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Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas—Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.
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Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas—Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.
In particular, consider matrix completion in the context of:
@ Positive semi-definite matrices.
@ Stochastic matrices.
© Euclidean distance matrices, esp. those in protein reconstruction.
@ Hadamard matrices together with their specialisations.
© Nonograms — a Japanese number “painting” game.

@ Sudoku — a Japanese number game.

The framework is flexible and there are many other actual and potential
applications. Our exposition will highlight the importance of the model.
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Matrix Completion

From herein, we consider H = R™*" equipped with the trace inner
product and induced (Frobenius) norm:

(A,B) :=tr(ATB), ||Allr :=/tr(ATA) =

@ A partial matrix is an m x n array for which only entries in certain
locations are known.

e A completion of the partial matrix A = (a;;) € R™*", is a matrix
B = (bjj) € R™*" such that if aj is specified then b; = aj;.
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Matrix Completion

From herein, we consider H = R™*" equipped with the trace inner
product and induced (Frobenius) norm:

(A,B) :=tr(ATB), ||Allr :=/tr(ATA) =

@ A partial matrix is an m x n array for which only entries in certain
locations are known.

e A completion of the partial matrix A = (a;;) € R™*", is a matrix
B = (bjj) € R™*" such that if aj is specified then b; = aj;.

Abstractly matrix completion is the following:

Given a partial matrix, find a completion which
belongs to some prescribed family of matrices.

Jonathan Borwein (CARMA, University of Newcastle) Douglas—Rachford Feasibility Methods for Matrix Completion Problems



Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq,...,x; € R?. That is,

Dj = |lx; — 1.
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Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq,...,x; € R?. That is,

Dj = |lx; — 1.

0 ? ?
o~ e O,
; ()

()

four points in R?

— Reconstruct D from known entries and a priori information.
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Matrix Completion: Example

Suppose the partial matrix D = (D;) € R*** is known to contains the
pair-wise distances between four points xq,...,x; € R?. That is,

Dj = |lx; — 1.

o ? 7
o~ e O,
: ()
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0 four points in R?

— Reconstruct D from known entries and a priori information.
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Matrix Completion Preliminaries

It is natural to formulate matrix completions as the feasibility problem:
N
find X €[] G CR™".
i=1

Let A be the partial matrix to be completed. We (mostly) choose
@ (; to be the set of all matrix completions of A.
o (,,..., Cy s.t. their intersection equals the prescribed matrix family.

Let Q2 denote the set of indices for the entry in A is known. Then
G ={X e R™": X; = Aj for all (i,j) € Q}.
The projection of X € R™*" onto (; is given pointwise by

A, i (i,)) € Q,

Xij, otherwise.

PCl(X)U = {

The remainder of the talk will focus on choosing C,+.., Cy.
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Positive Semi-Definite Matrices

Denote the symmetric matrices by S”, and the positive semi-definite
matrices by S]. Our second constraint set is

G =ST={XeR™:X=X"y"Xy >0 forall y € R"}.

The matrix X is a PSD completion of A if and only if X € CG; N G,.

Theorem (Higham 1986)

For any X € R™", define Y = (X + X')/2 and let Y = UP be a polar
decomposition of Y (i.e., U unitary, P € S.). Then

Y+ P
Pe,(X) = ——.

An important class of PSD matrices are the correlation matrices.
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Positive Semi-Definite Matrices: Correlation Matrices

For random variables X1, X, ..., X, the ij-th entry of the corresponding
correlation matrix contains the correlation between X; and X;. This is
incorporated into C; by enforcing that

(i,/)e Qwith Aj =1fori=1,2,...,n. (1)

Moreover, whenever (1) holds for a matrix its entries are necessarily
contained in [—1,1].
Apply this formulation for different starting points yields:

Xo:=Y. Xo = %(Y + YT) € 55. Xo = Yy’ S 55.
Figure. Distribution of entries for correlation matrices generated by
choosing different initial points. Y is a random matrix in [—1,1]°*5.
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Stochastic matrices

Recall that a matrix A = (A;) € R™*" is said to be doubly stochastic if

Zm:A,-j:Zn:A,-j:LA,jzo. (2)
i=1 j=1

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

m
C2 = {XeR’"X”|ZX,-j:1forj:1,...,n},

i=1

G = XE]R'"X”|ZX;J-:1fori:l,...,m ,
j=1

G ={XeR™"X;>0fori=1,...,mand j=1,...,n}.
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Stochastic matrices

Recall that a matrix A = (A;) € R™*" is said to be doubly stochastic if

Zm:A,-j:Zn:A,-j:LA,jzo. (2)
i=1 j=1

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

m
C2 = {XeR’"X”|ZX,-j:1forj:1,...,n},

i=1

G = XG]R'"X”|ZX;J-: lfori=1,...,m},
j=1
G ={XeR™"X;>0fori=1,...,mand j=1,...,n}.
The matrix X is a double stochastic matrix completing A if and only if

XeGnNnGnNnGnNnG.
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Stochastic matrices

G = {XeRmX”|ZX,-j—1forj—1,...,n},

i=1
G ={XeR™"X;>0fori=1,...,mand j=1,...,n}.

