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Newcastle in Lonely Planet!
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The Rest is Software

“It was my luck (perhaps my bad luck) to be the world chess champion
during the critical years in which computers challenged, then surpassed,
human chess players. Before 1994 and after 2004 these duels held little
interest.” — Garry Kasparov, 2010

Likewise much of current Optimization Theory.
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Abstract

The Douglas–Rachford iteration scheme, introduced half a century
ago in connection with nonlinear heat flow problems, aims to find a
point common to two or more closed constraint sets.

Convergence is ensured when the sets are convex subsets of a Hilbert
space, however, despite the absence of satisfactory theoretical
justification, the scheme has been routinely used to successfully solve
a diversity of practical optimization or feasibility problems in which
one or more of the constraints involved is non-convex.

As a first step toward addressing this deficiency, we provide
convergence results for a proto-typical non-convex
(phase-recovery) scenario: Finding a point in the intersection of
the Euclidean sphere and an affine subspace.
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An Interactive Presentation

Much of my lecture will be interactive using the interactive geometry
package Cinderella and the HTML applets

www.carma.newcastle.edu.au/~jb616/reflection.html

www.carma.newcastle.edu.au/~jb616/expansion.html

www.carma.newcastle.edu.au/~jb616/lm-june.html
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Those Involved

Brailey Sims Fran Aragon

0
Thanks also to Ulli Kortenkamp, Matt Skerritt and Chris Maitland
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Phase Reconstruction

Projectors and Reflectors: PA(x) is the metric projection or nearest point
and RA(x) reflects in the tangent: x is red.

2007 Elser solving
Sudoku with
reflectors.

“All physicists and a good
many quite respectable
mathematics are
contemptuous about proof.”
– G.H. Hardy (1877–1947)

2008 Finding exoplanet
Fomalhaut in Piscis
with projectors.
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The story of Hubble’s 1.3mm error
in the “upside down” lens (1990).

And Kepler’s hunt for exo-planets
(launched March 2009).

We wrote:
“We should add, however, that
many Kepler sightings in particular
remain to be ‘confirmed’. Thus
one might legitimately wonder
how mathematical robust are the
underlying determinations of
velocity, imaging, transiting,
timing, micro-lensing, etc.?

http://experimentalmath.info/blog/2011/

09/where-is-everybody/
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Why Does it Work?

In a wide variety of large hard problems (protein folding, 3SAT, Sudoku) A is non-convex but DR
and “divide and concur” (below) works better than theory can explain. It is:

RA(x) := 2PA(x) − x and x 7→ x + RB (RA(x))

2
.

Consider the simplest case of a line B of height h and the unit circle A. With zn := (xn, yn) the
iteration becomes

xn+1 := cos θn, yn+1 := yn + h − sin θn, (θn := arg zn).

For h = 0: We prove convergence to one of the two points in A ∩ B iff we do not start on the
vertical axis (where we have chaos). For h > 1: (infeasible) it is easy to see the iterates go to
infinity (vertically). For h = 1: We converge to an infeasible point. For h ∈ (0, 1): The pictures
are lovely but proofs escaped us for 9 months. Two representative Maple pictures follow:

An ideal problem for introducing
early undergraduates to research,
with many many accessible ex-
tensions in 2 or 3 dimensions.
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Interactive Phase Recovery in Cinderella

Recall the simplest case of a line B of height h and the unit circle A.
With zn := (xn, yn) the iteration becomes

RA(x) := 2PA(x)− x and x 7→ x + RB (RA(x))

2
.

A Cinderella picture of two steps from (4.2,−0.51) follows:
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Divide and Concur

Serial (L) & Parallel (R).

