

Ra(x) :=2Pa(x) — x and x —

Show Construction

H=2



http://www.carma.newcastle.edu.au/~jb616/reflection.html

Non-Convex Douglas—Rachford

Divide and Concur

To find a point in the intersection of M-sets Ax and in X we can instehd

consider the subset A := ]_[2/’:1 Ak and the linear subset

B:={x=(x1,%0,...,XM) i X1 = X2 =+ = XM}, BINARY

of the product Hilbert space X = (Hkle X). We observe

Ra(x) = [ ] Ra, (x),

hence the reflection may be ‘divided’ up and

X1 +x2+ -+ Xm X1 +x+-

5L Doky

Serial (L) & Parallel (R).

PB(X):( - -

"“!‘XM)’

so that the projection and reflection on B are averaging (‘concurrences’),
hence the name. In this form the algorithm is suited to parallelization.
We can also compose more reflections in serial—we still observe iterates

spiralling to a feasible point.
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The Route to Discovery

@ Exploration first in Maple and then in Cinderella (SAGE)

o ability to look at orbits/iterations dynamically is great for insight
o allows for rapid reinforcement and elaboration of intuition .
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The Route to Discovery

@ Exploration first in Maple and then in Cinderella (SAGE)
o ability to look at orbits/iterations dynamically is great for insight
o allows for rapid reinforcement and elaboration of intuition .
@ Decided to look at ODE analogues

e and their linearizations
o hoped for Lyapunov like results

’ _X(t) ’ _ y(t)
X(t)—ﬁ—x(f), y(t)=h—-=2

where r(t) := /x(t)? + y(t)?, is a reasonable
counterpart to the Cartesian formulation
—replacing x,11 — x, by x'(t), etc.—as in Figure.
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The Route to Discovery

@ Exploration first in Maple and then in Cinderella (SAGE)
o ability to look at orbits/iterations dynamically is great for insight
o allows for rapid reinforcement and elaboration of intuition .
@ Decided to look at ODE analogues

e and their linearizations
o hoped for Lyapunov like results

’ _X(t) ’ _ y(t)
X(t)—ﬁ—x(f)» y(t)=h—-=2

where r(t) := /x(t)? + y(t)?, is a reasonable

counterpart to the Cartesian formulation

—replacing x,11 — x, by x'(t), etc.—as in Figure.
@ Searched literature for a discrete version

o found Perron’s work
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The Basis of the Proof

Theorem (Perron)
If f:NxR"™ — R™ satisfies

. f(n,
im L9l _ o
]
uniformly in n and M is a constant n X n matrix all of whose eigenvalues lie
inside the unit disk, then the zero solution (provided it is an isolated solution)
of the difference equation,
Xn+1 = Mx,, + f(n7XH)7

is exponentially asymptotically stable; that is, there exists 6 > 0, K > 0 and
¢ € (0,1) such that |[xo|| < ¢ then ||x,|| < K||xo|[¢".
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The Basis of the Proof

Theorem (Perron)

If f:NxR"™ — R™ satisfies

=0 Ix|
uniformly in n and M is a constant n X n matrix all of whose eigenvalues lie
inside the unit disk, then the zero solution (provided it is an isolated solution)
of the difference equation,

)

X1 = Mx, + f(n7Xn)7
is exponentially asymptotically stable; that is, there exists 6 > 0, K > 0 and
¢ € (0,1) such that |[xo|| < ¢ then ||x,|| < K||xo|[¢".

In our case: a2 —avl—a?

0 0
aVl1—a? a? 0 0

vl o 0 0 ol
0 0 o ... 0

and the spectrum of the gradient comprises 0, and a2 + iav/1 — 2.
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The Basis of the Proof

Theorem (Perron)

If f:NxR"™ — R™ satisfies

=0 Ix|
uniformly in n and M is a constant n X n matrix all of whose eigenvalues lie
inside the unit disk, then the zero solution (provided it is an isolated solution)
of the difference equation,

)

Xni1 = Mx, + f(n, xa),
is exponentially asymptotically stable; that is, there exists 6 > 0, K > 0 and
¢ € (0,1) such that |[xof| < ¢ then ||x,|| < K||xo|[¢".

V.

In our case: a? —av1—a2 0 0 Explains spin
av1—a? a? 0 0 for height in
M= 0 0 0 o1, (0,1)
0 0 0 ... 0

and the spectrum of the gradient comprises 0, and a2 + iav/1 — 2.
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What We Can Now Show

Theorem (Borwein—Sims 2009)

For the case of a sphere in n-space and a line of height « (normalized so that we have
x(2)=a,a=-e;,b=e):

(a) If 0 < a < 1 then the Douglas—Rachford scheme is locally convergent at each of
the critical points £v/1 — a2a + ab.

(b) If o =0 and the initial point has xp(1) > 0 then the scheme converges to the
feasible point (1,0,0,...,0).

(c) When L is tangential to S at b (i.e., when a = 1), starting from any initial point
with xg(1) # 0, the scheme converges to a point yb with y > 1.

(d) If there are no feasible solutions (i.e., when > 1) then for any non-zero initial
point xp(2) and hence ||x,|| diverge at at least linear rate to +oco.
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What We Can Now Show

Theorem (Borwein—Sims 2009)

For the case of a sphere in n-space and a line of height « (normalized so that we have
x(2)=a,a=-e;,b=e):

(a) If 0 < a < 1 then the Douglas—Rachford scheme is locally convergent at each of
the critical points £v/1 — a2a + ab.

(b) If o =0 and the initial point has xp(1) > 0 then the scheme converges to the
feasible point (1,0,0,...,0).

