
Convex Feasibility Problems

Laureate Prof. Jonathan Borwein with Matthew Tam
http://carma.newcastle.edu.au/DRmethods/paseky.html

Spring School on Variational Analysis VI
Paseky nad Jizerou, April 19–25, 2015

Last Revised: May 6, 2016

Jonathan Borwein (CARMA, University of Newcastle) Convex Feasibility Problems

http://carma.newcastle.edu.au/DRmethods/paseky.html


Techniques of Variational Analysis

This lecture is based on Chapter 4.5: Convex Feasibility Problems
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Abstract

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be convex closed
subsets of X . The convex feasibility problem is to find some point

x ∈
N⋂

n=1

Cn,

when this intersection is non-empty.

In this talk we discuss projection algorithms for finding such a feasibility
point. These algorithms have wide ranging applications including:

solutions to convex inequalities,

minimization of convex nonsmooth functions,

medical imaging,

computerized tomography, and

electron microscopy
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Projections

We start by defining projection to a closed convex set and its basic
properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
for any x ∈ X , there exists a unique element x̄ ∈ C such that

‖x − x̄‖ = d(C ; x).

Proof. If x ∈ C then x̄ = x satisfies the conclusion. Suppose that
x 6∈ C . Then there exists a sequence xi ∈ C such that
d(C ; x) = limi→∞ ‖x − xi‖. Clearly, xi is bounded and therefore has a
subsequence weakly converging to some x̄ ∈ X .
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Since a closed convex set is weakly closed (Mazur’s Theorem), we have
x̄ ∈ C and d(C ; x) = ‖x − x̄‖. We show such x̄ is unique. Suppose that
z ∈ C also has the property that d(C ; x) = ‖x − z‖. Then for any
t ∈ [0, 1] we have tx̄ + (1− t)z ∈ C . It follows that

d(C ; x) ≤ ‖x − (tx̄ + (1− t)z)‖ = ‖t(x − x̄) + (1− t)(x − z)‖
≤ t‖x − x̄‖+ (1− t)‖x − z‖ = d(C ; x).

That is to say

t → ‖x − z − t(x̄ − z)‖2 = ‖x − z‖2 − 2t〈x − z , x̄ − z〉+ t2‖x̄ − z‖2

is a constant mapping, which implies x̄ = z . •
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Projections

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
for any x ∈ X , x̄ ∈ C is a nearest point to x if and only if

x − x̄ ∈ N(C ; x̄).

Proof. Noting that the convex function f (y) = ‖y − x‖2/2 attains a
minimum at x̄ over set C , this directly follows from the
Pshenichnii–Rockafellar condition (Theorem 4.3.6):

0 ∈ ∂f (x) + N(C ; x).

•
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Projections

Geometrically, the normal cone characterization is:

x̄

x

c

x − x̄ ∈ N(C ; x̄)⇐⇒ 〈x − x̄ , c − x̄〉 ≤ 0 for all c ∈ C .
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Projections

Geometrically, the normal cone characterization is:

x̄

x

c

θ

θ ∈ [π/2, π]

x − x̄ ∈ N(C ; x̄)⇐⇒ 〈x − x̄ , c − x̄〉 ≤ 0 for all c ∈ C .
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Projections

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . For
any x ∈ X the unique nearest point y ∈ C is called the projection of x on
C and we define the projection mapping PC by PCx = y .

We summarize some useful properties of the projection mapping in the
next proposition whose elementary proof is left as an exercise.

Proposition 4.5.4 (Properties of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . Then
the projection mapping PC has the following properties.

(i) for any x ∈ C , PCx = x ;

(ii) P2
C = PC ;

(iii) for any x , y ∈ X , ‖PCy − PCx‖ ≤ ‖y − x‖.
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Projections

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X .
Define

f (x) = sup
{
〈x , y〉 − ‖y‖

2

2

∣∣∣ y ∈ C
}
.

Then f is convex, PC (x) = f ′(x), and therefore PC is a monotone
operator.

