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0. STATEMENT OF THE PROBLEM; EXAMPLES. 

The best known fixed point results in infinite dimensional spaces are undoubtedly the 
Banach contraction mapping principle and the Schauder-Tychonoff fixed point theorem. 

(0.1) THEOREM (Banach contraction mapping principle): Let (X, d) be a 
complete metric space and let T : X -+ X be a strict contraction; that is, for 
some k E [O, I ) ,  d(Tx, Ty) 5 kd(x, y) for all x, y E X.  Then T has a unique fixed 
point xo in X.  Further, for any point xl E X and n E N we have 

(0.2) THEOREM (Schauder-Tychonoff fixed point theorem): Let C be a 
compact convex subset of a locally convex topological vector space. Then 
every continuous mapping T : C -+ C has a fixed point. 

In Theorem (0.1) a stringent form of continuity is imposed on the mapping T ,  while 
the assumption on the domain X is minimal for the existence of a fixed point. 

On the contrary, in Theorem (0.2) a minimal condition is imposed on the mapping 
while the nature of the domain C is heavily constrained. 

The questions with which we will be concerned are in a sense intermediate to these 
two results. More specifically, we will be interested in identifying Banach spaces X with 
one or other of the properties listed below. 

A mapping T : C X -+ C is nonexpansive if llTx - TyJI < llx - ~ 1 1  for all x, y E C. 

The fixed point property, FPP: X has the FPP if every nonexpansive self-mapping of 
a nonempty closed convex subset of X has a fixed point. 

The weak fixed point property, w-FPP: X has the w-FPP if every nonexpansive 
self-mapping of a nonempty weak compact convex subset of X has a fixed point. 

The weak* fixed point property, w*-FPP: A dual space X *  has the w*-FPP if every 
nonexpansive self-mapping of a nonempty weak*-compact convex subset of X *  has a fixed 
point. 

One reason why deciding which spaces have the w (w*)-FPP is both intriguing and 
difficult is that the continuity condition on the mapping is in a different (stronger) topology 
than the compactness of the domain. 
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For a reflexive space all three properties coincide. In general FPP + w-FPP and for 
a dual space FPP + w*-FPP + w-FPP. A natural advantage of the w*-FPP is the ready 
supply of w*-compact subsets guaranteed by the Banach- Alaoglu theorem. 

SOME EXAMPLES 

(0.3) co fails the FPP. Let C = B z  := {(x,) E co : 0 5 x, 5 1, all n) and define T by 

Then for any z, Y - E co we have (IT -T ?/ 1 1  = 1 1  - I ( ,  so T is nonexpansive and T maps 

1 1 1  C into C. On the other hand the only possible fixed point for T is (2,  2 ,2 ,  . . .) 6 co. 

As a general problem we have: 

QUESTION. If X has the FPP is X necessarily reflexive? We remark that as a con- 
sequence of van Dulst and Pach [1981]; if every space finitely representable in X has the 
F.P.P. then X is superflexive. That is, "super-F.P.P." implies superreflexivity. Their re- 
sult is particularly interesting in that the set C and fixed point free isometry on it are 
constructed from a "tree". 

(0.4) [Lim, 19801 El with the equivalent dual norm I (  f ( 1 '  := 1 1  f+lll V I (  f - I l l  fails - - - 
1 the w*-FPP. We first show that 1 1  - 1 1 '  is indeed an equivalent dual norm for 4. To this 
1 end, for E co define 1 
j 

i 1 1  5 I 1  := Il"Ilm + 115- llm 

Then 1 1  1 1  is an equivalent norm on co satisfying 1 )  z 11, 5 ( 1  z 1 1  5 211 z 11, and so it suffices 

to show that for f E El we have - 

~ For z E co with IIzII 5 1 let 

X i  if f ixi  > O 
Yi = { 0 otherwise. 
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a convex combination of 

IIf+IIl and I I ~ -  III 

5 ( l l f f l l l  v llf-ll1)llylI 

5 I1 f 11'-  

To see the reverse inequality note that 11 f + 1 1  1 (or ( 1  f - 1 1  can be approximated arbitrarily - 
well by f (x) where the xi are a suitable choice of 0 or 1 (0 or -1) and so 1 1  a: ( 1  5 1. - 

Now let C = {f E ll : fi 2 0,II f 11' < 1) and define T by - - 

Then C is a weak*-compact convex subset of Il and it is readily verified that T is a 
fixed point free affine mapping of C into C. We conclude by showing that T is an isometry 
(hence certainly a non- expansive mapping) on C. 

Given f,! E C let P := { i :  fi -gi 2 0) and N := { i :  fi -gi < 0). In the case that - 
C (fi - gi) 2 C (9; - f i )  we have 
i€P i€N 
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and 

\ " / 

negative 

The equality follows similarly in the case when I( f - g (1 '  = C ( g i  - f i ) .  
I - 

i € N  

(0.5) L1(p )  fails the w-FPP. Although the question had been raised more than twenty 
years earlier it was not until 1981 that Dale Alspach gave an example, drawn from ergodic 
theory, showing that not all Banach spaces enjoy the w-FPP. 

(0.5.1) Alspach's example [Alspach, 19811 Here we take C to be the set 

As the intersection of an order interval with a hyperplane in an order continuous Banach 
lattice, C is weak compact. 

The mapping T is essentially the baker transform of ergodic theory illustrated below. 
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Formally, for f E C 

Tf(t) := { (2f (2t)) A 1 
f o r O < t <  f ;  

(2f(2t - 1)-1)VO for f < t < 1. 

It is clear from the above description that T is an isometry on C. 

We now show that T is fixed point free. 

Intuitively the idea is simple. First observe that the successive iterates of any point in 
C under T assume values closer to 0 or 1. Hence any fixed point for T must be a function 
which assumes only the values 0 or 1. By the "ergodic" nature of T it then follows that 
such a function must be either constantly 0 or const ant ly 1, and neither of these functions 
lie in C. 

The details follow. 

For any f E C we have T f (t) = 1 if and only if either 

o < t  <; and f < f(2t) 5 1  

1 < t < 1  2 and f (2 t -1 )=1 .  
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Now, suppose f is a fixed point for T  then 

A  := { t :  f ( t )  = 1 )  

= {t  : T f ( t )  = 1 )  

= {t  : O < t  < f and f < f(2t) < l ) U { t :  f < t  < 1 and f(2t - 1 )  = 1 )  

= { f t : '  2 < - f ( t )  < l ) U { f  + i t :  f(t) = 1 )  

= f { t :  f < f ( t )  < 1)u  fAU(f  + +A) 

Since the three sets in the above union are mutually disjoint and each of the last two sets 
has measure one half that of A  it follows that: 

is a null set. But, then 
B, = {t : $ 5  T f ( t )  < 1 )  

3 { f :  i < f ( t ) <  $1 
and so B2 := {t  : 2 5 f(t)  < f ) is also a null set. Continuing in this way we have 

1 1 
Bn:= { t :  - < f ( t )  < 

2" - 

is a null set for n = 1, 2, . . . , hence 

00 

{ t :  0 < f ( t )  < 1 )  = U Bn 
n= 1 

is null and 
1 f = X A  (where meas (A) = 2.). 

From the definition of T  we have 

SO, up to sets of measure zero, 

Continuing to iterate under T  yields 

et hoc genus omne. 
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Thus the intersection of A with any dyadic interval (and hence any interval) has 
measure one half that of the interval, an impossibility for a set which is not of full measure. 

(0.5.2) Sine's modification of the  Alspach example Robert Sine [I9811 gave the 
following modification to the example of (0.5.1) which allows us to take as the domain C 
of our fixed point free nonexpansive mapping the whole order interval of 0 5 f 5 1. 

For f E C := {g : 0 j g < 1) let Sf := x [ ~ , ~ I  - f ,  
then S defines a mapping of C onto C with I(Sf - Sgll = 1 1  f - gll for all f ,g  E C. 

An argument similar to that for Alspach's example shows that the composition ST, 
where T is the baker transform of (0.5.1), is an isometry on the order interval 0 < f 5 1 
with XA where A = [O, 11 or q5 the only possible fixed points. However, the action of S T  
is to map each of these functions onto the other, hence S T  is fized point free o n  the order 
internal 0 < f j 1. 

(0.5.3) Schechtman's construction. Gideon Schechtman [I9821 gave a construction 
which leads to a greater variety of examples and is somewhat simpler than that of Alspach. 