(c) When L is tangential to S at b (i.e., when a = 1), starting from any initial point
with xg(1) # 0, the scheme converges to a point yb with y > 1.

(d) If there are no feasible solutions (i.e., when > 1) then for any non-zero initial
point xp(2) and hence ||x,|| diverge at at least linear rate to +oco.

@ The same result applies to the sphere S and any affine subset B.

@ For non-affine B things are substantially more complex — even in R2.
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Algorithms Appears to be Stable
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Three and Higher Dimensions

Xnt1(1) = xa(1)/ pns
Xnt1(2) = a+ (1 —1/pn)xa(2), and
xnp1(k) = (1 = 1/pp)xa(k), for k=3,...,N

where p, = [[Xa|| = V/Xxa(1)? + - - + xa(N)2.




An “Even Simpler” Case

Non-Convex Douglas—Rachford
o

If (Xn, yn) € P1 U P> U P53 then

(a1, Yo = (5 y )P < S0y = (7o y )P

1
2

If (X, ¥n) € P4 then

(o1, Ys1 = (7, y ") < [ (xa = (37,772

If (Xn. ¥n) € Ps U Pg then

s = (60 O < (5 = VE+ 3129 - 20V2) 10— ()P

[N —
~151

i 1 1
Intersection at (ﬁ’ \/E)




Non-Convex Douglas—Rachford
L]

Aragén—Borwein Region of Convergence

1.4f

1.2[

0.8f

0.6

0.4

0.2}

0.2 0.4 0.6 0.8 1 12 1.4



Non-Convex Douglas—Rachford
{ ]

The Search for a Lyapunov Function

Recent progress has been made by Joél Benoist. His idea is to search for a
Lyapunov function V such that V'V is perpendicular to the DR trajectories.
That is,

<VV(X"7 y")7 (X"—lvy"—l) - (me")) =0.
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The Search for a Lyapunov Function

Recent progress has been made by Joél Benoist. His idea is to search for a
Lyapunov function V such that V'V is perpendicular to the DR trajectories.
That is,

(VV (%, yn), (Xn—1,¥n—1) = (Xn, yn)) = 0.

Expressing (Xn—1, Yn—1) is terms of (xn, yn) gives the PDE:

oV “WI-X*+1-x*9V

(yf/\)a—x(x,y)qt ~ ay (x,y)=0.
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The Search for a Lyapunov Function

Recent progress has been made by Joél Benoist. His idea is to search for a
Lyapunov function V such that V'V is perpendicular to the DR trajectories.
That is,

(VV (%, yn), (Xn—1,¥n—1) = (Xn, yn)) = 0.

Expressing (Xn—1, Yn—1) is terms of (xn, yn) gives the PDE:

oV “MWI—x2+1-x29V
(y— /\)7( y)+ ~ @

(x,y)=0.

One solution to this PDE is the following:

V(x,y y )\ — A1+ V1I=—x2)+AV1I—x2+ (A —1|nx—|—1X2.
2
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The Search for a Lyapunov Function

Denote the solution (x*,y*) := (v/1 — h?, h). Recall the Benoist's
Lyapunov candidate function

V(X,y):%(y—)\)z—)\ln(l—}—\/1—X2)+>\\/1—X2+()\—1)Inx+%x2.




Non-Convex Douglas—Rachford
{ ]

The Search for a Lyapunov Function

Denote the solution (x*,y*) := (v/1 — h?, h). Recall the Benoist's
Lyapunov candidate function

V(X,y):%(y—)\)z—)\ln(l—}—\/1—X2)+>\\/1—X2+()\—1)Inx+%x2.

In the right half-space it is shown that:
@ (V decreases along DR trajectories): For all e > 0,

sup (V(T(x,y)) = V(x,y)) <O.
[[(,y)—(x*,y*) 1 >e

Q@ V(T(x,y)) = V(x,y) if and only if (x,y) = (x*, y*).
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Global Convergence with a Half-Space Constraint

Consider the two-set feasibility problem given by a closed set @ C R™,
and the half-space

H:={xeR":(a,x) < b}.

where b € R, and a € R™ with ||a|| = 1.

In this case, the Douglas—Rachford iteration simplifies to

Ak if <aa 2qk - Xk> < ba
X, =
o gk + ({(a,xk) + b —2(a, qx))a otherwise,

where, at each iteration, a point gx € Po(xk) is selected.

Motivated by experimental evidence, we first consider the case in which
the set Q is finite.
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Global Convergence with a Half-Space Constraint

Fig. 1 A Douglas—Rachford
iteration in R? with the set

Q ={q1, 92,93, 94} finds a
solution in eight iterations.
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Global Convergence with a Half-Space Constraint

X0

Fig. 1 A Douglas—Rachford
iteration in R? with the set

Q ={q1, 92,93, 94} finds a
solution in eight iterations.

X0 g1
Pt (@) .
H

a2

Fig. 2 The alternating projection
algorithm fails to find a solution
for any initial point in the set
Po'(a1) where Q = {q1,q>}.
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Global Convergence with a Half-Space Constraint

Theorem (Aragén Artacho—Borwein—-Tam, 2015)

Suppose Q is a compact set. Let {xx} be a Douglas—Rachford sequence
and gk € Pg(xx) for all k € N. Then either:

(i) d(gk, H) — 0 and the set of cluster points {qx} is non-empty and
contained in @ N H, or

(ii) d(qk, H) — 3 for some 8 >0and HN Q = (.
Moreover, in the latter case, ||xk| — +oc.
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Global Convergence with a Half-Space Constraint

Theorem (Aragén Artacho—Borwein—-Tam, 2015)

Suppose Q is a compact set. Let {xx} be a Douglas—Rachford sequence
and gk € Pg(xx) for all k € N. Then either:

(i) d(gk, H) — 0 and the set of cluster points {qx} is non-empty and
contained in @ N H, or

(ii) d(qk, H) — 3 for some 8 >0and HN Q = (.
Moreover, in the latter case, ||xk| — +oc.