Denote e = (1,1,...,1) € R™. Since G, applies to each column
independently, a column-wise formula for Pc, is given by

1 m
Pe(x)=x+— 1= x here E .= R™:e"x=1}.
e(x) =x+ - ( XJ> e where {xe e'x=1}

i=1
The projection of X onto (4 is given pointwise by
PQ(X),'J' = max{O,X,-J-}.

@ Singly stochastic matrix completion can be consider by dropping Cs.

o Related work of Thakouda applies Dykstra’s algorithm to a two set
model. The corresponding projections are less straight-forward.
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Hadamard Matrices

A matrix H = (Hj) € {—1,1}"*" is said to be a Hadamard matrix of
order n if !
HTH = nl.

A classical result of Hadamard asserts that Hadamard matrices exist only
if n=1,2 or a multiple of 4. For orders 1 and 2, such matrices are easy

to find. For example,
1 -1
0. ;3]

IThere are many equivalent characterizations and many local experts:
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Hadamard Matrices

A matrix H = (Hj) € {—1,1}"*" is said to be a Hadamard matrix of

order n if !
HTH = nl.

A classical result of Hadamard asserts that Hadamard matrices exist only
if n=1,2 or a multiple of 4. For orders 1 and 2, such matrices are easy

to find. For example,
1 -1
0. ;3]

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all n € N.

IThere are many equivalent characterizations and many local experts:
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Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
— an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

G ={X eR™"|Xj =+1fori,j=1,....n},
G = {XeR™"X"X =nl}.

Then X is a Hadamard matrix if and only if X € CG; N G,.
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Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
— an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

G = {X e R™"|X; =+1forij=1,.. n}
G = {XeR™"X"X =nl}.

Then X is a Hadamard matrix if and only if X € CG; N G,.

The projection of X on C; is given by pointwise rounding to +1.

Proposition (A projection onto ()

Let X = USVT be a singular value decomposition. Then

VnUVT € Pe,(X).
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Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if H; 75 Ho,

@ Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.
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Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if H; 75 Ho,

@ Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.

For order 4n:
@ Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

@ Number of Inequivalent Hadamard matrices is OEIS A00729:

1,1,1,1,5,3,60,487,13710027, ...
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Hadamard Matrices

Let H; and H, be Hadamard matrices. We say H; are H, are:
@ Distinct if H; 75 Ho,

@ Equivalent if H, can be obtained from H; by performing row/column
permutations, and/or multiplying rows/columns by —1.

For order 4n:
@ Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

@ Number of Inequivalent Hadamard matrices is OEIS A00729:

1,1,1,1,5,3,60,487,13710027, ...

With increasing order, the number of Hadamard matrices is a faster than
exponentially decreasing proportion of total number of +1-matrices

2 .
(there are 2™ +1-matrices or order n).
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 3 T
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Checking if two Hadamard matrices are equivalent can be cast as a
problem of graph isomorphism (McKay '79).

@ In Sage use is_isomorphic(graphl,graph2).
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Hadamard Matrices

We give an alternative formulation. Define:

G ={XeR™"X;j==x1lfori,j=1,...,n},
G = {X e R™"XTX = ||X]|¢/}.

Then X is a Hadamard matrix if and only if X € GG N G = G N Gs.

Proposition (A projection onto C3)

Let X = USVT be a singular value decomposition. Then

VIXI[FUVT € Pe,(X).

Jonathan Borwein (CARMA, University of Newcastle) Douglas—Rachford Feasibility Methods for Matrix Completion Problems



Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order Ci1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0
Order C1 N G3 Formulation
Ave Time (s) Solved Distinct  Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1
12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Ci1 N G Formulation

Order Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1
12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0
Order C1 N G3 Formulation
Ave Time (s) Solved Distinct  Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1
12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0

@ A more obvious formulation is can be less effective.
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Skew-Hadamard Matrices

Recall that a matrix X € R"*" is skew-symmetric if X7 = —X. A
skew-Hadamard matrix is a Hadamard matrix H such that (/ — H) is
skew-symmetric. That is,

H+H" =21

Skew-Hadamard matrices are of interest, for example, in the construction
of various combinatorial designs. The number of inequivalent
skew-Hadamard matrices of order 4n is OEIS A001119 (for n =2,3,...):

1,1,2,2,16,54, ...