To find a point in the intersection of M-sets Ak and in X we can instead
consider the subset A :=

∏M

k=1 Ak and the linear subset

B := {x = (x1, x2, . . . , xM) : x1 = x2 = · · · = xM},

of the product Hilbert space X̃ :=
(∏M

k=1 X
)
. We observe

RA(x) =
M∏

k=1

RAk
(xk),

hence the reflection may be ‘divided’ up and

PB(x) =
(
x1 + x2 + · · ·+ xM

M
, . . . ,

x1 + x2 + · · ·+ xM

M

)
,

so that the projection and reflection on B are averaging (‘concurrences’),
hence the name. In this form the algorithm is suited to parallelization.
We can also compose more reflections in serial—we still observe iterates
spiralling to a feasible point.
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CAS+IGP: The Grief is in the GUI
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CAS+IGP: The Grief is in the GUI

Accuracy after

taking input

from Maple

Numerical

errors in using

double precision
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The Route to Discovery

Exploration first in Maple and then in Cinderella (SAGE)

ability to look at orbits/iterations dynamically is great for insight
allows for rapid reinforcement and elaboration of intuition

Decided to look at ODE analogues

and their linearizations
hoped for Lyapunov like results

x
′(t) =

x(t)

r(t)
− x(t), y

′(t) = h − y(t)

r(t)
,

where r(t) :=
√

x(t)2 + y(t)2, is a reasonable
counterpart to the Cartesian formulation
—replacing xn+1 − xn by x ′(t), etc.—as in Figure.

Searched literature for a discrete version

found Perron’s work
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The Basis of the Proof

Theorem (Perron)

If f : N× R
m → R

m satisfies

lim
x→0

‖f (n, x)‖
‖x‖ = 0,

uniformly in n and M is a constant n × n matrix all of whose eigenvalues lie
inside the unit disk, then the zero solution (provided it is an isolated solution)
of the difference equation,

xn+1 = Mxn + f (n, xn),

is exponentially asymptotically stable; that is, there exists δ > 0,K > 0 and
ζ ∈ (0, 1) such that ‖x0‖ < δ then ‖xn‖ ≤ K‖x0‖ζn.

In our case:

M =















α2 −α
√
1− α2 0 . . . 0

α
√
1− α2 α2 0 . . . 0
0 0 0 . . . 0
..
.

...
...

. . .
...

0 0 0 . . . 0















,

and the spectrum of the gradient comprises 0, and α2 ± iα
√
1− α2.
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The Basis of the Proof

Explains spin
for height in
(0, 1)
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What We Can Now Show

Theorem (Borwein–Sims 2009)

For the case of a sphere in n-space and a line of height α (normalized so that we have
x(2) = α, a = e1, b = e2):

(a) If 0 ≤ α < 1 then the Douglas–Rachford scheme is locally convergent at each of
the critical points ±

√
1− α2a+ αb.

(b) If α = 0 and the initial point has x0(1) > 0 then the scheme converges to the
feasible point (1, 0, 0, . . . , 0).

(c) When L is tangential to S at b (i.e., when α = 1), starting from any initial point
with x0(1) 6= 0, the scheme converges to a point yb with y > 1.

(d) If there are no feasible solutions (i.e., when α > 1) then for any non-zero initial
point xn(2) and hence ‖xn‖ diverge at at least linear rate to +∞.

The same result applies to the sphere S and any affine subset B.

For non-affine B things are substantially more complex — even in R
2.
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Algorithms Appears to be Stable
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Three and Higher Dimensions

xn+1(1) = xn(1)/ρn,

xn+1(2) = α+ (1− 1/ρn)xn(2), and

xn+1(k) = (1− 1/ρn)xn(k), for k = 3, . . . ,N

where ρn := ‖xn‖ =
√

xn(1)2 + · · ·+ xn(N)2.
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An “Even Simpler” Case

Intersection at
(

1√
2
, 1√

2

)

.

If (xn, yn) ∈ P1 ∪ P2 ∪ P3 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤ 1

2
|(xn, yn − (x∗, y∗)|2.

If (xn, yn) ∈ P4 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤ |(xn, yn − (x∗, y∗)|2.