It is worth noting that:
@ The set Q is not assumed to satisfy any (local) regularity properties
(e.g., strongly regular intersection, prox-regularity, ... ).
© The behaviour of the method does not depend on how gy is chosen.
The result holds for any choice.

© The theorem remains true if one assume that the function
x = 1o(x) + d(x, H),

has compact lower-level sets.
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Global Convergence with a Half-Space Constraint

This theorem allows us to deduce global convergence of the
Douglas—Rachford method applied to a sphere and a half-space (instead
of an affine line).

Example (Global convergence for the sphere and half-space)

Let @ be the unit sphere and H a half-space in R2. By symmetry, we
Y SEAnE & = (0,1). Let xp # 0 with xo(1) > 0. Then x4(1) > 0 and

gk = ” for all k € N, and the iteration becomes
x(2)
x. (1 X if = -1 Xk(2) S b7
xk“(l):ﬁ, xes1(2) = 4 D (ar-1)
(x|l ‘X I ) xk(2) + b otherwise.

If QN H # () (or equivalently b > —1) then the previous theorem ensures
d(gk, H) — 0. It then follows that either:

Q gx, € HN Q for some kg € N (i.e., a solution is found in finitely
many iterations), or

@ q«(2) — b and hence gx — (V1 —b%,b) € QN H.
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Global Convergence with a Half-Space Constraint

Specialising to the finite case, we have the following.

Corollary (Aragén Artacho—Borwein—Tam, 2015)

Suppose Q is finite. Let {xx} be a Douglas—Rachford sequence and
gk € Pq(xk) for all k € N. Then either:

(i) {xk} and {qx} are eventually constant and the limit of {qx} is
contained in HN Q # 0, or

(i) HNQ =0 and ||| — +oo.

@ This corollary explains our previous example.

@ First global convergence result for the Douglas—Rachford applicable
to discrete/combinatorial constraint sets.

@ Bauschke & Noll (2014) proved if the constraints are finite unions of
convex sets, then method is locally convergent (in neighbourhoods
of strong fixed points).
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Global Convergence with a Half-Space Constraint

We give one further example from binary linear programming.

Example (Knapsack lower bound feasibility)

The classical 0-1 knapsack problem is the binary program
min {(c,x) | x € {0,1}", (a,x) < b},
for vectors a,c € R and b > 0.

The 0-1 knapsack lower-bound feasibility problem is the problem with
constraints

H:={xeR"|(a,x) < b}, Q:={xe{0,1}"| (c,x) > A},

where A\ > 0. As a decision problem it is NP-complete.

Applied to this problem, the corollary shows that the Douglas—Rachford
method either finds a solution in finitely many iterations, or none exists
and the norm of the Douglas—Rachford sequence diverges to infinity.
Note that, in general, Pg usually cannot be computed efficiently.
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Commentary and Open Questions

@ As noted, the method parallelizes very well.

Show Constructon
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Commentary and Open Questions

As noted, the method parallelizes very well.
Can one work out rates in the general convex case?
Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
@ Other cases of Lyapunov arguments for global convergence?
@ in the appropriate basins?
Study general sets (in so-called CAT(0)metrics)
e even the half-line case is much more complex
e as | may now demo
Why does the method work for a half-space but not a hyperplane?

Show Construction
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Exercises

© (A lemma toward global convergence) The Douglas—Rachford iteration for
the line and circle with o = 1/4/2. Is given by

Xn+1 = ﬁ, Yot1 =+ (1_ pl) Yn :a+(pn_1)5in6na

n n

where p, = \/x2 + y? and 0, = arg(xy, y»). Show if
(x0,0) € {(x,y) 1y <0< x},

then y, > 0 for some n € N.
@ (Existence of 2-cycles) Consider the sets
G ={(x,y): X2+ y2 =1} and G = (x1,0) : x1 < a}.
Show that for each a € (0, 1) there is a point x such that T¢, ¢, x # x and
T¢, .c,x = x. What happens instead if C; is merely the singleton {(a,0)}?

© Investigate the behavior of the Douglas—Rachford algorithm applied to
two set feasibility problems with one of the sets finite (assume whatever
structure you see fit on the other set).

© (Very Hard) Complete the guided exercise (next slide) of Benoist’s global
convergence proof
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Guided Exercise: Benoist's Global Convergence Proof

Consider the Lyapunov candidate function
V(x,y) = %(y—)\)z AN+ VI A1 -2+ (A —1)Inx+ %x?
Let A :=]0,1] x R and define G : A — A by
G(x,y) =VoT-V,

where T is the DR operator.

Consider W : [0,1[x[0, 1[— R defined using a change of variables on G:

b2

W(u,v) := G(a, b) where u?> =1 — a* and v? = 2
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Guided Exercise: Benoist's Global Convergence Proof

Prove the following two lemmas.

Show that W may be expressed as

h2
W(u,v) = Au )+ V1— ?B(v) + -
where A(t) := % In(1+ t) T In(l —t)—h B(t) == f}%

There exists a unique real number p such that 0 < p < h: (i) B is

increasing on [0, p] from 0 to B(u), and (ii) B is decreasing in [, 1[ from
B(u) to —oo with B(h) = 0.