I Suppose (52,  E, p) is a measure space for which there exists a measure presening 
transformation r : 52 -, 52 x [O, 11; that is, for any measurable S C_ 52 x [O, 11 we have 

! 

i p(r-lS) = meas (S) [Halmos, 19561. Then if C is the weak compact convex set 

C : =  {f E L l ( p ) : O s  f < 1 and 

I 

i 
i we can define a mapping T : C --, C by 
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Clearly T is an isometry on C and f E C is a fixed point for T if and only if f = X A  

where A E C is such that d A )  = $ and +(A) := r-'(A x [0, 11) = A a.e.  

Thus if r is further chosen so that .i is "ergodic"; that is +(A) = A a .  e. if and only if 
A = R or A = 4, then T i3 an ezample of a fized point free nonezpan~ive mapping on C .  

Perhaps the simplest ezarnple of an (R, C, p )  and r suitable for the above construction 
is the following. 

Let R = [0, 1 I N o  with product Lebesgue measure and define r by 

Clearly r is measure preserving, further if A # 4 and +(A) = A, then for any 
(w1 , w2, . . .) E A we see that (t, w i  , w2, . . .) E A for any t E [0, 11 . Iterating under + gives 
( t i ,  t2, ..., tn, w i ,  ~ 2 ,  ...) E Aforany n E N and t i ,  t z ,  ..., t, E [ O , l ] ,  and so we have 
A = R. 

An alternative example with R = [O, 11 is obtained by taking 

where E,, 6, E {O,1) for n = 1,2, . . . A good way to view this example is via the corre- 
spondence 

The measure of a set specified by prescribing precisely m of the E,'S being 1 /2m. It is then 
clear that the product of two such sets has measure 1/2ml+m2 where ml + m2 is also the 
number of digits prescribed for points in the T-I image of the product. It follows that r 
is measure preserving. The ergodicity is estabished by iterating under .i and an argument 
similar to that used for the conclusion of Alspach's example. 
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(0.5.4) Remarks Schechtman's construction is both simpler and more versatile than that 
of Alspach and is of course also amenable to Sine's modification. None-the-less, the Alspach 
example has some advantages. The relatively simple action of the baker transform permits 
detailed calculations. For example, it is possible to determine the orbit f o ,  T fo,  T2  fo ,  
T v 0 ,  . . .of certain functions fo  under T. If fo = fX[o , l l  we obtain the iterates depicted 
below. 

1 P"i ri 
m m m  m 1 1 a m m m  

1 - I I I  a m a a  
I . .  1 . 1  

2 m a ,  m s a m m m a  
I # #  1 1 m m m m a  
I . .  . . m . m m .  
I . .  . . m . m , ,  

O o  1 0 1 0  1 0 1 
fo - Tfo T2fo T3f0 

Here we see that the sequence T n  fo = f (r, + 1) is an orbit under T, where rn  is the 
n'th Rademacher function. 

PROBLEMS: 

These examples indicate an intimate connection between fixed point free isometries 
and ergodic transformations of the underlying measure space. In the true tradition of 
ergodic theory, is the set of fixed point free isometries on the order interval [0 _< f _< 11 
residual in an appropriate sense, at least among isometries which map into the set of 
0,l-valued functions? 

Clearly any space containing an isometric copy of L1 ( p )  also fails the w-FPP. What do 
the examples look like when translated into l,, C[O, 11 ? 

Examples 0.4 and 0.5 also suggest the following question. If a space X fails the (w, 
w*)-FPP does it necessarily fail with an isometry? 

All the examples presented in this section have been negative in nature, besides helping 
delineate the problem; this seems only fair since in the remainder of these notes we will be 
concerned with positive results. As a start in this direction we close the section with two 
simple observations. 

(0.6) PROPOSITION: If X fails any of the fixed point properties, then given 
any point xo E X there exists a (w*, w-compact) closed bounded convex set Co 
with xo E Co and diam (Co) := sup Ilx - yll = 1, and there exists a Axed point 

x,y ECo 
free nonexpansive mapping To : Co -, Co. 

Proof: If X fails the (w,w*)-FPP then there exists a (w,w*-compact) closed 
bounded convex subset C and a fixed point free nonexpansive mapping T : C -, C. C 
must contain more than one point (otherwise the solitary element would be fixed by T), 
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1 
hence d = diarn (C) > 0. Choose XI  E C and let Co := d(C - X I )  + xo and define 

A simple calculation now verifies the claim. I 

Proposition (0.6) will be used, often without comment, throughout the sequel to 
simplify calculations. 

The next result should also be of use, though as far as I know it has rarely played a 
significant role in the theory. 

Clearly a space has the w-FPP (or FPP) if and only if all of its closed subspaces do. 

(0.7) PROPOSITION: The w-FPP and the FPP are separably determined. 

Proof: If X fails the (w-)FPP then there exists a (w-compact) closed bounded convex 
subset C and a fixed point free nonexpansive mapping T : C -+ C. Choose any point 
c  E C. Let K1 = { c )  and inductively define Kn by 

00 

Let K = U Kn,  then K is a separable closed convex (and hence weak compact if C is) 
n = l  

subset of C. 

Claim: K is invariant under T .  Let x E K. Given E > 0 there exists y E Kn for some n 
with 112 - ylJ < E, but then Ty E Kn+1 K and llTx - Tyll j E, so T x  E K establishing 
the claim. 

The result now follows by considering the set K and T restricted to K, in the separable 
closed subspace spanned by K. I 

An analogous result for the w*-FPP in dual spaces would be useful, but appears not 
to be known. 
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1. MINIMAL INVARIANT SETS 

Given a weak(weak*)-compact convex set C and a nonexpansive map T : C -+ C in 
a Banach space X, let K = K(C, T)  denote the class of nonempty weak (weak*)-compact 
convex subsets of C which are invariant under T (S is invariant under T if T(S) S). 
If K is partially ordered by inclusion the weak (weak*)-compactness ensures that the 
intersection of any decreasing chain of sets is a lower bound for the chain in K. Thus we 
may apply Zorn's lemma to establish the existence of a minimal element of K. We shall 
refer to such a minimal element as a minimal invariant subset for T (Minimality within 
the class K being understood). 

OBSERVATIONS 

(1.1) If C is weak-compact and D is a minimal invariant subset for T then D = Z T ( D ) .  
(In the weak* case we must take the w *-closed convex hull.) 

(1.2) If D is a weak-compact minimal invariant set, then D is separable. If this were not 
the case then proposition (0.7) would give the existence of a smaller invariant subset 
of D. 

(1.3) X has the w (w*) -FPP if and only if all minimal invariant subsets for nonexpansive 
mappings are "singleton" sets; that is, have only one element (or equivalently, have 
zero diameter). 

The w (w*)FPP has been established by indentifying specific properties of minimal 
invariant sets and then imposing conditions on the space which preclude the existence of 
sets, other than singelton sets, with these properties. 

A useful tool has been the existence of approzimate f ied  point sequences: Given a 
nonexpansive map T : C -, C on a closed bounded convex set C choose xo E C and for 
X E [ O , l )  define TA : C -+ C by 

Tx is a strict contraction and so by the Banach contraction mapping principle has a unique 
fixed point xx in C with 

((xx - Txx ) I  = (1 - X)JJxo - Txx 1 )  
5 (1 - A )  diam (C). 

Thus llxx - Txxll + 0 as X -+ 1. In particular, letting X = (1 - i) we obtain a sequence 
of approximate fixed points of T;  (x,) with JJx, - Tx,II -+ 0. 
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(1.4) PROPOSITION: the set {xx : X E [ O , l ) }  is a connected arc in C. 

Proof. We show the mapping [O,1 )  + C : X I+ xx is continuous. Given A ,  P E [ O , 1 )  

where B is a bound on the norms of elements in C. Thus, 

In particular putting X = 1 - ! in the above proof we have 

Structure of minimal invariant sets 

Let T be a nonexpansive mapping of a w (w*)-compact convex subset and let D denote 
a w (w*)-compact minimal invariant set for T. 

(1.5) LEMMA: If $ : D + R is a weak (weak*) lower semi-continuous convex 
mapping with $(Tx) 5 $(x) for all x E D, then $ is constant on D. 

Proof. Since D is w(w*)-compact and $ is w(w*)-lower semi- contininuous, $ achieves 
its minimum on D. Let xo E D be such that $(xo) = inf $(D) and let E = {x E D : 
$(x) = $(xo)}, then E is a w(w*)-closed convex set which is invariant under T. Thus, by 
minimality E = D. I 

We will be particularly interested in three instances of such a $. 