Proof. It is easy to check that f is convex and

f (x) =
1

2
(‖x‖2 − ‖x − PC (x)‖2).

We need only show PC (x) = f ′(x).
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Fix x ∈ X . For any y ∈ X we have

‖(x + y)− PC (x + y)‖ ≤ ‖(x + y)− PC (x)‖,

so

‖(x + y)− PC (x + y)‖2 ≤ ‖x + y‖2 − 2〈x + y ,PC (x)〉+ ‖PC (x)‖2

= ‖x + y‖2 + ‖x − PC (x)‖2 − ‖x‖2

− 2〈y ,PC (x)〉,

hence f (x + y)− f (x)− 〈PC (x), y〉 ≥ 0. On the other hand, since
‖x − PC (x)‖ ≤ ‖x − PC (x + y)‖ we get

f (x + y)− f (x)− 〈PC (x), y〉 ≤ 〈y ,PC (x + y)− PC (x)〉
≤ ‖y‖ × ‖PC (x + y)− PC (x)‖
≤ ‖y‖2,

which implies PC (x) = f ′(x). •
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Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two convex sets. Let
X be a Hilbert space and let C and D be two closed convex subsets of
X . Suppose that C ∩ D 6= ∅. Define a function

f (c , d) :=
1

2
‖c − d‖2 + ιC (c) + ιD(d).

We see that f attains a minimum at (c̄ , d̄) if and only if c̄ = d̄ ∈ C ∩ D.
Thus, the problem of finding a point in C ∩ D becomes one of
minimizing function f .

We consider a natural descending process for f by alternately minimizing
f with respect to its two variables. More concretely, start with any
x0 ∈ D. Let x1 be the solution of minimizing

x → f (x , x0).
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Projection Algorithms as Minimization Problems

It follows from Theorem 4.5.2. that

x0 − x1 ∈ N(C ; x1).

That is to say x1 = PCx0. We then let x2 be the solution of minimizing

x → f (x1, x).

Similarly, x2 = PDx1. In general, we define

xi+1 =

{
PCxi i is even,

PDxi i is odd.
(1)

This algorithm is a generalization of the classical von Neumann projection
algorithm for finding points in the intersection of two subspaces.
We will show that in general xi weakly converge to a point in C ∩ D and when
int(C ∩ D) 6= ∅ we have norm convergence.
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Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X
and let T : C → X . We say that T is nonexpansive provided that
‖Tx − Ty‖ ≤ ‖x − y‖.

Definition 4.5.7 (Attracting Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and
let T : C → C be a nonexpansive mapping. Suppose that D is a closed
nonempty subset of C . We say that T is attracting with respect to D if for
every x ∈ C\D and y ∈ D,

‖Tx − y‖ ≤ ‖x − y‖.

We say that T is k-attracting with respect to D if for every x ∈ C\D and
y ∈ D,

k‖x − Tx‖2 ≤ ‖x − y‖2 − ‖Tx − y‖2.
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Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X . Then
PC : X → X is 1-attracting with respect to C .

Proof. Let y ∈ C . We have

‖x − y‖2 − ‖PCx − y‖2 = 〈x − PCx , x + PCx − 2y〉
= 〈x − PCx , x − PCx + 2(PCx − y)〉
= ‖x − PCx‖2 + 2〈x − PCx ,PCx − y〉
≥ ‖x − PCx‖2.

•

Note that if T is attracting (k-attracting) with respect to a set D, then
it is attracting (k-attracting) with respect to any subset of D.
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Attracting Mappings and Fejér Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (xi ) be a
sequence in X . We say that (xi ) is Fejér monotone with respect to C if

‖xi+1 − c‖ ≤ ‖xi − c‖, for all c ∈ C and i = 1, 2, . . .

Next we summarize properties of Fejér monotone sequences.

Theorem 4.5.10 (Properties of Fejér Monotone Sequences)

Let X be a Hilbert space, let C be a closed convex set and let (xi ) be a
Fejér monotone sequence with respect to C . Then

(i) (xi ) is bounded and d(C ; xi+1) ≤ d(C ; xi ).