Hint. Consider B'(t).
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Guided Exercise: Benoist's Global Convergence Proof

Prove the following lemma.

For all v € [0, 1], we have W(0,v) < 0. l

Hint: Show that

W(0,v) = —%h2 + S(v)h+ R(v),

where 5(t) := % In (1+t) + \/ﬁ +t, R(t): —3In(1—¢2) — \/%
Argue that there exists a unique v* < 0.8 such that S(v*) =1, and
distinguish three cases: (i) v* <v <1, (i) 0 < v < v*, and (iii) v = 0.
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Guided Exercise: Benoist's Global Convergence Proof

Using Lemmas 1 and 2 to prove the following.

Proposition 1.
For all (u,v) € [0,1[x[0, 1] we have

W (u, v) < 0 with equality if and only if u=v = h.

Hint: Show that

w
W Y) o s Blu) > B(v).
Ou
Distinguish four cases: (i) h < v <1, (i) p < v < h, (iii) v = p, and (iv)
0<v<p.
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Guided Exercise: Benoist's Global Convergence Proof

Using Proposition 1 prove the following.

Proposition 2.

For all € > 0 we have

sup  G(x,y) <0,
(x,y)EA(e)

where A(e) :={(x,y) € A : d((x,y),(V1— h? h)) > e}

Hint: If sup(, yea(e) G(x,y) > 0, use Proposition 1 to argue the
existence of a subsequence such that W(up,, vn,) = G(Xn,, ¥n,) — 0 such
that up,, v, — (u, v) for some u and v.

Distinguish two cases: (i) u#1land v#1, (i) u=1lorv=1.
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Guided Exercise: Benoist's Global Convergence Proof

Using Proposition 2 prove the main result.

Theorem (Benoist, 2015)

If (x0,Y0) € A then the Douglas—Rachford sequence converges to

(VI— I, h).

Hint: By telescoping, show that

> G(xn, yn)

neN

converges and deduce G(x,,y,) — 0 which contradicts Proposition 2.
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Applications to Matrix Completion

Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas—Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.



Applications to Matrix Completion

Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas—Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.
In particular, consider matrix completion in the context of:
© Positive semi-definite matrices.
@ Stochastic matrices.
@ Euclidean distance matrices, esp. those in protein reconstruction.
@ Hadamard matrices together with their specialisations.
© Nonograms — a Japanese number “painting” game.

@ Sudoku — a Japanese number game.

The framework is flexible and there are many other actual and potential
applications. Our exposition will highlight the importance of the model.
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Matrix Completion

From herein, we consider H = R™*" equipped with the trace inner
product and induced (Frobenius) norm:

(A,B) :=tr(ATB), |A|lF :=/tr(ATA) =

@ A partial matrix is an m x n array for which only entries in certain
locations are known.

e A completion of the partial matrix A = (a;;) € R™*", is a matrix
B = (bjj) € R™*" such that if a; is specified then b; = aj;.
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Matrix Completion

From herein, we consider H = R™*" equipped with the trace inner
product and induced (Frobenius) norm:

(A,B) :=tr(ATB), ||Allr :=+/tr(ATA) =

@ A partial matrix is an m x n array for which only entries in certain
locations are known.

e A completion of the partial matrix A = (a;;) € R™*", is a matrix
B = (bjj) € R™*" such that if a; is specified then b; = aj;.

Abstractly matrix completion is the following:

Given a partial matrix, find a completion which
belongs to some prescribed family of matrices.
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Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq, ..., x, € R?. That is,

Dj = |lx; — x>
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Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq, ..., x, € R?. That is,

Dj = |lx; — x>

o ? 7
o= e O,
: ()

()

four points in R?

— Reconstruct D from known entries and a priori information.



Applications to Matrix Completion

Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq, ..., x, € R?. That is,

Dj = |lx; — x>

o ? 7
o= e O,
: ()

0 31 20 5 @
b 0 42 41

0 43
0 four points in R?

— Reconstruct D from known entries and a priori information.
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Matrix Completion Preliminaries

It is natural to formulate matrix completions as the feasibility problem:
N
find X €[] G CR™".
i=1
Let A be the partial matrix to be completed. We (mostly) choose
@ (; to be the set of all matrix completions of A.
@ (,,...,Cy s.t. their intersection equals the prescribed matrix family.

Let Q2 denote the set of indices for the entry in A is known. Then
G ={X e R™": X; = Aj for all (i,j) € Q}.
The projection of X € R™*" onto C; is given pointwise by

Aij, if (i,j) € Q,
Xij, otherwise.

PCl(X)U = {

The remainder of the talk will focus on choosing G, ..., Cy.
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Positive Semi-Definite Matrices

Denote the symmetric matrices by S”, and the positive semi-definite
matrices by S7.. Our second constraint set is

Gi=S1={XeR™:X=X",y"Xy >0forall y e R"}.

The matrix X is a PSD completion of A if and only if X € C; N G,.

Theorem (Higham 1986)

For any X € R™", define Y = (X + X')/2 and let Y = UP be a polar
decomposition of Y (i.e., U unitary, P € S}.). Then

Y+P
Pe,(X) = ——.