(a) $(x) := SUP{(IX - Y II : Y E Dl 

(b) $(x) := lim sup, JJx  - X, I ( ,  
where D is weak compact and 

(i) (x,) is a sequence of approximate fixed points for T in D, 

(ii) (x,) is an orbit of T in D; that is, x, = Tnxo for some point xo E D. 
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The function defined in (a) is the radius of t h e  set  D abou t  x; 

rad(D,x) := sup{l(x - yll : y E D). 

A point of D about which the radius is the diameter of D is termed a diametral  point 
of D. 

The Chebyschev radius of D is 

rad(D) := inf rad(D, x) 
Z E D  

and the (possibly empty) Chebyschev centre of D is 

C(D) = {x E D : rad(D, x) = rad(D)). 

C(D) is convex if D is and if D is weak (or weak*) compact then C(D) is nonempty. 

We will say a set D is diametral  if rad(D) = diam(D); that is, if every point of D 
is a diametral point. Clearly this happens if and ony if D = C(D). 

That diametral sets consisting of more than one point can exist may at first seem 
strange. However it is readily seen that the set 

B: ={(xn) E C ~  : O I x n  51, all n )  

is a diametral subset of co. 

(1.6) T H E O R E M  (Brodskii- Milman, 1948/Garkarvi, 1962/Kirk, 1965): If 
D is a weak (weak*)-compact minimal invariant set  for a nonexpansive mapping 
then D is diametral. 

Proof. It suffices to verify that 

+(XI := sup{llx - yll : Y E D l  

satisfies the hypotheses for lemma (1.5), as then + is a constant on D with value equal to 

sup+(x) = sup sup ))x - yll = diam(D). 
Z E D  Z E D  y € D  

To complete the proof we first observe that 

+ = SUP llx - Y I I .  . * ( I )  
Y E co(T(D)) 

In the weak case this follows immediately from observation (1.1); =(T(D)) = D. 
In the weak*-case we have D = Z W * T ( D ) ,  so given E > 0 there exists a y, E D with 
$(x) - E I 111 - yell and a net y, tW* y, with y, E co(T(D)). Thus, since 



14 FIXED POINTS OF NONEXPANSIVE MAPS 

there exists a y E co (T(D)) with $(x) - 26 < llx - yll and so in this case we also have (1). 

From (1) it follows by standard convexity arguments that 

from which it is readily seen that $(Tx) < +(x), completing the proof. U 

SOME EXAMPLES 

(1.7) The domain C := {f E L1[O, 11 : 0 5 f < 1, f = f }  in the Alspach example (0.5.1) 
is not a minimal invariant set for the baker's transform. This follows since 

while for any f E C we have -1 5 f - f 5 f hence 

and so C is not diarnetral. 

Indeed the author knows of no example of a non-trivial minimal invariant set for a 
nonexpansive map on a weak compact convex set. 

(1.8) The domain C in Lim's example (0.4) is a w*-compact minimal invariant subset. 
To see this note that for any f = ( f m  ) E C we have as successive iterates 

etc. So Tn f - L ~ *  0, 

Thus 0 belongs to any T invariant w*-compact convex subset K of C. Hence the n'th 
basis vector, en = Tn(0), is in K. It follows that C = ={en} C K C, so K = C. 
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(1.9) THEOREM (Goebel, 1975/Karlovitz, 1976): If (x,) is a sequence of 
approximate fixed points for the nonexpansive mapping T in the weak compact 
minimal invariant set D, then 

1im))x-z,ll = diam(D), for all x E D. 
n 

We will call any sequence of points with this property a diameterizing sequence for D. 

Proof. Let (y,) be any sequence of approximate fixed points for T in D and define 

$(x) := lim sup ((x - y, 11. 
n 

By lemma (1.5) $ is constant on D with value k say. Let (ynj)  be a subsequence (net) 
with ynj -W yo then 

k L limsup 113 - ynjll 2 liminf Ilx - y n j l l  2 llx - Y , J ~ .  
j J 

Thus 
k 2 sup l)x - yo(( = diam(D) 

ZED 

by Theorem (1.6). 

Now taking as (y,) any subsequence (x,,) of (x,) we have 

limsup ))x - x,, ) I  = diam(D) 
k 

for all x in D and so 
limllx - x,ll = diam(D). 
n 

(1.10) COROLLARY: Given any e -> 0 and x E D there exists A E (0, l )  such the 
the segment {xx : X E (A, 1)) of the arc described in proposition (1.4) lies outside 
the ball of radius 
(1 - e )  diam (D) centred at x. 

(1.11) COROLLARY: If K is any compact subset of D then 

Proof. Assume not then there exists a subsequence (x,,) of (x,) and points y k  of K 
with 

for some €0 > 0. 
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Passing to a further subsequences if necessary we may, by the compactness of K, assume 
that yk -' yo. But then, 

limsup ((x,, - yoII 5 (1 - €0) diam (D), 
k 

contradicting theorem (1.9). I 

(1.12) COROLLARY: The minimal invariant set D contains a sequence of 
approximate Axed points for T satisfying 

n lim d i s t ( ~ , + ~ ,  co { ~ j ) ~ , ~ )  = diam ( co { ~ j ) j " , ~ ) ,  
n 

We will call any such sequence a diametral sequence. Clearly the closed convex hull of 
a diametral sequence is a diametral set with the sequence as a diameterizing sequence. 

Proof. Starting with any sequence of approximate fixed points proceed inductively to ex- 
tract the subsequence (2,) using K = co {xj);=l in Corollary (1.11). 

(1.13) REMARK: The argument in the first part of the proof to Theorem (1.9) applied 
to the function 

$(x) := limsup llx - Tnxo 11 
n 

establishes a similar result for orbits, namely; 

lim sup Ilx - Tnxo ) I  = diam (D). 
n 

for any x and xo E D. 

(1.14) COROLLARY: A non-trivial minimal invariant set D of the nonexpan- 
sive mapping T contains no periodic point of T. 

Proof. Suppose xo E D is a periodic point of T; that is, for some N E N 
1 N T ~ X O  = XO. Let x = p - TnxO, then by (1.13) we have 

lim sup Ilx - Tmxo 11 = diam (D), 
m 

which is difficult to reconcile with the fact that Tmxo E {Tnxo)~'l c Dl unless diam (D) = 
0. I 

I 

Before proceeding to new developments we pause to note an intriguing result of Edel- 
stein and 07Brien [1978]. It shows that without loss of generality we can assume that the 
sequence in (1.13) is not only an orbit for T but also an approximate fixed point sequence. 
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(1.15) THEOREM: Let C be a closed bounded convex subset of X and let 
T : C -t C be a nonexpansive mapping. Define U : C -t C by 

then )JUn+lx - Unx(( -t 0 uniformly for x E C. 

REMARKS. 

(i) It follows that (Unx) is an approximate fixed point sequence for any x E C. 

(ii) Since T and U have precisely the same (possibly empty) set of fixed points, we may 
without loss of generality replace T by U when considering the FPP. 

(iii) the conclusion remains valid if U is replaced by any of the nonexpansive maps 

Proof. Without loss of generality we take diam (C) = 1. Suppose the conclusion were 
not true, then for some €0 > 0 and all No E N there exists an N No and x E C with 

Choose M E N with M > 2/60 and let N,x be such that (1) holds with N > 2 M + 1 ~ .  Let 
x,, = Unx and yn = Tx, for n = 0,1, . . . , N then we have, by the nonexpansiveness of U 
and T, that 

and, by their definitions and the definition of U, for n = 0,1,. . . , N. 

From (3) and (4) we obtain 

, Now [eo , l] can be covered by 2M-1 subintervals each of length &, hence by (2) and the 
choice of N we can find a subinterval I = [b ,  b + &] of [eo, 11 which contains at least M 

/ successive numbers of the form 1 1  xn+l - xn 11. 
I 

r 
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That is, for some k 5 N - M  we have 

1  
b 6 J Ixk+n+l -  xk+nlJ 6 b + %mfl 

for n = l , 2 ,  ... ,.LW . . . ( 6 )  

Now choose f E X* with J l  f ( 1  = 1  such that 

Then by ( 6 )  and this choice off  we have 

Similarly 

continuing we obtain in general 

for n = 0 , 1 , 2 ,  ..., M - 1  ... (7 .n)  
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From this epidemic of (7's) we have: 

Hence 

and so 

diam (C) > Mb - 1, but b > €0 and M > 2/60. 

So we have the contradiction that diam (C) > 1. I 

(1.16) COROLLARY: If D is a w -compact minimal invariant set for the 
mapping U of Theorem (1.15), then for any x E D and xo E D we have 

lim (lx - Unxo 1 1  = diam (D). 
n 

Proof. If this were not so we could find a subsequence such that 

lim 112 - Unkxo 11 < d i m  (D). 
k 

Since (Unkxo) is an approximate fixed point sequence for U this contradicts Theorem 
(1.9). 