It is convenient to redefine the constraint C; to be
G={XeR™X+X"=2l,X;==41fori,j=1,...,n}
A projection of X onto C is given pointwise by

p (X)— -1 ifi;éjand X,‘j<Xj,',
“ )1 otherwise.
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Skew-Hadamard Matrices

Table: Number of skew-Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1
12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0
Order . GNG Form_ulaftion _
Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1
12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2
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Skew-Hadamard Matrices

Table: Number of skew-Hadamard matrices found from 1000 instances

Order C1 N G Formulation
Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1
12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0
Order . GNG Form_ulaftion _
Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1
12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2

@ Adding constraints can help.
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Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to
the constraints:

@ Each row contains the numbers 1 through 9 exactly once.
@ Each column contains the numbers 1 through 9 exactly once.
@ Each 3 x 3 sub-block contains the numbers 1 through 9 exactly once.

513 114|5|3]2[7]6]9|8

8 2 81319]6(5[4(1|2]|7
7 1 5 61712]9(1(8[5[4(3
4 513 41916]1(8[5(3|7]2
1 7 6 2|118|4[7/3]9|5]6
312 8 71513[2(9/6]4|8]1

6 5 9 3|16/7]5(4[2|1(8(9
4 3 9(8|4|7](6/1]12|3|5
917 5(2|1|8[(3/9]7/64

Figure. An incomplete Sudoku (left) and its unique solution (right).

@ The Douglas—Rachford algorithm applied to the natural integer
feasibility problem fails (exception: n? x n? Sudokus where n = 1,2).
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

o o] Na]
—

he g reglice the e pe Q h DINA ormulation o
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

A
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

A
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G ={X:XjeE}
G={X:Xye€E}
G ={X: Xy E}

A Cy = {X : vec(3 x 3 submatrix) € E}

/ G = {X : X matches original puzzle}

A solution is any X € ﬂ?zl G;.
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
={X: Xij € E}
G={X:Xye€E}
G ={X: Xy E}
C = {X Tvec(3x 3 submatrix) S E}
G = {X : X matches original puzzle}

A solution is any X € ﬂ?zl G;.
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G={X: Xij € E}
={X: Xy € E}
G ={X: Xy E}
: Cy = {X : vec(3 x 3 submatrix) € E}
/// G = {X : X matches original puzzle}

A solution is any X € ﬂ?zl G;.
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G={X: Xij € E}
G={X:Xye€E}
={X: Xy € E}
A Cy = {X : vec(3 x 3 submatrix) € E}
G = {X : X matches original puzzle}

A solution is any X € ﬂ?zl G;.
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Sudoku Puzzles: A Binary Model®

Let £ = {e;}7_; C R? be the standard basis. Define X € R%*9*? by

X, — 1 if jjth entry of the Sudoku is k,
k=1 0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:
G ={X:XjeE}
G={X:Xye€E}
G ={X: Xy E}

s = {X : vec(3 x 3 submatrix) € E}

D ] 3 / ; G = {X : X matches original puzzle}

A solution is any X € ﬂ?zl G;.
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Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by C C R™ the set of all vector whose entries are permutations of
C1,C,--.,Cm € R. Then for any x € R™,

PcX = [C]X,

where [C], is the set of vectors y € C such that ith largest index of y
has the same index in y as the ith largest entry of x, for all indices /.

@ [C]« be computed efficiently using sorting algorithms.
@ Choosingcy=1land e =---=c,=0 gives2

Pex ={e : x; = max{xy,...,Xm}}.

Formulae for Pc¢,, Pc,, Pc, and Pc, easily follow.

@ Pc, is given by setting the entries corresponding to those in the
incomplete puzzle to 1, and leaving the remaining untouched.

2A direct proof of this special case appears in Jason Schaad’s Masters thesis.
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Sudoku Puzzles:Algorithm Details

Q Initialize: xo := (y,y,Y,y,y) € D for some random y € [0, 1]°*9*9.
@ lteration: By setting

. Xn + RCRDXn
Xpt1 = Tp,cXp = —F——.

2

© Termination: Either if a solution is found, or 10000 iteration have
been performed. More precisely, round(Ppx,) (Ppx, pointwise
rounded to the nearest integer) is a solution if

round(Ppx,) € CN D.

Taking round(-) is valid since the solution is binary.
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Sudoku Puzzles: An Experiment

We consider the following test libraries frequently used by programmers
to test their solvers.

@ Dukuso's top95 and topl465.

@ First 1000 puzzles from Gordan Royle’s minimum Sudoku — puzzles
with 17 entries (the best known lower bound on the entries required
for a unique solution).

@ reglib-1.3 — 1000 test puzzle suited to particular human style
techniques.

@ ksudokul6 and ksudoku25 — a collection around 30 instances
(various difficulties) generated with KSudoku. Contains larger
16 x 16 and 25 x 25 puzzles.3

3Generating “hard” instances is a difficult problem.
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Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas—Rachford method
top95 topl465 reglib-1.3 minimall000 ksudokul6 ksudoku25
86.53 93.69 99.35 99.59 92 100

. Distribution of iterations to solve top95 instances Distribution of iterations to solve minimal1000 instances
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Number of iterations

e If a instance was solved, the solution was usually found within the
first 2000 iterations.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku® cannot be solved reliably (20.2% success rate) by
the Douglas—Rachford method.