(ii) (xi ) has at most one weak cluster point in C .

(iii) If the interior of C is nonempty then (xi ) converges in norm.

(iv) (PCxi ) converges in norm.
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Proof. (i) is obvious.
Observe that, for any c ∈ C the sequence (‖xi − c‖2) converges and so
does

(‖xi‖2 − 2〈xi , c〉). (2)

Now suppose c1, c2 ∈ C are two weak cluster points of (xi ). Letting c in
(2) be c1 and c2, respectively, and taking limits of the difference, yields
〈c1, c1 − c2〉 = 〈c2, c1 − c2〉 so that c1 = c2, which proves (ii).
To prove (iii) suppose that Br (c) ⊂ C . For any xi+1 6= xi , simplifying

‖xi+1 −
(
c − h

xi+1 − xi
‖xi+1 − xi‖

)
‖2 ≤ ‖xi −

(
c − h

xi+1 − xi
‖xi+1 − xi‖

)
‖2

we have
2h‖xi+1 − xi‖ ≤ ‖xi − c‖2 − ‖xi+1 − c‖2.
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For any j > i , adding the above inequality from i to j − 1 yields

2h‖xj − xi‖ ≤ ‖xi − c‖2 − ‖xj − c‖2.

Since (‖xi − c‖2) is a convergent sequence we conclude that (xi ) is a
Cauchy sequence.
Finally, for natural numbers i , j with j > i , apply the parallelogram law
‖a− b‖2 = 2‖a‖2 + 2‖b‖2 − ‖a + b‖2 to a := PCxj − xj and
b := PCxi − xj we obtain

‖PCxj − PCxi‖2 = 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4
∥∥∥PCxj + PCxi

2
− xj

∥∥∥2

≤ 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4‖PCxj − xj‖2

≤ 2‖PCxi − xj‖2 − 2‖PCxj − xj‖2

≤ 2‖PCxi − xi‖2 − 2‖PCxj − xj‖2.

We identify (PCxi ) as a Cauchy sequence, because
(‖xi − PCxi‖) converges by (i). •
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Attracting Mappings and Fejér Sequences

The following example shows the first few terms of a sequence {xn}
which is Fejér monotone with respect to C = C1 ∩ C2.

C2

C1

x0

x1

x2

x3
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Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (xi ) in X is asymptotically
regular if

lim
i→∞

‖xi − xi+1‖ = 0.

Lemma 4.5.11 (Asymptotical Regularity of Projection Algorithm)

Let X be a Hilbert space and let C and D be closed convex subsets of X .
Suppose C ∩ D 6= ∅. Then the sequence (xi ) defined by the projection
algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

is asymptotically regular.
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Proof. By Lemma 4.5.8 both PC and PD are 1-attracting with respect
to C ∩D. Let y ∈ C ∩D. Since xi+1 is either PCxi or PDxi it follows that

‖xi+1 − xi‖2 ≤ ‖xi − y‖2 − ‖xi+1 − y‖2.

Since (‖xi − y‖2) is a monotone decreasing sequence, therefore the
right-hand side of the inequality converges to 0 and the result follows. •

Jonathan Borwein (CARMA, University of Newcastle) Convex Feasibility Problems



Convergence of Projection Algorithms

Now, we are ready to prove the convergence of the projection algorithm.

Theorem 4.5.12 (Convergence for Two Sets)

Let X be a Hilbert space and let C and D be closed convex subsets of X .
Suppose C ∩ D 6= ∅ (int(C ∩ D) 6= ∅). Then the projection algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

converges weakly (in norm) to a point in C ∩ D.
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Proof. Let y ∈ C ∩ D. Then, for any x ∈ X , we have

‖PCx − y‖ = ‖PCx − PCy‖ ≤ ‖x − y‖, and

‖PDx − y‖ = ‖PDx − PDy‖ ≤ ‖x − y‖.

Since xi+1 is either PCxi or PDxi we have that

‖xi+1 − y‖ ≤ ‖xi − y‖.