If (xn, yn) ∈ P5 ∪ P6 then

|(xn+1, yn+1 − (x∗, y∗)|2 ≤
(
5

2
−

√
2 +

1

2

√

29− 20
√
2

)

︸ ︷︷ ︸

≈1.51

|(xn, yn − (x∗, y∗)|2.

Ra
nd
om

po
in
ts
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Aragón–Borwein Region of Convergence
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The Search for a Lyapunov Function

Recent progress has been made by Joël Benoist. His idea is to search for a
Lyapunov function V such that ∇V is perpendicular to the DR trajectories.
That is,

〈∇V (xn, yn), (xn−1, yn−1)− (xn, yn)〉 = 0.

Expressing (xn−1, yn−1) is terms of (xn, yn) gives the PDE:

(y − λ)
∂V

∂x
(x , y) +

−λ
√
1− x2 + 1− x2

x

∂V

∂y
(x , y) = 0.

One solution to this PDE is the following:

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.
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Expressing (xn−1, yn−1) is terms of (xn, yn) gives the PDE:

(y − λ)
∂V

∂x
(x , y) +

−λ
√
1− x2 + 1− x2

x

∂V

∂y
(x , y) = 0.

One solution to this PDE is the following:

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.
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The Search for a Lyapunov Function

Denote the solution (x∗, y∗) := (
√
1− h2, h). Recall the Benoist’s

Lyapunov candidate function

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.

In the right half-space it is shown that:

1 (V decreases along DR trajectories): For all ǫ > 0,

sup
‖(x,y)−(x∗,y∗)‖≥ǫ

(V (T (x , y))− V (x , y)) < 0.

2 V (T (x , y)) = V (x , y) if and only if (x , y) = (x∗, y∗).
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Global Convergence with a Half-Space Constraint

Consider the two-set feasibility problem given by a closed set Q ⊆ R
m,

and the half-space

H := {x ∈ R
m : 〈a, x〉 ≤ b}.

where b ∈, and a ∈m with ‖a‖ = 1.

In this case, the Douglas–Rachford iteration simplifies to

xk+1 =

{

qk if 〈a, 2qk − xk〉 ≤ b,

qk + (〈a, xk〉+ b − 2〈a, qk〉)a otherwise,

where, at each iteration, a point qk ∈ PQ(xk) is selected.

Motivated by experimental evidence, we first consider the case in which
the set Q is finite.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Iterations in the Absence of Convexity



Global Convergence with a Half-Space Constraint

H

L

x0

q1

q2

q3

q4

Fig. 1 A Douglas–Rachford
iteration in 2 with the set
Q = {q1, q2, q3, q4} finds a
solution in eight iterations.
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Global Convergence with a Half-Space Constraint

H

L

x0

q1

q2

q3

q4

Fig. 1 A Douglas–Rachford
iteration in 2 with the set
Q = {q1, q2, q3, q4} finds a
solution in eight iterations.

H

L

P−1
Q (q1)

x0 q1

q2

Fig. 2 The alternating projection
algorithm fails to find a solution
for any initial point in the set
P−1
Q (q1) where Q = {q1, q2}.
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Global Convergence with a Half-Space Constraint

Theorem (Aragón Artacho–Borwein–Tam, 2015)

Suppose Q is a compact set. Let {xk} be a Douglas–Rachford sequence
and qk ∈ PQ(xk) for all k ∈ N. Then either:

(i) d(qk ,H) → 0 and the set of cluster points {qk} is non-empty and
contained in Q ∩ H, or

(ii) d(qk ,H) → β for some β > 0 and H ∩ Q = ∅.
Moreover, in the latter case, ‖xk‖ → +∞.

It is worth noting that:
1 The set Q is not assumed to satisfy any (local) regularity properties

(e.g., strongly regular intersection, prox-regularity, . . . ).
2 The behaviour of the method does not depend on how pk is chosen.

The result holds for any choice.
3 The theorem remains true if one assume that the function

x 7→ ιQ(x) + d(x ,H),

has compact lower-level sets.
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Global Convergence with a Half-Space Constraint

This theorem allows us to deduce global convergence of the
Douglas–Rachford method applied to a sphere and a half-space (instead
of an affine line).