7 9 5
1 3
2|3 7
415 7
8 2
6|4
9
8 6
5|4 7
N Al escargot N “Nasty' Sudoku
0ss|
508 <
§ W Soud
H H
£ Son
20 H
\ 065
200 400 600 800 1000 1200 1400 o 500 1000 1500 2000 2500
\erations rarations

4This is a modified version of an example due to Veit Elser.

Jonathan Borwein (CARMA, University of Newcastle) Douglas—Rachford Feasibility Methods for Matrix Completion Problems



Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku® cannot be solved reliably (20.2% success rate) by

the Douglas—Rachford method.

7 9 5
1 3
2(3 7
415 7
8 2
6[4
9
8 6
5[4 7

Al escargot

Ty

¢

|

200 400 600 800 1000 1200 1400
terations

Normalized Distance from Solution

Other “difficult” Sudoku puzzles do
not cause the Douglas—Rachford
method any trouble.

@ Al escargot = 98.5% success
rate.

‘Nasty' Sudoku

W

o

Normalized Distance from Solution

500 1000 1500 2000 2500
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4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku® cannot be solved reliably (20.2% success rate) by

the Douglas—Rachford method.

7 9 5
1 3
2(3 7
415 7
8 2
6[4
9
8 6
5[4 7

Other “difficult” Sudoku puzzles do
not cause the Douglas—Rachford
method any trouble.
@ Al escargot = 98.5% success
rate.

Figure. Distance to the solution by iterations

Al escargot

Ty

¢

|

200 400 600 800 1000 1200 1400
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‘Nasty' Sudoku

'8

500 1000 1500 2000 2500
Iterations

1

Normalized Distance from Solution

o

4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5
1 3
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5 Success rate when any single entry
1 3 is removed:
AE 7 o Top left 7 = 24%
4ls 7 @ Any other entry = 99%
8 2
6|4
9 1
8 6
5[4 7
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5 Success rate when any single entry
1 3 is removed:
203 7 o Top left 7 = 24%
4ls 7 @ Any other entry = 99%
8 2
6|4 Number of solutions when any single
9 1 entry is removed:
8 6 o Topleft 7=5
5|4 4 e Any other entry = 200-3800

Is the Douglas—Rachford method hindered by
an abundance of ‘near’ solutions?
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Computational Results: Performance Comparison

We compared the Douglas—Rachford method to the following solvers:

@ Gurobi binary program — Solves the same binary model using integer
programming techniques.

@ YASS (Yet another Sudoku solver) — First applies a reasoning
algorithm to determine possible candidates for each empty square. If
this does not completely solve the puzzle, a deterministic recursive
algorithm is used.

© DLX - Solves an exact cover formulation using the Dancing Links
implementation of Knuth's Algorithm X (non-deterministic,
depth-first, back-tracking).

Table. Average Runtime (seconds).®
top95  reglib-1.3  minimall000 ksudokul6 ksudoku25

DR 1.432 0.279 0.509 5.064 4.011
Gurobi  0.063 0.059 0.063 0.168 0.401
YASS  2.256 0.039 0.654 - -

DLX  1.386 0.105 3.871 - -

5Some solvers are only designed to handle 9 x 9 puzzles:
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

© Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences sy, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.

1

2 4122

2[3[1[1]5[a]1[5]2]1
[1]2]
[ 2]
| 1]
[ 1]
[ 2]
[2]4]
[2]6]
| [8]
[1]1]
[2]2]
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

© Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences sy, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

© Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences sy, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.

N
-
-
N
N
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

© Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences sy, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.

N
-
-
N
N
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Nonograms

A nonogram puzzle consists of a blank m x n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

© Each pixel must be either black or white.

@ If a row (resp. column) has a cluster-size sequences sy, ..., sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
s; black pixels.
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Nonograms

We model nonograms as a binary feasibility problem. The m x n grid is
represented as a matrix A € R™*" with

A j] = 0 if the (i,/)-th entry of the grid is white,
ST 1 ifthe (7,/)-th entry of the grid is black.

Let R; C R™ (resp. C; C R") denote the set of vectors having
cluster-size sequences matching row i (resp. column j). The constraints
are:

G ={A:Ali,;]eR; fori=1,...,m},
G={A:ALjleCforj=1,...,n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

Ae GGNG.

Jonathan Borwein (CARMA, University of Newcastle) Douglas—Rachford Feasibility Methods for Matrix Completion Problems



Nonograms: Computational Results

From 1000 random replications, the following nonograms were solved in
every instance.

A parrot. The number . “"Hello from CARMA" .
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Nonograms: Computational Details

e Computing the projections onto C; and G, is difficult.
@ We do not know an efficient way to do so.
o Our approach: Pre-compute all legal cluster size sequences (slow).