An important class of PSD matrices are the correlation matrices.
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Positive Semi-Definite Matrices: Correlation Matrices

For random variables Xi, Xz, ..., X, the ij-th entry of the corresponding
correlation matrix contains the correlation between X; and X;. This is
incorporated into C; by enforcing that

(i,i) € Qwith Aj =1fori=1,2,...,n. (4)

Moreover, whenever (4) holds for a matrix its entries are necessarily
contained in [—-1,1].
Apply this formulation for different starting points yields:

Xo:=Y. Xo=3(Y+YT)eSs. Xo:=YYT €Ss.
Figure. Distribution of entries for correlation matrices generated by
choosing different initial points. Y is a random matrix in [—1,1]°*®.
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Stochastic matrices

Recall that a matrix A = (A;;) € R™*" is said to be doubly stochastic if

zm:A,-j:i:A,-jzl,A,-ij. (5)
i=1 j=1

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

G = {XeR’"X"IZXU—lforJ—1,...,n},

i=1

n
Gi=( X eR™"> Xy=1fori=1,....my,

Jj=1

X €R™X; >0fori=1,...,mand j=1,...,n}.
y

C4I
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Stochastic matrices

Recall that a matrix A = (A;;) € R™*" is said to be doubly stochastic if

zm:A,-j:i:A,-jzl,A,-jZO. (5)
i=1 j=1

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

G = {XeR’"X"IZXU—lforJ—1,...,n},

i=1

n
Gi=( X eR™"> Xy=1fori=1,....my,
j=1
G ={XeR™"X;>0fori=1,...,mand j=1,...,n}.

The matrix X is a double stochastic matrix completing A if and only if

XeGnNnGnNGNnG.
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Stochastic matrices

C2 = {XGR’"X”|ZX,-J-—1forj—1,...,n},

i=1
G ={XeR™"X;>0fori=1,...,mand j=1,...,n}.

Denote e = (1,1,...,1) € R™. Since G, applies to each column
independently, a column-wise formula for Pg, is given by

1 m
Pe(x)=x+— (1= x here E := R™:e’x =1}
E(x) = x+ - ( 2 XJ> e where {xe e'x=1}

The projection of X onto (4 is given pointwise by

Pc,(X)j = max{0, Xj}.

@ Singly stochastic matrix completion can be consider by dropping Cs.

@ Related work of Thakouda applies Dykstra's algorithm to a two set
model. The corresponding projections are less straight-forward.
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Hadamard Matrices

A matrix H = (H;;) € {—1,1}"*" is said to be a Hadamard matrix of
order n if !

H™H = nl.

A classical result of Hadamard asserts that Hadamard matrices exist only
if n=1,2 or a multiple of 4. For orders 1 and 2, such matrices are easy

to find. For example,
1 -1
0. ;3]

IThere are many equivalent characterizations and many local experts.



Applications to Matrix Completion

Hadamard Matrices

A matrix H = (H;;) € {—1,1}"*" is said to be a Hadamard matrix of
order n if !

H™H = nl.

A classical result of Hadamard asserts that Hadamard matrices exist only
if n=1,2 or a multiple of 4. For orders 1 and 2, such matrices are easy

to find. For example,
1 -1
0. ;3]

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all n € N.

IThere are many equivalent characterizations and many local experts.



Applications to Matrix Completion

Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
— an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

Cl = {X c R"X”|X,-j = +1 for I,_j = 1,...7n},
G = {X e R™"XTX = nl}.

Then X is a Hadamard matrix if and only if X € ;. N G,.



Applications to Matrix Completion

Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
— an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

Cl = {X c R"X”|X,-j = +1 for I,_j = 1,...7n},
G = {X e R™"XTX = nl}.

Then X is a Hadamard matrix if and only if X € ;. N G,.

The projection of X on (j is given by pointwise rounding to £1.

Proposition (A projection onto ()

Let X = USVT be a singular value decomposition. Then

VnUVT € Pc,(X).
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Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if Hy # Ho,

e Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.


http://oeis.org/A206712
http://oeis.org/A007299

Applications to Matrix Completion

Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if Hy # Ho,

e Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.

For order 4n:
@ Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

@ Number of Inequivalent Hadamard matrices is OEIS A00729:

1,1,1,1,5,3, 60,487, 13710027, ...


http://oeis.org/A206712
http://oeis.org/A007299

Applications to Matrix Completion

Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if Hy # Ho,

e Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.

For order 4n:
@ Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

@ Number of Inequivalent Hadamard matrices is OEIS A00729:

1,1,1,1,5,3, 60,487, 13710027, ...

With increasing order, the number of Hadamard matrices is a faster than
exponentially decreasing proportion of total number of +1-matrices

2 .
(there are 2™ +1-matrices or order n).


http://oeis.org/A206712
http://oeis.org/A007299
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 3 T
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Checking if two Hadamard matrices are equivalent can be cast as a
problem of graph isomorphism (McKay '79).

@ In Sage use is_isomorphic(graphl,graph2).
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Hadamard Matrices

We give an alternative formulation. Define:

G ={XeR™"X;j==xlfori,j=1,...,n},
G = {X e R”"XTX = ||X]|¢/}.

Then X is a Hadamard matrix if and only if X € GG N G = G N Gs.

Proposition (A projection onto C3)

Let X = USV'T be a singular value decomposition. Then

VIX|[FUVT € Pe,(X).
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order Ci1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0
Order C1 N C3 Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1
12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0




Applications to Matrix Completion

Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order Ci1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

C1 N C3 Formulation

Order A e Time (s)  Solved Distinct Tnequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1
12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0

@ A more obvious formulation is can be less effective.
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Skew-Hadamard Matrices

Recall that a matrix X € R"*" is skew-symmetric if X7 = —X. A
skew-Hadamard matrix is a Hadamard matrix H such that (/ — H) is
skew-symmetric. That is,

H+HT =2I.

Skew-Hadamard matrices are of interest, for example, in the construction
of various combinatorial designs. The number of inequivalent
skew-Hadamard matrices of order 4n is OEIS A001119 (for n =2,3,...):

1,1,2,2,16,54,.. .