Example (Global convergence for the sphere and half-space)

Let Q be the unit sphere and H a half-space in R
2. By symmetry, we

may assume a = (0, 1). Let x0 6= 0 with x0(1) > 0. Then xk(1) > 0 and
qk = xk

‖xk‖ for all k ∈ N, and the iteration becomes

xk+1(1) =
xk (1)

‖xk‖
, xk+1(2) =







xk (2)
‖xk‖

if
(

2
‖xk‖

− 1
)

xk (2) ≤ b,
(

1− 1
‖xk‖

)

xk (2) + b otherwise.

If Q ∩ H 6= ∅ (or equivalently b ≥ −1) then the previous theorem ensures
d(qk ,H) → 0. It then follows that either:

1 qk0 ∈ H ∩ Q for some k0 ∈ N (i.e., a solution is found in finitely
many iterations), or

2 qk(2) → b and hence qk → (
√
1− b2, b) ∈ Q ∩ H.
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Global Convergence with a Half-Space Constraint

Specialising to the finite case, we have the following.

Corollary (Aragón Artacho–Borwein–Tam, 2015)

Suppose Q is finite. Let {xk} be a Douglas–Rachford sequence and
qk ∈ PQ(xk) for all k ∈ N. Then either:

(i) {xk} and {qk} are eventually constant and the limit of {qk} is
contained in H ∩ Q 6= ∅, or

(ii) H ∩ Q = ∅ and ‖xk‖ → +∞.

This corollary explains our previous example.

First global convergence result for the Douglas–Rachford applicable
to discrete/combinatorial constraint sets.

Bauschke & Noll (2014) proved if the constraints are finite unions of
convex sets, then method is locally convergent (in neighbourhoods
of strong fixed points).
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Global Convergence with a Half-Space Constraint

We give one further example from binary linear programming.

Example (Knapsack lower bound feasibility)

The classical 0-1 knapsack problem is the binary program

min {〈c , x〉 | x ∈ {0, 1}n, 〈a, x〉 ≤ b} ,

for vectors a, c ∈ R
m
+ and b ≥ 0.

The 0-1 knapsack lower-bound feasibility problem is the problem with
constraints

H := {x ∈ R
n | 〈a, x〉 ≤ b}, Q := {x ∈ {0, 1}n | 〈c , x〉 ≥ λ},

where λ ≥ 0. As a decision problem it is NP-complete.

Applied to this problem, the corollary shows that the Douglas–Rachford
method either finds a solution in finitely many iterations, or none exists
and the norm of the Douglas–Rachford sequence diverges to infinity.
Note that, in general, PQ usually cannot be computed efficiently.
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Commentary and Open Questions

As noted, the method parallelizes very well.

Can one work out rates in the general convex case?

Why does alternating projection (no reflection) work well for optical
aberration but not phase reconstruction?
Other cases of Lyapunov arguments for global convergence?

in the appropriate basins?

Study general sets (in so-called CAT(0)metrics)
even the half-line case is much more complex
as I may now demo

Why does the method work for a half-space but not a hyperplane?
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Exercises

1 (A lemma toward global convergence) The Douglas–Rachford iteration for
the line and circle with α = 1/

√
2. Is given by

xn+1 =
xn

ρn
, yn+1 = α+

(
1− 1

ρn

)
yn = α+ (ρn − 1) sin θn,

where ρn =
√

x2
n + y 2

n and θn = arg(xn, yn). Show if

(x0, y0) ∈ {(x , y) : y ≤ 0 < x},
then yn > 0 for some n ∈ N.

2 (Existence of 2-cycles) Consider the sets

C1 := {(x , y) : x2 + y
2 = 1} and C2 := (x1, 0) : x1 ≤ a}.

Show that for each a ∈ (0, 1) there is a point x such that TC1,C2x 6= x and
T 2

C1,C2
x = x . What happens instead if C2 is merely the singleton {(a, 0)}?