@ Only a few Douglas—Rachford iterations are required to solve (fast).
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Nonograms: Computational Details

e Computing the projections onto C; and G, is difficult.
@ We do not know an efficient way to do so.
o Our approach: Pre-compute all legal cluster size sequences (slow).

@ Only a few Douglas—Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections
but require many more iterations.

This suggests the following:

Trade-off between simplicity of projection operators and the number
of iterations required.
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Nonograms: An example

Iteration: 0 (random initialisation)
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Nonograms: An example

Iteration: 1
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Nonograms: An example

Iteration: 2
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Nonograms: An example

Iteration: 3
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Nonograms: An example

Iteration: 4
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Nonograms: An example

Iteration: 5
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Nonograms: An example

Iteration: 6 (solved)
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GCHQ'’s 2015 Christmas Puzzle

Scchow

WHOWEARE WHATWEDO HOWWEWORK CESG CAREERS
PRESS & MEDIA

You are here -~ Home /s & fe

A Christmas card with a cryptographic twist for charity
News article - 7 Dec 2015

This year, along with his traditional Christmas cards, Director GCHQ Robert Hannigan is including a brain-teasing puzzle that seems certain to exercise the
grey matter of participants over the holiday season.

The card, which features the 'Adoration of the Shepherds' by a pupil of Rembrandt, includes traditional Christmas greetings from Director on behalf of the
department. However, unlike previous years, the 2015 card will contain a grid-shading puzzle and instructions on how it should be completed. By solving this
first puzzle players will create an image that leads to a series of increasingly complex challenges.

Once all stages have been unlocked and completed successfully, players are invited to submit their answer via a given GCHQ email address by 31 January
2018. The winner will then be drawn from all the successful entries and notified soon after. Players are invited to make a donation to the National Society for
the Prevention of Cruelty to Children, if they have enjoyed the puzzle.

People who enjoy puzzles, but who are not yet on Director's Christmas card list, need not worry. The first puzzle can be seen below.

5Kudos to Veit Elser who made us aware of the puzzle.
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GCHQ'’s 2015 Christmas Puzzle

The solution is a QR code which directs to the following website.

Qacrow?

WHOWEARE WHATWEDO HOWWEWORK CESG CAREERS
PRESS & MEDIA

You are here - Home

Director GCHQ's Christmas Puzzle - Part 2

Congratulations on solving Part 1 of the Director's puzzle.
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Protein Conformation Determination and EDMs

Proteins are large biomolecules comprising of multiple amino acid chains.

H
H H g
H
R
Generic amino acid Myoglobin

They participate in virtually every cellular process, and knowledge of
structural conformation gives insights into the mechanisms by which they
perform.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Djj) € R™*™ is a Euclidean distance matrix (EDM) if there
exists points pi,...,pm € R9 such that

Dy = llpi — plI*.

When this holds for points in RY, we say that D is embeddable in R9.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6A). For IPTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Djj) € R™*™ is a Euclidean distance matrix (EDM) if there
exists points pi,...,pm € R9 such that

Dj = [|pi — pjlI*-
When this holds for points in RY, we say that D is embeddable in R9.

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in R® where s := 3,
knowing only short inter-atomic distances.
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A Feasibility Problem Formulation

Denote by @ the Householder matrix defined by

2w’ T m
Q::Ifﬁ,wherev: [1,1,...,1,1+\/m e R"™.

Theorem (Hayden—Wells 1988)

A nonnegative, symmetric, hollow matrix X, is a EDM iff X € Rm=1x(m=1) i

Q(_X)Q:[ X d}

dT FY (*)
is positive semi-definite (PSD). In this case, X is embeddable in RY where
g = rank(X) < m — 1 but not in R

Let D denote the partial EDM (obtained from NMR), and Q C N x N the
set of indices for known entries. The problem of low-dimensional EDM
reconstruction can thus be case as a feasibility problem with constraints:

G ={XeR™™: X >0,X;=Dj for (i,j) € Q},
G = {X e R™™: X in (%) is PSD with rank X < s := 3}.
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A Feasibility Problem Formulation

Recall the constraint sets:

G = {X eR™M. X > O’X’J = D,J for (I7J) € Q}
G = {X €eR™™: X in () is PSD with rank X < s := 3}.

Now,
e (; is a convex set (intersection of cone and affine subspace).
e G is convex iff m < 2 (in which case G, = R™*™).

For interesting problems, C, is never convex.
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X eR™™: X in () is PSD with rank X < s := 3}.
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X eR™™: X in () is PSD with rank X < s := 3}.

The projection onto G is given (point-wise) by

o D; if (i,)) € Q,
Pe(X)j = { max{0, Xjj}  otherwise.
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Computing Projections and Reflections

Recall the constraint sets:
G ={XeR™™:X >0,X; = Dj for (i,j) € Q},
G = {X eR™™: X in () is PSD with rank X < s := 3}.