It is convenient to redefine the constraint C; to be
CG={XeR™X+X"=2I,X;==+1fori,j=1,...,n}
A projection of X onto Cj is given pointwise by

-1 ifi;éjandX,-j<Xj,-,

1 otherwise.

PC1(X) = {


http://oeis.org/A001119

Skew-Hadamard Matrices

Applications to Matrix Completion
]

Table: Number of skew-Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1
12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0
Order C1 N C3 Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1
12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2




Skew-Hadamard Matrices

Applications to Matrix Completion
]

Table: Number of skew-Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1
12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0
Order C1 N C3 Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1
12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2

@ Adding constraints can help.
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Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to
the constraints:

@ Each row contains the numbers 1 through 9 exactly once.
@ Each column contains the numbers 1 through 9 exactly once.
@ Each 3 x 3 sub-block contains the numbers 1 through 9 exactly once.

513 114(5]13]2]7]6]9]|8

8 2 8(3|9|6(54]1|2]|7
7 1 5 6(7]129(1/8]5/4]3
4 513 419]6f1[8|5]3]|7]|2
1 7 6 2|11(8|4[7[3[9/5]6
312 8 71513]2/9|6[4(8]1

6 5 9 3|6]7|5(4/2]1|8|9
4 3 9(8|4|7[6/1]2|3]|5

917 512]1]18[3[9|7|64

Figure. An incomplete Sudoku (left) and its unique solution (right).

@ The Douglas—Rachford algorithm applied to the natural integer
feasibility problem fails (exception: n? x n? Sudokus where n = 1,2).
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Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

5Veit Elser was the first to realise the usefulness of this binary formulation for
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Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.




Applications to Matrix Completion

Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.
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Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G ={X:X;€E}
G={X:Xxe€E}
G = {X: Xy € E}
A Cy = {X : vec(3 x 3 submatrix) € E}
/ G = {X : X matches original puzzle}

A solution is any X € (_, Ci.
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Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:

G ={X:X;€E}

G ={X: Xy € E}

G = {X: Xy € E}

Cy = {X : vec(3 x 3 submatrix) € E}
// G = {X : X matches original puzzle}

A solution is any X € (_; Ci.
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Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G ={X:X;€E}
G={X:Xxe€E}
Co={X: Xy € E}
A Cy = {X : vec(3 x 3 submatrix) € E}
G = {X : X matches original puzzle}

A solution is any X € (_; Ci.




Applications to Matrix Completion

Sudoku Puzzles: A Binary Model®

Let £ = {¢}]_; C R be the standard basis. Define X € R?*%*? by

X 1 if jjth entry of the Sudoku is k,
k= 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G ={X:X;€E}
G={X:Xxe€E}
G = {X: Xy € E}
A C; = {X : vec(3 x 3 submatrix) € E}
/ G = {X : X matches original puzzle}

A solution is any X € (_; Gi.
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Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by C C R™ the set of all vector whose entries are permutations of
€1,C,...,Cm € R. Then for any x € R™,

PCx = [C]X,

where [C]x is the set of vectors y € C such that ith largest index of y
has the same index in y as the ith largest entry of x, for all indices i.

@ [C]x be computed efficiently using sorting algorithms.
@ Choosingcy=1land e =---=c,=0 gives2
Pex ={e : x; = max{xy,...,Xm}}.

Formulae for Pc¢,, Pc,, Pc, and Pc, easily follow.

@ Pg, is given by setting the entries corresponding to those in the
incomplete puzzle to 1, and leaving the remaining untouched.

2A direct proof of this special case appears in Jason Schaad’s Masters thesis.
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Sudoku Puzzles:Algorithm Details

O Initialize: xo := (y,y.y,y,y) € D for some random y € [0, 1]°%9*9.

@ lteration: By setting

Xn + RC RDXn

Xn41 = TD,CXn = >

© Termination: Either if a solution is found, or 10000 iteration have
been performed. More precisely, round(Ppx,) (Ppx, pointwise
rounded to the nearest integer) is a solution if

round(Ppx,) € CN D.

Taking round(-) is valid since the solution is binary.
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Sudoku Puzzles: An Experiment

We consider the following test libraries frequently used by programmers
to test their solvers.

© Dukuso’s top95 and top1465.

@ First 1000 puzzles from Gordan Royle’s minimum Sudoku — puzzles
with 17 entries (the best known lower bound on the entries required
for a unique solution).

© reglib-1.3 — 1000 test puzzle suited to particular human style
techniques.

@ ksudokul6 and ksudoku25 — a collection around 30 instances
(various difficulties) generated with KSudoku. Contains larger
16 x 16 and 25 x 25 puzzles.3

3Generating “hard” instances is a difficult problem.
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Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas—Rachford method
top95  topl465 reglib-1.3 minimall000 ksudokul6  ksudoku25

Distribution of iterations to solve top35 instances Distribution of iterations to solve minimal1000 instances
40
500
35
30 g 400
b 8
B
525 2
M §
3 2 300
§20 s
5 <
H §
2
15 8 200
10
100
5
K 2000 2000 6000 8000 10000 % 1000 2000 3000 4000 5000 6000 7000 8000 8000
Mean number of iterations Number of iterations

e If a instance was solved, the solution was usually found within the
first 2000 iterations.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku* cannot be solved reliably (20.2% success rate) by
the Douglas—Rachford method.

7 9] |5
1 3
2[3 7
415 7
8 2
6|4
9 1
8
54 7
Wy
£ WO Jﬁ“t\ -
$ "'f“u,. f’r] *,~;ﬂr~'*-. ‘.-‘MWMWWW
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4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku* cannot be solved reliably (20.2% success rate) by
the Douglas—Rachford method.