3 Investigate the behavior of the Douglas–Rachford algorithm applied to
two set feasibility problems with one of the sets finite (assume whatever
structure you see fit on the other set).

4 (Very Hard) Complete the guided exercise (next slide) of Benoist’s global
convergence proof
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Guided Exercise: Benoist’s Global Convergence Proof

Consider the Lyapunov candidate function

V (x , y) =
1

2
(y − λ)2 − λ ln(1 +

√
1− x2) + λ

√
1− x2 + (λ− 1) ln x +

1

2
x
2.

Let ∆ :=]0, 1]× R and define G : ∆ → ∆ by

G (x , y) := V ◦ T − V ,

where T is the DR operator.

Consider W : [0, 1[×[0, 1[→ R defined using a change of variables on G :

W (u, v) := G (a, b) where u2 = 1− a2 and v2 =
b2

a2 + b2
.
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Guided Exercise: Benoist’s Global Convergence Proof

Prove the following two lemmas.

Lemma 0

Show that W may be expressed as

W (u, v) := A(u)− A(v) +
√

1− u2B(v) +
u2 − h2

2
,

where A(t) := 1+h
2 ln(1 + t) + 1−h

2 ln(1− t)− h,B(t) := t(h−t)√
1−t2

.

Lemma 1

There exists a unique real number µ such that 0 < µ < h: (i) B is
increasing on [0, µ] from 0 to B(µ), and (ii) B is decreasing in [µ, 1[ from
B(µ) to −∞ with B(h) = 0.

Hint: Consider B ′(t).
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Guided Exercise: Benoist’s Global Convergence Proof

Prove the following lemma.

Lemma 2

For all v ∈ [0, 1[, we have W (0, v) < 0.

Hint: Show that

W (0, v) = −1

2
h2 + S(v)h + R(v),

where S(t) := 1
2 ln

(
1−t
1+t

)

+ t√
1−t2

+ t, R(t) : − 1
2 ln(1− t2)− t2√

1−t2
.

Argue that there exists a unique v∗ < 0.8 such that S(v∗) = 1, and
distinguish three cases: (i) v∗ ≤ v < 1, (ii) 0 < v ≤ v∗, and (iii) v = 0.
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Guided Exercise: Benoist’s Global Convergence Proof

Using Lemmas 1 and 2 to prove the following.

Proposition 1.

For all (u, v) ∈ [0, 1[×[0, 1[ we have

W (u, v) ≤ 0 with equality if and only if u = v = h.

Hint: Show that

∂W (u, v)

∂u
> 0 ⇐⇒ B(u) > B(v).

Distinguish four cases: (i) h ≤ v < 1, (ii) µ < v < h, (iii) v = µ, and (iv)
0 ≤ v < µ.
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Guided Exercise: Benoist’s Global Convergence Proof

Using Proposition 1 prove the following.

Proposition 2.

For all ǫ > 0 we have

sup
(x,y)∈∆(ǫ)

G (x , y) < 0,

where ∆(ǫ) := {(x , y) ∈ ∆ : d((x , y), (
√
1− h2, h)) > ǫ}.

Hint: If sup(x,y)∈∆(ǫ) G (x , y) ≥ 0, use Proposition 1 to argue the
existence of a subsequence such that W (unk , vnk ) = G (xnk , ynk ) → 0 such
that unk , vnk → (u, v) for some u and v .
Distinguish two cases: (i) u 6= 1 and v 6= 1, (ii) u = 1 or v = 1.
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Guided Exercise: Benoist’s Global Convergence Proof

Using Proposition 2 prove the main result.

Theorem (Benoist, 2015)

If (x0, y0) ∈ ∆ then the Douglas–Rachford sequence converges to
(
√
1− h2, h).

Hint: By telescoping, show that

∑

n∈N

G (xn, yn)

converges and deduce G (xn, yn) → 0 which contradicts Proposition 2.
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