I 

Corollary (1.12) appears to endow minimal invariant sets with a richer structure than 
Limere" diametrality. Unfortunately, as we will now show, this is in a certain sense not the 
case. We show that every diametral set contains a diametral sequence which is necessarily 
a diameterizing sequence for its closed convex hull. 
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(1.17) THEOREM (Brodskii and Mil'man, 1948) Let D be a closed bounded 
convex subset of X which is diametral. Then there exists a sequence (3,) in D 
with 

lim n dist (zn+l, co { x ~ } E = ~ )  = diam (D). 

Proof. We construct the sequence (3,) inductively as follows. 

Choose any point of D as xl. Now suppose X I ,  3 2 , .  . . , xn have been selected. Let 
1 b : = - xk , the barry- centre of co {xk } f =1, then since D is diametral we can find a 
n 

point xn+l E D satisfying 1 1  b - xn+l 1 1  > d - 3, where d := diam (D). We show that the 
resulting sequence (x,) has the required property. 

To see this let x E c o { ~ ~ } f = ~ ;  that is x = xyakxk form some a k  > 0 with x y a k  = 
1. 

First observe that if y E co { ~ k } f , ~  and X E ( O , l ]  are such that b = AX + (1 - A)  y, 
then 

1 
d - - < Ilb - zn+lll n2 - 

So, d-& < 11x-~n+l 1 1  . . (1). 
Now 1 

is a convex combination of the xk, and so in co {xk}f=,, providedXar < ? for k .= 
1,2,. . . , n, which is certainly true if we take X = !. Thus (1) holds with X = ? and so we 
have 

1 
d - - I dist(x,+,, c o { ~ ~ } f = ~ )  

n 

establishing the claim. I 
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(1.18) COROLLARY: A compact convex set is necessarily non-diametral. 

Theorem (1.17) shows that a space contains a diametral set if and only if it contains 
a diametral sequence. A seemingly weaker characterization of this is the following, due to 
Landes [I 9841. 

(1.19) PROPOSITION: X contains a non-trivial diametral sequence if and 
only if X contains a sequence (x,) for which there exists a constant c > 0 with 
limn ((x, - xJJ  = c, for all x E i5{xn)T=,. 

Landes calls such a sequence limit conitant. 

Proof. ( + ) This is immediate from the definition of a diametral sequence. 

( -+ ) Inductively construct a subsequence (yk) of (x,) as follows. Let yl := X I .  

Suppose yl , y;!, . . . , yk have been selected, then yk+l := x, where x, is chosen so that 

11xm - yjII -< (1 + 1 / k ) ~ ,  for all j < k. 

Then for each k, Ilyk+1 - yjll < (1 + l/k)c, for all j -< k. 

We show that C := CO{Z~)F,~ is diametral, with diameter c .  The result then follows 
by Theorem (1.17). 

Now, for m > k we have 

Thus, diam(C) -< c. 

On the other hand, since C 2 E { X , ) ~ = ~  and J(zk - yk+1 ( 1  + 0 as k + oo we have 

lim llzk - x(1 = C, for any x E C. 
k 

Hence C is diametral, with (zk) as a diameterizing sequence. (In fact therefore, (zk) 
contains a diameteral subsequence.) I 

Note: In the condition of the above proposition, c is zero if and only if the sequence (x,) 
is a constant sequence. 



22 FIXED POINTS OF NONEXPANSIVE MAPS 

(1.20) REMARKS. 

(1) Since any subsequence of (x,) in Corollary 1.12 or Theorem (1.17) retains the same 
structure, if D is weak compact (sequentially weak*-compact) we may assume that 
(x,) is weak (weak*) convergent. Indeed by proposition (0.6) we may take (x,) to be 
a weak (weak*) null sequence. In the weak case we then have by Mazur7s Theorem 
that 0 E ~ { x , )  and so inparticular lirnllx,II = diamD = d iam~{x , ) .  

n 

(2) It is possible to construct sequences with even richer structure than the sequence (x,) 
of Theorem (1.17). For example; as a special case of van Dulst [84] we have: If X 
contains a weak compact convex diametral set, then there exists a weak null sequence 
(y,) such that for every Ic E N and 1 E N we have 
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2. NORMAL STRUCTURE 

In this chapter we examine some of the basic geometric conditions on a Banach space 
which are sufficient to ensure that minimal invariant sets are singleton, and hence that the 
space has the (w)  FPP. Most of the conditions considered represent gross overkills, being 
sufficient for the (w) FPP, but far from necessary. 

(2.1) Definitions 

We say that a Banach space X has: 
normal s t ruc ture  if it contains no closed bounded convex diametral sets with more than 
one point; 

w (w*) -normal s t ruc ture  if it contains no w (w*)-compact convex diametral sets with 
more than one point. 

The normal s t ruc ture  constant of X is 

N(X) := sup 
rad(C) 

c diam (C)' 

where the supremum is taken over all closed bounded convex sets C with more than one 
point. 

If the admisible sets C are further required to be w (w*) -compact we obtain the w 
(w*)-normal s t ruc ture  constant, Nw(X) (Nw* (X)). 

When the space X is clear from the context we will drop it from the notations above 
writing N for N(X), and so on. 

X has uniform normal  structure,  w (w*)-uniform normal  s t ruc ture  if we have 
respectively N(X) < 1, Nw (,*)(X) < 1. With the aid of Theorem (1.5) we have the 
following implications. 
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(2.2) 

Broken lines indicate concepts and implications which only apply when X is a dual space, 
of course many of these concepts coalesce when 'X is reflexive. 
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The modulus of convexity for the Banach space X is 

6 is an increasing function on [O, 21 with S(0) = 0. 

We say X is €0-inquadrate if S(eO) > 0, and uniformly convex if S(E) > 0 for all 
e > 0. Equivalently, X is uniformly convex if and only if whenever (x,) and (y,) are such 
that 

we have llxn - ynll + 0. 

The spaces ep and Lp(p) are uniformly convex for 1 < p < 00, with 

E 

I - (1 - (5)~) i  f o r 2 < p < 0 0  

C [= (P - l)c2/8 + 0(c2)1, 
where 
(1 - 5 + i)P + (1 - 5 - i ) P  = 2, for 1 5 p 5 2. 

(2.3) PROPOSITION (Edelstein, 1963): Spaces which are €0-inquadrate for 
some €0 < 1, in particular uniformly convex spaces, have uniform normal struc- 
ture with a normal structure constant N 5 1 - S(1). 

Proof. Let C be a closed convex subset of X with diarn(C) = 1. For any t E [O, 10 
choose xl, x2 E C with llxl - x211 2 t and let xo := +(XI + x 2 )  Then for any x E C we 
have 

llx - X I  1 1  5.1, llx - x2 1 1  5 1 

and 
II(x - x1) - (x - x2)11 = 11x1 - ~ 2 1 1  2 t .  

It follows from the definition of S that 

thus rad (C) 5 inf [I - S(t)] = 1 - S(1). I 
O < t < l  

(2.3.1) REMARK. In general proposition (2.3) does not give a sharp estimate for N. 
In the case of Hilbert space it yields N 5 &/2 = 0.866. In fact we have: 
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Let C be a closed bounded convex subset in a Hilbert space. Choose xo E C so that 
rad (C) = supxEc llxo - x I I .  That is, xo is in the Chebyshev centre of C which is non- 
empty by the weak compactness. Let x, y E C then for any X E [ O , l ]  we have 

IIXzij t (1 - X)z - y1I2 = IIX(x0 - 9 )  t (1 - X)(x - y)l12 

= X2 11x0 - y1I2 + (1 - 1 1 ~  - y1I2 
- 2X(1 - X)(xo - y, x - y)  

= X(lx0 - y1I2 + (1 - X)lIx - Y I I  2 

- X ( 1  - X)llxo - x1I2 

(by the Polarization Identity). 

Now, since Axo + (1 - X)x E C,  taking the supremum over x then y E C we obtain 

( r a d ~ ) ~  5 X( rad c)' + (1 - X)( diam c ) ~  - X ( l  - A)(  rad c ) ~  

forall X ~ [ 0 , 1 )  ( diam C 

whence 
1 

To establish equality, consider 

C:=TF{ek};9,, forwhich d i a m C = f i  

while rad C = 1 (with 0 E C as centre). I 

Lim [1983, 861 developed the above argument for ep with 1 < p < oo to obtain upper 
bounds for N(ep), and hence as we shall see for N(Lp) also. 

where to is the unique positive solution of (p - 2)tp-I + (p - l ) t p - 2  = 1. 