The projection onto G is given (point-wise) by

o D; if (i,)) € Q,
Pe(X)j = { max{0, Xjj}  otherwise.

The projection onto G, is the set

y d} X € R(m=1)x(m—1)

d X o o
PCZ(X):{_Q[dT 5]Q:Q(_X)Q:[d7 5| derm1 5eR, YEPSSX}’

where S; is the set of PSD matrices of rank s or less.

o~

e Computing Ps (X) = spectral decomposition — threshold eigenvalues.
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The Algorithmic Approach

The reconstruction approach can be summarised as follows:

Partial EDM

v
Reconstruct
EDM using

Douglas—Rachford

Convert EDM
to points in R3

Draw using
Swiss-PdbViewer®

Random
initialization

Ihttp://spdbv.vital-it.ch/
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Experiment: Six Test Proteins

Experiment: We consider the simplest realistic protein conformation

determination problem.

NMR experiments were simulated for proteins with known conformation
by computing the partial EDM containing all inter-atomic distances < 6A.

Table: Six proteins from the RCSB Protein Data Bank.”

Protein # Atoms # Residues  Known Distances
1PTQ 404 50 8.83%
1HOE 581 74 6.35%
1LFB 641 99 5.57%
1PHT 988 85 4.57%
1POA 1067 118 3.61%
1AX8 1074 146 3.54%

2http://www.rcsb.org/

Jonathan Borwein (CARMA, University of Newcastle)
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Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein  Problem Size  Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7)  0.02 (0.02)  0.08 (0.09)
1HOE 168,490 727 (-69.3) 019 (0.26) 2.88 (5.49)
1LFB 205,120 476 (-45.3) 324 (3.53) 21.68 (24.00)
1PHT 236,328 60.5 (-58.1)  1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1)  34.09 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-435)  9.69 (10.36) 58.55 (62.65)

@ The reconstructed EDM is compared to the actual EDM using:

[1Paxn — PBRAXnH2>

Relative error (decibels) = 10log;, ( Pl
AXn

@ The reconstructed points in R3 are then compared using:

m 1/2
RMS Error = <Z |z — z,fCt”a|||2> , Max Error = ,max |z — zg<wal|),

e

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein  Problem Size  Rel. Error (dB) RMS Error Max Error
1PTQ 81,406 83.6 (-83.7)  0.02 (0.02) 0.08 (0.09)
1HOE 168,490 727 (-69.3)  0.19 (0.26)  2.88 (5.49)
1LFB 205,120 476 (-45.3) 324 (3.53) 21.68 (24.00)
1POA 568,711 493 (-48.1)  34.00 (34.32) 81.88 (87.60)
1AX8 576,201 467 (-43.5)  9.69 (10.36) 58.55 (62.65)

@ The reconstructed EDM is compared to the actual EDM using:

[1Paxn — PBRAXnH2>

Relative error (decibels) = 10log;, ( Pl
AXn

@ The reconstructed points in R3 are then compared using:

m 1/2
RMS Error = <Z |z — z,fCt”a|||2> , Max Error = ,max |z — zg<wal|),
pet =1,...

s

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins

1HOE (actual) 1LFB (actual) 1POA (actual)
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Experiment: Six Test Proteins

1HOE (-72.7dB) 1LFB (-60.5dB) 1POA (-49.3dB)

1HOE is good, 1LFB is , and 1POA has two good pieces.
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions.
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.

Atom Clusters for 1POA Reconstruction
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Experiment: Six Test Proteins

Let's take a closer look at the bad 1POA reconstructions. We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.

Atom Clusters for 1POA Reconstruction Atom Clusters for 1POA

@ The reconstructed protein’s clusters splits actual conformation nicely
in two 'halves’.
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Experiment: A Better Stopping Criterion?

Optimising our implementation gave a ten-fold speed-up. We performed
the following experiment:

1POA
1HOE
1LFB

1PHT
1POA

Relative Error

10® 5000 10000 156007 - mnm_ 25000 30000
Iterations

Figure: Relative error by iterations (vertical axis logarithmic).

e For < 5,000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

o Early termination to blame? — Terminate when error < —100dB.

Douglas—Rachford Feasibility Methods for Matrix Completion Problems
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A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB
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A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps, -100dB (perfect!)

a8 o ata) ed {o be ~t+h e praotain
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Experiment: Why Use the Douglas—Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas—Rachford method?

&

Iterations: 4
First 3,000 steps of the 1PTQ reconstruction
http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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1PTQ.swf
Media File (application/x-shockwave-flash)

http://carma.newcastle.edu.au/DRmethods/1PTQ.html

Experiment: Why Use the Douglas—Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas—Rachford method?
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Experiment: Why Use the Douglas—Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas—Rachford method?