7 9] I5
1 -+ - 3 Other “difficult” Sudoku puzzles do
NG 7 not cause the Douglas—Rachford
8 2 method any trouble.
5 - 614 @ Al escargot = 98.5% success
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4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku* cannot be solved reliably (20.2% success rate) by
the Douglas—Rachford method.
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5 - 614 @ Al escargot = 98.5% success
8 6 rate.
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4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5
1 3
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We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.
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Success rate when any single entry
is removed:

o Top left 7 = 24%
o Any other entry = 99%
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®

Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5
3
7
7
8 2
614
1
6

Success rate when any single entry
is removed:

o Top left 7 = 24%
o Any other entry = 99%

Number of solutions when any single
entry is removed:

o Topleft 7=5
@ Any other entry = 200-3800

Is the Douglas—Rachford method hindered by
an abundance of ‘near’ solutions?
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®

Computational Results: Performance Comparison

We compared the Douglas—Rachford method to the following solvers:

@ Gurobi binary program — Solves the same binary model using integer
programming techniques.

@ YASS (Yet another Sudoku solver) — First applies a reasoning
algorithm to determine possible candidates for each empty square. If
this does not completely solve the puzzle, a deterministic recursive
algorithm is used.

© DLX — Solves an exact cover formulation using the Dancing Links
implementation of Knuth's Algorithm X (non-deterministic,
depth-first, back-tracking).

Table. Average Runtime (seconds).®
top95  reglib-1.3  minimall000 ksudokul6 ksudoku25

DR 1.432 0.279 0.509 5.064 4.011
Gurobi  0.063 0.059 0.063 0.168 0.401
YASS  2.256 0.039 0.654 - -

DLX  1.386 0.105 3.871 - -

5Some solvers are only designed to handle 9 x 9 puzzles.
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

@ Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences si, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.

[el=] o[ [T -]
[o]=[e[afa[w]=]~]e]w]
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

@ Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences si, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.

lllegal row.
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Nonograms

We model nonograms as a binary feasibility problem. The m x n grid is
represented as a matrix A € R™*" with

Al j] = 0 if the (i,/)-th entry of the grid is white,
PIIT1 ifthe (1,7)-th entry of the grid is black.

Let R; C R™ (resp. C; C R") denote the set of vectors having
cluster-size sequences matching row i (resp. column j). The constraints
are:

G={A:Ali,;]eR;fori=1,...,m},
G={A: A jleCforj=1,...,n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

Ace GG NG.
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From 1000 random replications, the following nonograms were solved in
every instance.

A spaceman. A dragonfly.

|
- a

q
.
.

A parrot. The number 7. “Hello from CARMA" .
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Nonograms: Computational Details

@ Computing the projections onto C; and ( is difficult.
@ We do not know an efficient way to do so.

o Our approach: Pre-compute all legal cluster size sequences (slow).

@ Only a few Douglas—Rachford iterations are required to solve (fast).
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Nonograms: Computational Details

@ Computing the projections onto C; and ( is difficult.
@ We do not know an efficient way to do so.

o Our approach: Pre-compute all legal cluster size sequences (slow).

@ Only a few Douglas—Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections
but require many more iterations.

This suggests the following:

Trade-off between simplicity of projection operators and the number
of iterations required.
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Nonograms: An example

Iteration: 0 (random initialisation)
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Nonograms: An example

Iteration: 1
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Nonograms: An example

Iteration: 2
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Nonograms: An example

Iteration: 3
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Nonograms: An example

Iteration: 4
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Nonograms: An example

Iteration: 5
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Nonograms: An example

Iteration: 6 (solved)
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GCHQ's 2015 Christmas Puzzle

QccHo®

WHOWEARE WHATWEDO HOWWEWORK CESG CAREERS
PRESS & MEDIA

You are here Press & media

A Christmas card with a cryptographic twist for charity
News article - 7 Dec 2015

This year, along with his traditional Christmas cards, Director GCHQ Robert Hannigan is including a brain-teasing puzzle that seems certain to exercise the
grey matter of participants over the holiday season.

The card, which features the 'Adoration of the Shepherds' by a pupil of Rembrandt, includes traditional Christmas greetings from Director on behalf of the
department. However, unlike previous years, the 2015 card will contain a grid-shading puzzle and instructions on how it should be completed. By solving this
first puzzle players will create an image that leads to a series of increasingly complex challenges.

Once all stages have been unlocked and completed successfully, players are invited to submit their answer via a given GCHQ email address by 31 January
2016. The winner will then be drawn from all the successful entries and notified soon after. Players are invited to make a donation to the National Society for
the Prevention of Cruelty to Children, if they have enjoyed the puzzle.

People who enjoy puzzles, but who are not yet on Director's Christmas card list, need not worry. The first puzzle can be seen below.

5Kudos to Veit Elser who made us aware of the puzzle.
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GCHQ's 2015 Christmas Puzzle

The solution is a QR code which directs to the following website.

Qacrow

WHOWEARE WHATWEDO HOWWEWORK CESG CAREERS
PRESS & MEDIA

You are here - Home

Director GCHQ's Christmas Puzzle - Part 2

Congratulations on solving Part 1 of the Director's puzzle.
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Protein Conformation Determination and EDMs

Proteins are large biomolecules comprising of multiple amino acid chains.