The set C := ~ { e , } ; = ,  gives a lower bound of N(eP) 2 2-:. 

For 1 < p < 2, the situation is more intricate. In this case Lim [86] obtained 

N(ep) 5 y* ,  

where 
2(1 - A)  .- inf .- o<*<+ (1 - g(X))p + (1 + g(X))p - 2X 
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with 
g(X):= inf min{g(X,x), g(1-A, x)} 

-1<2<1 

and g(X, x) the unique non-negative solution of 

The best known lower bound for 1 < p < 2 appears to be [Amir, 19821831: 

1 1  
N ( l p ) t 2 - :  where - + - = l .  

P q 

This is obtained by producing a sequence of sets (Cn)r=l with 4 2!-'. Such 

a sequence is obtained by defining 

where 
2n-1 

and 
1 

Here w,"+,, j+l is the (i + 1, j + 1)- entry of the n'th Walsh matrix defined inductively by 

These results are summarized graphically below. 
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QUESTION. Is a better estimate for N in terms of S possible? In particular 
determine sharper (precise) estimates for N(l,), 1 < p < ca, p # 2. 
Here the work of Bynum [1980], Maluta [I9841 and in particular Amir [I9821831 and Amir 
and Franchet ti [I9821831 are relevant. 

Note: Our N(X) is the reciprocal of Bynum's and is half the self Jung constant of X 

From corollary (1.18) we see that every finite dimensional Banach space has nor- 
mal structure. Indeed it is an old result of Bohnenblust [I9381 that all finite dimen- 
sional Banach spaces have uniform normal structure. To see this let Xn be any 
n-dimensional Banach space and let C be a closed bounded convex subset of diameter 1. 
Choose r < rad C, then Br[x] n C = $. By Helly's theorem there must exist points 

2EC 
xo,xl, ..., xm E C w i t h m s n  suchthat 

In particular for some io we must have 

But, 

Hence r < & and so by the choice of r we have rad C 5 &. Consequently N(Xn) 5 
n - n+l ' 

To see that this upper bound is sharp let C := co {o, e2 - el , .  . . ,en - el). Then in 
the (n - 1)-dimensional span of.e2 - el, .  . . , en - el with the inherited lk norm it is readily 
calculated that N(C) = 1 - i. [See also Yost, 19821. 

The following Corollary seems to have been noticed by many authors; Browder [1965], 
Edelstein [?I, Gohde [?I, Kirk [1965]. 

(2.4) COROLLARY: Spaces which are eo-inquadrate for some €0 < 1, in par- 
ticular uniformly convex spaces, have the FPP. 

Proof. This is immediate from proposition (2.3)) (2.2) and the fact that such spaces are 
reflexive (Mil'man-Pet tis theorem). I 
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The dual (equivalently predual, by the reflexivity) of a Banach space X is uniformly 
convex if and only if the space is uniformly smooth (the norm is uniformly FrCchet 
differentiable on the unit sphere Sx). Baillon [1.978-791 established the FPP  for reflexive 
spaces whose modulus of smoothness 

satisfies lim e ( r ) / r  < f. In particular then, uniformly smooth Banach spaces have the 
710 

FPP. 

Barry Turett [I9821 observed that X satisfies 

1 
lim e ( r ) / r  < 
710 

if and only if X* is eo-inquadrate for an €0 < 1 [see also; Giles, Gregory and Sims, 19781. 
Hence the assumption of reflexivity is redundant. Turett showed that spaces with an 
eo-inquadrate dual (co < 1) have normal structure. 

(2.5) LEMMA [Turret, 19821: If X fails w-normal structure, then given E > 0 
there exists f , g  E Sx* and x E Sx such that J J  f - gJI, f(x),g(x) > 1 - E. That is, 
the dual ball contains arbitrarily "thin" w*-slices with diameter near one or 
more. 

Proof. By Corollary 1.11 and Proposition 0.6 if X fails w-normal structure we can find 
(z,) C X with x, -" 0 such that 

diam co {x, ):=, = 1 

and 
1 

dist (x,+,, co {~k) ; ,~)  > 1 - ;. 

Observation. Without loss of generality we may take xl = 0; choose x2, xs, . . . as 
above. Since x, 2" 0, by Mazur's theorem 

dist (0, co {x~):,~) -' O as n -+ oo 

and so for n sufficiently large we have 

dist (x,+~, co ((0) U {~k):=~))  dist (&+I, co {~k);=2). 

Note, this argument also shows that llxn 1 1  -f 1. 
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Now, since for each n, Bl-+ [xn+l] n co {xr)!=, = 4, we may apply the Eidelheit 
separation theorem to obtain a norm one functional fn+l such that 

1 
1 2 f n + l ( ~ n + l  - xk) > 1 - -, for d l  k < n. 

n 

1 In particular k = 1 gives fn+l(xn+l) > 1 - ;. Now choose jo E N with 1 < jo < 2. 
Since xn dw 0 there exists no > jo so that ( fjo (xn,)l < €12. But then, 

while 

and 

The result now follows by taking 

The last argument suggests a positive answer to the following may be possible. 

QUESTION: If X is fully 2-rotund does X have the F.P.P. Recall X is fully 
2-rotund [Fan and Glicksberg, 1958 ] if the sequence (x,) is convergent whenever 

(2.5.1) COROLLARY: If X* is €0-inquadrate for some €0 < 1, then X has 
normal structure. 

Proof: Since X is reflexive it suffices to note that if X* is €0-inquadrate then choosing 
e in lemma 2.5 so that e < min {S(eo), 1 - e0), if f ,  g E S;C and x E S, are such that 
f(x),g(x) > 1 - e  then ((911 > 1 - e a n d s o  i l f  -gll < e o  < 1-e .  I 
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(2.6) THEOREM: If X* is eo-inquadrate for some EO < 1, then X has uniform 
normal structure. In particular uniformly smooth spaces have uniform normal 
structure. 

Proof. Suppose X fails to have uniform normal structure, then we can find a sequence 
(C,) of diameter one subsets of X with rad (Cn) + 1. 

For any ultrafilter U on N, let 

then C is a convex subset of the ultra power (X)u with diam C = 1 and rad (C) = 1. 
Thus (X)u fails to have normal structure. However, since X is superreflexive we have 
(X); = (X* ) is €0-inquadrate [Sims, 82; § 10 proposition 61 which contradicts Corollary 
2.5.1. 1 

Proposition 2.3 and the last theorem suggest the following. 

QUESTION: Is uniform normal structure a super-property? 

The next proposition shows that the answer to this question would be "yes" if spaces 
with uniform normal structure were superreflexive, however this appears not to be known. 
What is known (see below) is that uniform normal structure implies reflexivity. 

(2.7) PROPOSITION: The weak-normal structure constant is "finitely deter- 
mined". That is, given any E: > 0 there exists a finite subset F with 

rad ( co (F)) > (1 - € ) N w  
d i m  ( co (F)) - 

Proof. Let C be any weakly-compact convex set with diam (C) = 1 and let r < rad (C). 
Then n BJZI n c = 4 

z E C  

(if so were in this intersection then s o  would be a point of C with Ilx - xo 11 5 r for all 
s E C; that is rad (.C) 5 r.) 

Since each of the sets B,[x] 17 C is a weakly compact subset of C there exists a finite 
subset F of C with n BJX] n c  = 4. 

z E F  

But then n ~ ~ r . 1  n CO(F) c n B,M n c = 4 
z E F  xEF 

and it follws that r 5 rad ( co (F)). Thus 

rad (C) rad ( co (F)) 
< sup{ diam ( co (F)) : F 5 C, F is finite) 

diam (C) - 
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estabishing the proposition. I 

Remarks: 1) If X is of finite dimension n the appeal to weak compactness in the above 
argument may be replaced by an application of Helly's theorem showing that the cardinality 
of F need be no larger t.han n + 1. 

2) Dvoretsky's theorem sets a lower bound of 1/J2 for the uniform normal 
structure constant of all infinite dimensional Banach spaces. 

The following provides a useful tool for estimating N, ( N  in the case of a reflexive 
space). 

(2.7.1) COROLLARY [Amir, 1982-831: Let (X,),EA be a net of subspaces 
directed by inclusion with X = (J X,, then 

a EA 

Nw(X) = sup Nw(X,) = lim Nw(X,). 
crEA a 

Proof. By (2.7) it is enough to consider sets of the form C = co{xl,x2, ..., xn). Now 
given r > 0 we can find yl, y2, .  . . , yn E Xa, for some a, with 
I (Xi  - y i J )  < E / ~ ( z  = 1,2,.  . . ,n).  Let K =  co{yl,.. . ,y,) c X,, then 

rad K radC - E 
Nw(Xcr) 2 diamK 2 diam C + E 

and the result follows. I 

(2.7.2) COROLLARY: For 1 < p < rn we have N(Lp(p)) = N(lp) = limn N(1;). 