A simpler projection method is the method of alternating projections.
Given a point yo € H is given by the fixed-point iteration

Yn+1 € PCZPCl}/n-

Douglas—Rachford Feasibility Methods for Matrix Completion Problems
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Experiment: Why Use the Douglas—Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas—Rachford method?

A simpler projection method is the method of alternating projections.
Given a point yo € H is given by the fixed-point iteration

Ynt1 € PCZPC1Yn~

Before reconstruction | Douglas—Rachford method reconstruction:

500 steps, -25 dB 1,000 steps,-30 dB 2,000 steps, -51 dB

1PTQ (actual) Method of alternating projections reconstruction:

L1K1 K]

500 steps,-22 dB 1,000 steps, -24 dB 2,000 steps, -25 dB
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Experiment: Why Use the Douglas—Rachford Method?

Theorem (Basic behaviour of the Douglas—Rachford method)

Suppose Gy, G, are closed convex subsets of a finite dimensional Hilbert
space H. For any xo € H, define xp,11 = T, c,%n-

Q If GG N G #0, then x, — x such that P, x € Gi N G.
QIfFGNG = (0, then HX,,H — +00.
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Experiment: Why Use the Douglas—Rachford Method?

Theorem (Basic behaviour of the Douglas—Rachford method)

Suppose Gy, G, are closed convex subsets of a finite dimensional Hilbert
space H. For any xo € H, define xp,11 = T, c,%n-

Q If GG N G #0, then x, — x such that P, x € Gi N G.
QIfFGNG = (0, then HX,,H — +00.

@ The Douglas—Rachford method can be sensitive to perturbations in
the constraint sets.

@ In contrast the alternating projections sequence might still converge
even if the intersection is empty.

@ Perhaps the Douglas—Rachford method’s instability stops it from
getting ‘stuck’ in local minima.
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lonic Liquid Chemistry

lonic liquids (ILs) are salts (i.e., they are comprised of positively and
negatively charged ions) having low melting points, and typically occupy
the liquid state at room temperature.

H 9 J9 )
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lonic Liquid Chemistry

lonic liquids (ILs) are salts (i.e., they are comprised of positively and
negatively charged ions) having low melting points, and typically occupy
the liquid state at room temperature.

@ An analogous EDM reconstruction problem arising in the context of
ionic liquid chemistry is to determine a given ionic liquid's
coloralertbulk structure. That is, the configuration of its ions with
respect to each other (the structure of the individual ions is known).

Entries of the partial EDM are assumed to be known whenever the two
atoms are bonded (i.e., when their Van der Waals radii overlap)

H

\—$1H NO, '
H b J9 )

An ethylammonium nitrate (EAN) ion pair (melting point 12°C).
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lonic Liquid Chemistry

Dr Alister Page, a chemist at UoN, provided us with a propylammonium nitrate
(PAN) data set consisting of 180 atoms. The corresponding rank-3 EDM
completion problem has a total of 32,220 non-zero inter-atomic distances of
which 5.95% form the partial EDM.
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lonic Liquid Chemistry

Dr Alister Page, a chemist at UoN, provided us with a propylammonium nitrate
(PAN) data set consisting of 180 atoms. The corresponding rank-3 EDM
completion problem has a total of 32,220 non-zero inter-atomic distances of

which 5.95% form the partial EDM.
Table: Average (worst) results for PAN: five random replications, ¢ = 107>,

EDM-Error Position-Error Iterations
0.6323 (0.6918) 2.0374 (2.5039) 41553.2 (82062)

oo 37
e }u‘;

The bulk structure (left) and the reconstruction (right).
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Automated Road Design

Consider the following problem arising in the automated design of road
alignments:®A road is to built between two cities. The (horizontal) route has
already been decided but the (vertical) road profile has not. A civil engineer
seeks a profile which satisfied various regulations dictated by civil design
standards. The model is:

|, A - O road connections h

0 6,206 12,412 18,618 24,825
T [meter]

8Courtesy of Bauschke & Koch (2013). Example is design for a highway near
Kelowona (Canada) for a design speed of 130km/h and maximumsslope of 4%:
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Automated Road Design

Consider the following problem arising in the automated design of road
alignments:®A road is to built between two cities. The (horizontal) route has
already been decided but the (vertical) road profile has not. A civil engineer
seeks a profile which satisfied various regulations dictated by civil design
standards. The model is:

@ The ground profile, g : [a, b] — R for some interval [a, b], gives the

elevation above of existing ground.

@ The initial design profile, fy : [a, b] — R (to initialise the algorithm).

@ Profile must pass through given points (e.g., connect to existing roads).

@ Other constraints regarding the curvature and slope of the profile.