Generic amino acid

They participate in virtually every cellular process, and knowledge of
structural conformation gives insights into the mechanisms by which they
perform.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dj;) € R™*™ is a Euclidean distance matrix (EDM) if there
exists points pi,..., pm € RY such that

Dj = lIoi — il

When this holds for points in R9, we say that D is embeddable in R9.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dj;) € R™*™ is a Euclidean distance matrix (EDM) if there
exists points pi,..., pm € RY such that

Dy = |Ipi — pi*.
When this holds for points in R9, we say that D is embeddable in R9.

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in R® where s := 3,
knowing only short inter-atomic distances.
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A Feasibility Problem Formulation

Denote by Q the Householder matrix defined by

2w’ T m
Q::I—ﬁ,wherev: [171,.,.,1,1+\/m e R"™.

Theorem (Hayden—Wells 1988)

A nonnegative, symmetric, hollow matrix X, is a EDM iff X € R(m~Dx(m=1) j

X d
a-xe=| & 7] )
is positive semi-definite (PSD). In this case, X is embeddable in RY where
q = rank(X) < m — 1 but not in R,

<

Let D denote the partial EDM (obtained from NMR), and Q C N x N the
set of indices for known entries. The problem of low-dimensional EDM
reconstruction can thus be case as a feasibility problem with constraints:

G = {X e R™™: X >0,X; = Dj for (i,j) € Q.
G={XeR™m: X in (x) is PSD with rank X <s:=3}
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A Feasibility Problem Formulation

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G ={X € R™™: X in (x) is PSD with rank X < s := 3}.

Now,
e (; is a convex set (intersection of cone and affine subspace).
e G is convex iff m < 2 (in which case G, = R™*™).

For interesting problems, C, is never convex.
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X e R™™: X in (%) is PSD with rank X < s := 3}.
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X e R™™: X in (%) is PSD with rank X < s := 3}.

The projection onto C; is given (point-wise) by

Dj; if (i,j) € Q,
max{0, Xjj}  otherwise.

Pc,(X)j = {
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X e R™™: X in (%) is PSD with rank X < s := 3}.

The projection onto C; is given (point-wise) by

Pe,(X); = { max{0, Xjj}  otherwise.

The projection onto C is the set

{) d:| )/(\ c R(mfl)x(mfl)7

PCZ(X):{—QL,T Z]Q:Q(_X)Q:B(T s|) derm ser, \?ePS3>?},

where S; is the set of PSD matrices of rank s or less.

e Computing Pgs(?) = spectral decomposition — threshold eigenvalues.
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The Algorithmic Approach

The reconstruction approach can be summarised as follows:

Partial EDM

v
Reconstruct
EDM using

Douglas—Rachford

Convert EDM
to points in R3

Draw using
Swiss-PdbViewer®

A
1

Random
initialization

Ihttp://spdbv.vital-it.ch/
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Experiment: Six Test Proteins

Experiment: We consider the simplest realistic protein conformation
determination problem.

NMR experiments were simulated for proteins with known conformation
by computing the partial EDM containing all inter-atomic distances < 6A.

Table: Six proteins from the RCSB Protein Data Bank.”

Protein # Atoms # Residues Known Distances

1PTQ 404 50 8.83%
1HOE 581 74 6.35%
1LFB 641 99 5.57%
1PHT 988 85 4.57%
1POA 1067 118 3.61%
1AX8 1074 146 3.54%

’http://www.rcsb.org/
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Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein  Problem Size  Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7)  0.02 (0.02) 0.08 (0.09)
1HOE 168,490 727 (-69.3)  0.19 (0.26) 2.88 (5.49)
1LFB 205,120 476 (-45.3) 324 (3.53) 21.68 (24.00)
1PHT 236,328 605 (-58.1)  1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1)  34.00 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-43.5)  9.69 (10.36) 58.55 (62.65)

@ The reconstructed EDM is compared to the actual EDM using:

[IPaxn — PBRAXn||2>

Relative error (decibels) = 10logyq ( Pl
AXn

@ The reconstructed points in R3 are then compared using:

m 1/2
RMS Error = (Z l|zx — zECt“a|||2> , Max Error = ,_max |z — z2<te!||,
= m
k=1

.....

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein  Problem Size  Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7)  0.02 (0.02)  0.08 (0.09)
1HOE 168,490 727 (-69.3) 019 (0.26)  2.88 (5.49)
1LFB 205,120 -47.6 (-45.3)  3.24 (3.53) 21.68 (24.00)
1PHT 236,328 -60.5 (-58.1)  1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1)  34.09 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-43.5)  9.69 (10.36) 58.55 (62.65)

@ The reconstructed EDM is compared to the actual EDM using:

[IPaxn — PBRAXn”z)

Relative error (decibels) = 10logyq ( Pl
AXn

@ The reconstructed points in R3 are then compared using:

=1,...,

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Protelns

1LFB (actual) 1POA (actual)

1HOE (-72.7dB) 1LFB (-60.5dB) 1POA (-49.3dB)

1HOE is good, 1LFB is , and 1POA has two good pieces.
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions.
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the

same atoms in the actual structure.

Atom Clusters for 1POA Reconstruction
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.

Atom Clusters for 1POA Reconstuction Afom Clusters for 1POA

@ The reconstructed protein’s clusters splits actual conformation nicely
in two 'halves’.
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Experiment: A Better Stopping Criterion?

Optimising our implementation gave a ten-fold speed-up. We performed
the following experiment:

1POA
1HOE
1LFB
1PHT
1POA
1AX8

Relative Error

5000 10000 15000 i 20000 25000 30000
Iterations

Figure: Relative error by iterations (vertical axis logarithmic).

e For < 5,000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

o Early termination to blame? — Terminate when error < —100dB.
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A More Robust Stopplng Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB
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A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps, -100dB (perfect!)

@ Similar results observed for the other test proteins.
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