Proof. Let P := R1, a2,. . . R, be a measurable partition of the measure space (0, C ,  p) 
with p(Ri) > 0 ( i  = 1,2,.  . . , n )  and let Xp  =< xni  > n  the subspace spanned by the 
characteristic functions Xn,. Then, Xp is isometric to 1; and (Xp) is clearly a net directed 
by inclusion whose union is dense in L,(p). I 

That spaces with uniform normal structure are reflexive was proved by Bae [1983]. 
Independently it would seem Maluta [I9841 observed that the result is an immediate con- 
sequence of an earlier result of Mil'man and Mil'man [I9651 which in turn represents a 
mild strengthening of a contemporaneous result by R.C. James [1964, see for example 
Beauzamy, 19821. Since the result of Mil'man and Mil'man is of independent interest we 
choose to develop it here, although the proof is somewhat more intricate and longer than 
is necessary for our purpose (see Remark 2 at the end of the Proof). 

(2.8) THEOREM [Mil'man and Mil'man, 19651: If X is a non-reflexive Banach 
space then for every E > 0 there exists a sequence of unit vectors (3,) such that 
for all m E N if y E co { X I , .  . . , x,) and y' E co { X ~ ) E ~ + ~  then we have 
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Taking C = c o { x k ) F l  we have diam C 5 1 + E while rad C > 1 - E and so we obtain 

(2.8.1) COROLLARY: If X has uniform normal structure then X is reflexive. 

Proof (of Theorem 2.8). Since X is non-reflexive it contains a non-reflexive separabie 
subspace E. We will carry out the construction inside E. Since BE is not weakly compact 
we can find a nested family F of non-empty closed bounded convex subsets 

K1 C K2 C K3 C . . .  

OC) 

n K n = 4  
n= 1 

Further d(F) := limn diamK, exists and is strictly greater than zero (otherwise 
Cantor's intersection theorem would apply to give a non- empty intersection). 

Similarly the sequence (dist (x,Kn))Fzl is increasing and bounded above for each 

r(x, F )  := lim dist (x, K,) 
n 

exists, and can be regarded as the distance from x to the vacuum of the nested family F, 
in particular r(x, F )  > 0. 

The proof now proceeds through a series of steps. 

STEP 1) Given F = (Kn)r=l as above we can find a nested family F' = (K;);,, of 
closed convex sets which is subordinate to F in the sense that I<; C Kn for all n, and 
such that for each x E E 

r(x, F )  = r(x, F')  : = lim dist (x, Kh) 
n 

= lim 112 - xn 1 1  
n 

for any sequence (x,) with xn E K;. We will say that F' is a closely - flattened family.. 

Proof of Step 1. Let (y,) be a dense sequence in the separable space E. 

Let Fl = (K;)r=, where 

Kh = Kn n B(l+k)r(yl ,F) [YII -  

Fl is a nested family of non-empty closed convex sets subordinate to F. Further for 

dist (yl, Kn) I dist (yl, Kt )  

5 l l ~ l  - xnll 
1 

5 (1. + -)r(yn F )  n 
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1 Continuing in this way we construct a sequence Fm = ( K r )  of nested families of decreasing 

1 subordination so tLat 
I 
I' 
I l i p  l l ~ m  - xn I( = r(ym ,Fm) = r(ym F ) .  

for any xn E K r .  

Let F' = then K," 2 Kg-' C_ . . . 2 Km so F' is subordinate to F .  

Further, for any n  a n d i m  E K," where m > n ,  we have 

i as K," C_ K,"-l2 . .  2 K m  C - B ( l + A ) r ( y n , ~ ) [ y n ] .  So letting m + m we have 

That F1 is the desired family now follows since { y k )  is dense in E and 
ldist (x, C) - dist (y, C)( 5 Ilx - yll for any set C. 

1/ NOTE. The sequence of numbers 
i 

inf r ( x ,  F ) ) ~  ( ZEKn n=l 

i 
is increasing for any nested family F  = (K,)  and so converges. 

Let 
r ( F )  := lim inf r (x ,  F )  

n zEKn 

Clearly, r ( F )  5 r ( F 1 )  if F' is subordinate to F  and r ( F )  5 d ( ~ ) .  

STEP 2) For F' as in Step 1)  we can find a nested family F" subordinate to F' for 
which 

0 < d(F1') = r(F1')  = r ( F 1 )  = r ( F )  

Proof of Step 2). Choose xn E Kh(:= KE)  so that 
infzEK; r ( x ,  F ' )  > r ( xn ,  F ' )  - ! then 

r ( F 1 )  = lim r (xn ,  F ' )  
n-+m 
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Further, by the flattening 

Now let ml = 1 and choose m2 so that for m > mz we have 
lr(xm1,F1) - llxml - xmlll < 1. Then choose m3 so that for m > m3 

etc. 

In this way we obtain integers ml < ma < . . . so that 

1 
I r ( ~ m k  1 F1) - l lxmkl X, 1 1 1  < - k for m > mk+l. 

In particular then, 
1 

Jr(xrnk , F') - 11xrnk, xm, 1 1  I < for r > k 

and so 
r(F1) = l imr(xmk, F') 

k 

= lim llxmk - x,, 1 1  = lim JJx,, - x,, 1 1 .  
a k-+co,r>k r,k-+co,#k 

11 - - Now let Kn - c o { ~ , ~ } ~ ~ ~ + ~  and let F" = (K:)r=l. 

Then 
d(F1') = lim diam (K:) 

n 

= limsup llxmk - Xm, 1 1  
nr,k>n,,#k 

= r(F1) < r(F1') 5 d(F1') 

establishing the result. 

, STEP 3) For the nested family F" = (K:) of Step 2, if xn E K:, given el > 0 we can 
find a subsequence yk := x,, so that for any sequence (n,) N with n, 3 m and for 

k=, and uA E co {yr}Enrn+, we have: any urn E c o { ~ k } ~ ~  

(i) For all m, d(F1') - €1 < llum - ul,l( and 
' 

(ii) limsup, llum - uAll < lim, diam ({yk}Em) < d(F1'). 

Proof of Step 3). Since d(F") = r(F1') := lim inf r(x, F") there exists nl so that 
n zEKt 

d(F1/) - - " < inf r(x,F"). 
2 - z€Kpl  
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Further, r(x, F" ) := limn dist (x, F" ) so there exists n2 such that 

€1 r(xnl,  F") < dist (x,, , k:2) + -. 
2 

Thus for any element u' E Kn2,  in particular any element of co {xk}gn2,  we have 

Now let u E co {xnl, xn2} then, as above, there exists m3(u) so that 

€1 d(F") - - < dist (u, KL3(,)). 
2 - 

Claim There exists n3 so that for allu E co {x,, , xn2 } we have 

d(FU) - €1 < dist (u, K:3). 

Assume not, then there exists a sequence (mk) with mk + w and points uk E 
co {xnl , xn2 } so that dist (uk, K;,) < d.(FU) - €1. since co {xnl , xn2 } is compact there 
exists a subsequence ukj + u, but then for mkj > m3(u) we have 

which is impossible. 

Continuing in this way we obtain a sequence nl < n2 < . . . such that for any u E 
co { x n k } t l  d(F") - €1 j dist (u, K:m+l). 

In particular, d(FU) - €1 5 llu - u'11 for any u' E co { x , , } ~ ~ + ~ ,  establishing (i). 

I Now sinceum,um E {yk}zm E K I  := C O { Y ~ } ~ ~  we have 

lim sup l l ~ m  - u)m 1 1  < lim d i m  ({yk}Zm) 
n m 

= lim d i m  (Kz)  
m 

= d(Fttt) < d(Ftt)  

as FUI .- .- (K:') is subordinate to F", and so we have (ii). 

STEP 4) (the last). The sequence (xn) of the theorem is constructed from the sequence 
(yk) of Step 3 as follows. 
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From step 2) for any €2 > 0 we can find no so that for any m, 

d-€1  5 I I u - u ' ~ ~  L d + ~ 2 ,  

where 
no+m 

C0 { ~ k ) k = n ~  E CO { Y ~ ) E ~ ~ + ~ + ~ ,  and d := d(Ft') > 0. 