400 1 8 £ —f O o comecron
|

0 6,206 12,412 18,618 24,825
T [meter]

’ The goal is to find a road design f : [a, b] — R satisfying these constraints.

s

8Courtesy of Bauschke & Koch (2013). Example is design for a highway near
Kelowona (Canada) for a design speed of 130km/h and maximumsslope of 4%:
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Automated Road Design

We assume that we are given a sequence breakpoints
a=th <t<--<ty:=b,
thus our solution f is a linear spline, parametrised by a vector x € R,

f(T = 7Xi+1 — X (T — i‘,‘) =+ X for T E [t,', t;+1].
tiy1 — &
——

slope

Our problem is therefore reduced to finding a vector x € R™ satisfying
the three types of constraints.
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mated Road Design

We consider the following types of constraints (in terms of x € R™).
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Automated Road Design

We consider the following types of constraints (in terms of x € R™).
@ Interpolation constraints: The value of f(t;) is given for all i € | where /
is some index set (the road must pass through a given point):

G :={x:x;=y forall i€ l}.
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Automated Road Design

We consider the following types of constraints (in terms of x € R™).
@ Interpolation constraints: The value of f(t;) is given for all i € | where /
is some index set (the road must pass through a given point):

G :={x:x;=y forall i€ l}.

@ Slope constraints: The road cannot be too steep or too flat (to allow
water to drain):

G = m {x:ai <|xis1 — x| < Bi},
i even

where «;, B; > 0. Gs is the analogous intersection over odd indices. Both
C; and G; are non-convex constraints!
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Automated Road Design

We consider the following types of constraints (in terms of x € R™).
@ Interpolation constraints: The value of f(t;) is given for all i € | where /
is some index set (the road must pass through a given point):

G :={x:x;=y forall i€ l}.

@ Slope constraints: The road cannot be too steep or too flat (to allow
water to drain):

G = m {x:ai <|xis1 — x| < Bi},

i even

where «;, B; > 0. Gs is the analogous intersection over odd indices. Both
C; and G; are non-convex constraints!

@ Curvature constraints: The change in slope between adjacent splines
cannot be too severe:

Xi — X Xi — X
{X i Z i+2 i+1 o i+1 i 2 5,} ’
tivo — tit1 tivi — &

where d;,y; € R. Intersections of these of constraints form C4, Cs and Gs.
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Automated Road Design

We consider the following types of constraints (in terms of x € R™).
@ Interpolation constraints: The value of f(t;) is given for all i € | where /
is some index set (the road must pass through a given point):

G :={x:x;=y forall i€ l}.

@ Slope constraints: The road cannot be too steep or too flat (to allow
water to drain):

G = m {x:ai <|xis1 — x| < Bi},
i even

where «;, B; > 0. Gs is the analogous intersection over odd indices. Both
C; and G; are non-convex constraints!

@ Curvature constraints: The change in slope between adjacent splines
cannot be too severe:

Xi — X Xi — X
{X i Z i+2 i+1 o i+1 i 2 5,} ’
tivo — tit1 tivi — &

where d;,y; € R. Intersections of these of constraints form C4, Cs and Gs.

In total, we have six constraints. Partitioning of slope and curvature constraints

allows for efficient computation of their projections (details not discussed here).
Jonathan Borwein (CARMA, University of Newcastle)
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Commentary and Open Questions

@ The Douglas—Rachford method applied to non-convex problems performs
better than theory suggests.

@ Approach is novel since we directly solve a non-convex problem.
@ Ongoing work is focusing on conditions for local convergence.

@ The Douglas—Rachford method is a general purpose algorithm —
potential for problem specific improvements. For instance, for protein
reconstruction we have used:
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Commentary and Open Questions

@ The Douglas—Rachford method applied to non-convex problems performs
better than theory suggests.

@ Approach is novel since we directly solve a non-convex problem.
@ Ongoing work is focusing on conditions for local convergence.

@ The Douglas—Rachford method is a general purpose algorithm —
potential for problem specific improvements. For instance, for protein
reconstruction we have used:

e Updating projection using heuristics (fixed or infrequent updates).
o Imposing additional constraints on protein distances.
@ Other fruitful applications? We have also applied our EDM approach to a
bulk structure determination problem arising in ionic liquid chemistry.

@ The importance of modelling in areas such as integer programming has
long been emphasised but less so here. Our study suggests it is equal as
important!

When presented a problem, it is worth seeing if Douglas—Rachford can deal
with it — it is conceptually simple and easy to implement.
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Exercises

@ (Projections onto permutation sets) Denote by C C R the set of all

vector whose entries are permutations of ci, ¢, ..., cm € R. Show that for
any x € R™,

ch = [C]X7

where [C]x is the set of vectors y € C such that ith largest index of y has
the same index in y as the ith largest entry of x, for all indices i.

@ Prove that the two Hadamard formulation are equivalent. That is,
CiN G = G N G where

G ={XeR™X;==1fori,j=1,...,n},
G :={X eR™"X"X =nl},
G :={X eR™"X"X = ||X]||I}.

© (Hard) Find an efficient method to compute the nonogram projections.
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