That is to say (xi ) is a Fejér monotone sequence with respect to C ∩ D.
By item (i) of Theorem 4.5.10 the sequence (xi ) is bounded, and
therefore has a weakly convergent subsequence. We show that all weak
cluster points of (xi ) belong to C ∩ D. In fact, let (xik ) be a subsequence
of (xi ) converging to x weakly.
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Taking a subsequence again if necessary we may assume that (xik ) is a
subset of either C or D. For the sake of argument let us assume that it is
a subset of C and, thus, the weak limit x is also in C . On the other hand
by the asymptotical regularity of (xi ) in Lemma 4.5.11 (PDxik ) = (xik+1)
also weakly converges to x . Since (PDxik ) is a subset of D we conclude
that x ∈ D, and therefore x ∈ C ∩ D. By item (ii) of Theorem 4.5.10
(xi ) has at most one weak cluster point in C ∩ D, and we conclude that
(xi ) weakly converges to a point in C ∩ D. When int(C ∩ D) 6= ∅ it
follows from item (iii) of Theorem 4.5.10 that (xi ) converges in norm. •
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Convergence of Projection Algorithms

Whether the alternating projection algorithm converged in norm without
the assumption that

int(C ∩ D) 6= ∅,

or more generally of metric regularity, was a long-standing open problem.

Recently Hundal constructed an example showing that the answer is
negative [5].

The proof of Hundal’s example is self-contained and elementary.
However, it is quite long and delicate, therefore we will be satisfied in
stating the example.
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Convergence of Projection Algorithms

Example 4.5.13 (Hundal)

Let X = `2 and let {ei | i = 1, 2, . . . } be the standard basis of X . Define
v : [0,+∞)→ X by

v(r) := exp(−100r3)e1 + cos
(
(r − [r ])π/2

)
e[r ]+2 + sin

(
(r − [r ])π/2

)
e[r ]+3,

where [r ] signifies the integer part of r and further define

C = {e1}⊥ and D = conv{v(r) | r ≥ 0}.

Then the hyperplane C and cone D satisfies C ∩ D = {0}.
However, Hundal’s sequence of alternating projections xi given by

xi+1 = PDPCxi

starting from x0 = v(1) (necessarily) converges weakly to 0, but not in
norm.
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Convergence of Projection Algorithms

A related useful example is the moment problem.

Example 4.5.14 (Moment Problem)

Let X be a Hilbert lattice1 with lattice cone D = X+. Consider a linear
continuous mapping A from X onto RN . The moment problem seeks the
solution of A(x) = y ∈ RN , x ∈ D.

Define C = A−1(y). Then the moment problem is feasible iff

C ∩ D 6= ∅.

A natural question is whether the projection algorithm converges in
norm.

This problem is answered affirmatively in [1] for N = 1 yet remains open
in general when N > 1.

1All Hilbert lattices are realized as L2(Ω, µ) in the natural ordering for some
measure space.
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Projection Algorithms for Multiple Sets

We now turn to the general problem of finding some points in

N⋂
n=1

Cn,

where Cn, n = 1, . . . ,N are closed convex sets in a Hilbert space X .

Let an, n = 1, . . . ,N be positive numbers. Denote

XN := {x = (x1, x2, . . . , xN) | xn ∈ X , n = 1, . . . ,N}

the product space of N copies of X with inner product

〈x , y〉 =
N∑

n=1

an〈xn, yn〉.

Then XN is a Hilbert space.
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Projection Algorithms for Multiple Sets

Define

C := C1 × C2 × · · · × CN , and

D := {(x1, . . . , xN) ∈ XN : x1 = x2 = · · · = xN}.

Then C and D are closed convex sets in XN and

x ∈
N⋂

n=1

Cn ⇐⇒ (x , x , . . . , x) ∈ C ∩ D.