Let zk := (~n,+k - yno)/d then 

for 
W E co { ~ k ) p = ~ ,  w' E m { ~ k ) ~ m + l '  

Further, from above with m = 1 we have 
1 - I I I Z ~ J J  5 1 + 2. 

Since €1 and €2 are arbitrary it is clear that for any E > 0 we can choose them so that 
xk := zk/llzk 1 1  satisfies the claim of the theorem. I 

REMARKS: 

(1) The converse of Theorem (2.8) is also true (and easier to show): If there exists a 
sequence (2,) C Sx satisfying the condition in Theorem (2.8) for some E E [ O , l ] ,  then 
X is non-reflexive. 

(2) We can deduce Corollary (2.8.1) from Step 2 of the above proof, this is essentially 
Bae's Proof: From Step 2) we have 

0 < d := lim diam (K:) = lim inf lim dist (x, Km). 
n n xEKg m 

Thus given any E > 0 we have for n sufficiently large; 

while 
rad(K:) : = inf sup 1 1 ~  -yll 

zEKC yEKE 

> inf dist(x,Kk), all m > n  
z E hTC 

> d - E .  

Hence 
rad(K:) d - E >-  

diam (Ki) - d + E 

can be chosen arbitrarily close to 1. 
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The converse to corollary (2.8.1) is spectacularly false. Indeed reflexivity is far from suffi- 
cient even for normal struture. 

There exist reflexive spaces lacking normal structure. We begin with the 
following. 

(2.9) REMARK: Uniform normal structure is stable under small perturba- 
tions of the  space. This follows from the readily verified inequality : For two spaces X 
and Y we have 

1 

4x7 Y) 
N(X) I N(Y) 5 d(X, Y)N(X), 

where d(X,Y) is the Bantich-Mazur distance between X and Y; 

d(X, Y): = infimum I I u - ~ I J  IIUII. 

where the infinum is taken over all linear isomorphisms U of X onto Y. 

In particular then, if 1 1  I - 1 1  ( is an equivalent norm of X satisfying 

mllxll I lllxlll I MIlxII, for all x E X 
i 
? 

we have 
M 

I1N(x1 M 1 1  . 1 1 )  5 N(x7 1 1 1  . 1 1 1 )  5 -N(x7 m 1 1  - 1 1 ) -  
As a consequence we have the following. 

i 
t 

L 
9 
11 (2.9.1) EXAMPLE. For a E ( O , l ]  let X, denote l2 with norm 
1;1 Ilxlla:= (allxll2) v 1 1 ~ 1 1 ~ .  

1 1  . 11,  is an equivalent norm for 12, indeed 

Hence, X, is reflexive (0 < a I 1) and by the  above remark X, has uniform 
normal s tructure for a > 5. Incontrast, for 0 < a  5 5 X, fails t o  have even 

normal structure: C: = ~ { e ~ } r = ~  has diameter in the 2-norm and diameter 1 in 
the oo-norm. So, for a 5 , C has diameter 1 in X,. Now, for any x E C we have 3 

That is; C is diametral and so X, fails to have normal structure. 

The space X1 was introduced by R.C. James explicitly for the purpose of this example, 
and has played an important role. Karlovitz [I976 (b)] demonstrated the FPP for X I . 

1 .Ji Indeed as we will subsequently see X, has the FPP for all a > 0. This will provide us 
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with the first of many examples which demonstrate that normal structure, while sufficient, 
is not necessary for the w-FPP (FPP in reflexive spaces.). 

A localized version of uniform convexity was introduced by Lovaglia [1955]. Say the 
Banach space X is locally uniformly convex if given x with (lxll = 1 and a sequence 
(y.) with JJyn(l = 1 such that 1 )  -11 -t 1 we have that ( (x  - ynll -t 0. 

We will see that local uniform convexity, even with the additional assumption of 
reflexivity, is not sufficient to ensure normal structure. 

(2.9.2) EXAMPLE [Smith and Turett, 19821: A reflexive locally uniformly 
convex space which lacks normal structure. 

Let us begin by recalling Day's [I9551 locally uniformly convex renorming of c ,  given 

by 
llxll D: = IIDx112- 

Here D: c ,  -, l2 is the mapping 

Dx(n) = xnk/2k if n = nk for some k 
otherwise, 

where ( n k ) g l  is an enumeration of the support of x so that lxnk I 2 (xnk+, 1. For details 
see Rainwater [1969]. The subadditivity for I (  . l l D  being the main difficulty. 

Now define T: t2 -t c ,  by 

then 

l l x l l :  = l l T x I I ~  
defines an equivalent locally uniformly convex norm on l2 satisfying 

(Day's norm on c ,  satisfies f llxllm 5 llxllD 5 &((xllm). 

To see that (12, 1 1  11) fails normal structure, let (surprise, surprise!) 

Then, for n < m we have: 

1 lien - em]/ = 11- O,.. . , 1, 1,. . . , l , O , .  . . , -1, -1,. . . , - l , O ,  - .  . 1 1 ~  A' - - 
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n 

On the other hand for x l ,  x 2 , .  . . , xn 2 0  with C x k  = 1 we have 
1 

(as there are at least n + 1 entries of absolute value one and all other entries have smaller 
n+l 

absolute values). Thus rad C 2 sup C $k = &, and so we may conclude that C is 
n k=i 

diametral. 

A convexity condition weaker than uniform convexity which does imply normal struc- 
ture was introduced by Garkavi [1962]: X is uniformly convex in every direction 
(U.C.E.D.) if whenever ( x , )  and ( y , )  are sequences in Bx for which J J x ,  + ynll + 2 and 
for some z # 0, x n  - yn = Xnz we then have An -, 0 .  Geometrically this means that for 
each "direction" z # 0 ,  the collection of all chords of the unit ball which are parallel to z 
and whose lengths are bounded away from zero have midpoints which lie uniformly deep 
inside the ball. 

(2.10) THEOREM [Garkavi, 19621: X is U.C.E.D. if and only if the Chebyshev 
centre of each closed bounded convex subset of X consists of at most one point. 
In particular, such spaces have normal structure. 

Proof (a) Let C be a closed bounded convex subset of X and suppose x l ,  x2 E C ( C ) ,  
clearly X .  = f ( X I  + x 2 )  E C ( C )  also. Choose ( y n )  E C so that 

I(yn - xO1l + r = rad (C). 

1 Let un = + ( x l  - y n )  and vn = ; ( x 2  - y n )  then we have 

and so, since X is U.C.E.D. and un - vn = $ ( X I  - x 2 )  for all n we conclude that x l  = x2.  
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(e) Suppose X is not U.C.E.D. Then there exists z # 0 and (x , ) ,  (y,) c Bx with 
\\x, + yn(l + 2 and X ,  - yn = Xnz where An >_ X > 0. 

Let 
1 

C := ={Xz/2 f - ( x ,  + y,): n = 1 , 2 , .  . .). 
2 

Clearly rad (C) = 1 with 0 E C ( C ) ,  further 

X Z  A2 A xn +Yn 
rad (C, -) = sup 1 1  - 

2 n 2 2 I I  

A detailed study of U.C.E.D. was made by Day, James and Swaminathan [3.971]. 
They obtained several equivalent formulations of the property, investigated the stability of 
U.C.E.D. under products and obtained a number of results concerning spaces which admit 
an equivalent U.C.E.D. norm. We will be interested in a special case, previously obtained 
by Zizler [ 1. 

(2.11) THEOREM: Every separable Banach space admits an equivalent U.C.E.D. 
norm. 

Proof. Let (x,)  C Sx be a dense sequence in the unit sphere of the separable Banach 
space X. Choose fn E Sx= such that f n ( x n )  = 1. Then ( f n )  is a strictly norming subset 
of X* for X ,  so the mapping 

is continuous, 1 - 1 and linear. Hence 

is an equivalent norm on X .  We show it is U.C.E.D. Let (x , ) ,  ( y n )  be such that x ,  - yn = 
X,Z with z # 0 and for which IJJynJJ(  I 1, lllxnll = lllyn + Xnzlll 5 1 while lllxn + Ynlll = 
1((2yn + Xnzlll + 2. Then we must have 
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and so, since the first term is positive (convexity of the function f 1 ( 1 1 2 ) ,  we have A, IITz 1 1 2  + 
0. Since T is 1 - 1 it follows that A, + 0 and (X, 1 1  I . 1 1  I )  is U.C.E.D. 