Applying the projection algorithm (1) to the convex sets C and D defined
above we have the following generalized projection algorithm for finding
some points in

N⋂
n=1

Cn,

as we shall now explain.
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Projection Algorithms for Multiple Sets

Denote Pn = PCn . The algorithm can be expressed by

xi+1 =
( N∑

n=1

λnPn

)
xi , (3)

where λn = an/
∑N

m=1 am.

In other words, each new approximation is the convex combination of the
projections of the previous step to all the sets Cn, n = 1, . . . ,N. It follows
from the convergence theorem in the previous subsection that the
algorithm (3) converges weakly to some point in

⋂N
n=1 Cn when this

intersection is nonempty.
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Projection Algorithms for Multiple Sets

Theorem 4.5.15 (Weak Convergence for N Sets)

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be closed convex
subsets of X . Suppose that

⋂N
n=1 Cn 6= ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑

n=1

λnPn

)
xi ,

converges weakly to a point in
⋂N

n=1 Cn.

Proof. This follows directly from Theorem 4.5.12. •
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Projection Algorithms for Multiple Sets

When the interior of
⋂N

n=1 Cn is nonempty we also have that the
algorithm (3) converges in norm. However, since D does not have
interior this conclusion cannot be derived from Theorem 4.5.12. Rather it
has to be proved by directly showing that the approximation sequence is
Fejér monotone w.r.t.

⋂N
n=1 Cn.

Theorem 4.5.16 (Strong Convergence for N Sets)

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be closed convex
subsets of X . Suppose that int

⋂N
n=1 Cn 6= ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑

n=1

λnPn

)
xi ,

converges to a point in
⋂N

n=1 Cn in norm.
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Proof. Let y ∈
⋂N

n=1 Cn. Then

‖xi+1 − y‖ =
∥∥∥( N∑

n=1

λnPn

)
xi − y

∥∥∥ =
∥∥∥ N∑

n=1

λn(Pnxi − Pny)
∥∥∥

≤
N∑

n=1

λn‖Pnxi − Pny‖ ≤
N∑

n=1

λn‖xi − y‖ = ‖xi − y‖.

That is to say (xi ) is a Fejér monotone sequence with respect to⋂N
n=1 Cn. The norm convergence of (xi ) then follows directly from

Theorems 4.5.10 and 4.5.15. •
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Commentary and Open Questions

We have proven convergence of the projection algorithm. It can be
traced to von Neumann, Weiner and before, and has been studied
extensively.

We emphasize the relationship between the projection algorithm and
variational methods in Hilbert spaces:

– While projection operators can be defined outside of the setting of
Hilbert space, they are not necessarily non-expansive.

– In fact, non-expansivity of the projection operator characterizes
Hilbert space in two more dimensions.

The Hundal example clarifies many other related problems regarding
convergence. Simplifications of the example have since been
published.

What happens if we only allow “nice” cones?

Bregman distance provides an alternative perspective into many
generalizations of the projection algorithm.
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Exercises

1 Let T : H → H be nonexpansive and let α ∈ [−, 1, 1]. Show that
(I + αT ) is a maximally monotone continuous operator.

2 (Common projections) Prove formula for the projection onto each of the
following sets:

1 Half-space: H := {x ∈ H : 〈a, x〉 = b}, 0 6= a ∈ H, b ∈ R.
2 Line: L := x + Ry where x , y ∈ H.
3 Ball: B := {x ∈ H : ‖x‖ ≤ r} where r > 0.
4 Ellipse in R2: E := {(x , y) ∈ R2 : x2/a2 + y 2/b2 = 1}.

Hint: PE (u, v) =
(

a2u
a2−t

, b2v
b2−t

)
where t solves

a2u2

(a2 − t)2
+

b2v 2

(b2 − t)2
= 1.

3 (Non-existence of best approximations) Let {en}n∈N be an orthonormal
basis of an infinite dimensional Hilbert space. Define the set
A := {e1/n + en : n ∈ N}. Show that A is norm closed and bounded but
dA(0) = 1 is not attained. Is A weakly closed?
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Many resources (and definitions) available at:

http://www.carma.newcastle.edu.au/jon/ToVA/
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