I 

(2.11.1) COROLLARY: There exist non-reflexive spaces which are U.C.E.D. 
In particular there exist non-reflexive spaces with normal structure. (2.11.2) 
REMARKS: 

(1) A more specific example of the last corollary is obtained by taking X = el and 
noting that the argument in the proof of theorem (2.11) with T = I shows that 
IlxJ( = ( 1 1 ~ 1 1 : + 1 1 ~ 1 1 ; ) f  is anequivalent U.C.E.D. normonel. Hence (el, I I . ( I )  has normal 
structure, however, it fails to have the F.P.P. Let C: = {x E el: 11x11 = 1, xk .L 0 all k}, 
then the right shift T: x I+ (0, X I ,  x2, . . .) is a fixed point free isometry on C in (el, 1 1 .  ( I ) .  
It does however have the w-F.P.P. As far as I know this example is due to E.Lami- 
Dozo. 

(2) In case X\is the dual of a separable space the proof of theorem (2.11) is readily adpated 
to obtain an equivalent dual U.C.E.D. norm. 

(3) An alternative equivalent renorming of separable spaces (Separable dual spaces) which 
ensures w-normal structure (w *-normal structure) is given by van Dulst [I 9821. 

Van Dulst [I9821 also shows that every Banach space can be equivalently renormed 
to fail normal structure. 

(2.12) THEOREM: Every Banach space X admits an equivalent norm 1 1 1  1 1 1  
so that (X, 1 1 1  . ( ( I )  fails to have normal structure. 

Proof. Let (b,) be a normalized basic sequence in X (see Beauzamy [I9821 Ch. 1181) with 
coefficient functionals c, extended to X.  That is; c, E X*,c,(b,) = 6,, and l l ~ ~ l l  5 K 
for some K > 0 and all n. 

Let 
x,: = b, + 2bn 

and 
f n : = C o - C n  for n =  1,2, .... 
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Then 

then il(xl( < (11x111 < KllxI, SO I I I . I I (  is an equivalent norm on X. Further, since /lxnll 5 3, 
we have IIIxn(ll = 1, and so 1 > lllfnlll 2 Ifn(xn>l = 1. 

Nowlet C = C O { X , ) ~ ~ ,  clearly diam(C) 5 2in(X.((I.Il(), whileforanyXl,Xz,... , A n  2 
n 

Thus C is diametral with (xn) a diarneterizing sequence. I 

We conclude this chapter with a few observations on normal structure as a Banach 
space property. As we shall see our knowledge of the situation is far from complete. 

Stability under isomorphisms, or lack there-of, has already be considered; theorem 2.11, 
theorem 2.12. and remark 2.9. 

Sub~paces and quotients. Clearly (uniform) normal structure is inherited by subspaces. 

M. Smith and B. Turett [1988a] have constructed an example showing that normal struc- 
ture need not be inherited by a quotient. This leaves open the following question. 

QUESTION: Is uniform normal structure inherited by quotients, or at least do such 
quotients enjoy normal structure? 

Smith and Turett [1988b] have also shown that uniform normal structure is not a self-dual 
property and does not imply any degree of k-uniform rotundity. 

Stability under substitution. The oldest result in this direction is due to Belluce, Kirk, 
i and Steiner [1968]. 
i 

i 
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(2.13) PROPOSITION: For Banach spaces X1 and X2 let X := (X1 $ X2)- 
and for i = 1,2 let Pi : X :+ Xi : (x(l),x(2)) I-+ x(i) be the natural coordinate 
projection. Then if C is a closed bounded convex subset of X and Ci = Pi(C) 
we have 

rad(C) 1 rad(C1) rad(C2) 
diam (C) - < - [ l f  2 diam(C1) diam(c2)" 

Proof For E > 0 and i = 1,2 choose yi E Ci such that J(yi  - 5 rad (Ci) + E for all 
z E C,. Select xi E and set x0 = f (xi + x 2 )  Then for any x E C we have 

Now 
1141) - xo(l)Il1 

I Similarly 
I 

Ilx(2) - x0(2>112 
1 < - [ diam (C2) + rad(C2) + €1. 

- 2 

Since E is arbitrary it follows that 
I 

rad (C) 5 rad (C, x,) 

1 
5 - [ diam (C) + rad (C1) V rad (C2)] 

2 

The conclusion now follows since, 

diam,(Ci) 5 diam (C) 

< II( d i m  (Cl), diam (C2))llm 

so diam (C) = max{ d i m  (C1), diam (C2)). I 

(2.131) COROLLARY: For X1,X2 and X as in proposition (2.13) we have, 
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So a Anite l ,  -sum of spaces each of which has uniform normal structure, also 
has uniform normal structure. 

(2.13.2) COROLLARY [Belluce, Kirk and Steiner, 19681: A finite l ,  - 
sum of spaces, each of which has normal structure, also has normal structure. 

This last corollary has been extended by Landes [3.984, See also, the comprehensive survey 
of Kirk, 19831. He obtains very general conditions on the substitution space's norm for a 
finite sum of spaces with normal structure to also have normal structure. The following 
is another particular case of Landes' work, which together with the above corollaries is 
adequate for most purposes. 

(2.14) THEOREM [Landes, 19841: Let F denote a uniformly convex Banach 
space of functions with countable support from r into R such tha t  i f f  E F and 
g : r + R  satisfies Ig(y)l 5 If(y)l, then g E F and l(gJJF 5 I l f l l F .  It will sometimes 
be convenient to  identify f E F with the  indexed family (f (y)),Er. 

If (X7)7Er is a family of Banach spaces each of which has normal structure, 
then the substitution space F, consisting of those functions f : r + U X ,  with 

l- 

f (7) E X, and for which the  function (Ilf (y)l17)7Er is in F, also has normal 
structure with respect t o  the  substitution norm 

Proof Suppose F fails normal structure, then we can find a diarnetral sequence (fn) with 
d := diam co {fn},"==, > 0. By the diagonal extraction of a subsequence we may assume 
that zk(y) := l i p  Ilfn(y) - fk(y)1I7 exists for each k and y. 

Now let f E co { fn}z l  , then 
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So, by the uniform convexity of F we have 

and so 
lim Ilfn(7) - ~ ( Y ) ( J ~  = z ~ ( Y )  for all f E co {fn):, . 

n 

It follows that for each y E I? 
lim Ilfn(7) - f ( ~ ) l I ,  

n .  

is constant for all f E co { fn)g l .  

Since X, has normal structure it follows from proposition (1.19) that the constant must 
be zero. But, then (f,(y)):=, is a constant sequence (see that remark after proposition 
1.19) and hence so too is (f,), contradicting d > 0. I 

In the case when I? is a finite set, F is finite dimensional and so uniform convexity 
and strict convexity coincide. Hence we have the following. 

(214.1) COROLLARY: If X1, X2, .  . . , Xn are Banach spaces each of which 
has normal structure and if 1 1  . 1 1 ,  is a strictly convex norm on Rn, then XI $ 
X2 $ . . . $ Xn has normal structure with respect to the norm; 

QUESTION: If in theorem (2.14) there exists k < 1 -so that N(X,) 5 k for all y E I? 
does it follow that F has uniform normal structure? 

Landes' results have recently been extended by Smith and Turett [1987]. They show that 
for 1 < p < oo the Bochner Lp - space, Lp(p, X), has normal structure exactly when X 
has normal structure. 

3-space properties for (uniform) normal structure. Again no really satisfactory answer 
seems to be known. A very partial result in this direction is the following. 

(2.15) PROPOSITION [Giles, Sims and Swaminathan, 19851: Let M be a 
complemented subspace of X such that M has Anite co-dimension in X (or 
more generaly M has a complement that is a Schur space). Then X has (weak) 
normal structure if M has uniform normal structure. 

Proof Since M has uniform normal structure it is reflexive (Corollary 2.8.1) and so, since 
M is of finite co-dimension, X too is reflective. 

Now suppose X does not have (weak) normal structure, then, by Remark 1.18 (I), X 
contains a weakly null sequence (x,) satisfying: 

dist (xn+l, co { ~ k ) ; = ~ )  + 1. 
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I Let P be the linear projection from X onto M with I - P a projection onto the (Schur) 
complement of X. Since x, dw 0 we therefore have ~Jx, - Px, ( 1  + 0. 

Choose 6 > 0 so that 6 < f i  where N := N(M), then there exists no so that 

(Jx, - Px~JI 5 E: for all n 2 no. 

Let C:= C O { X , ) ~ , ~ ,  then since 112 - Pxll 5 E for all x E C we have 

diam P(C) 5 diam C + 26 

= 1 + 26. 

From the uniform normal structure of M we can find a point xo E C such that 

I(Pxo - Pxll 5 N ( l  +2e) for all x E C. 

But then, for each x E C we have 

1 < - ( I +  N), by the choice of E 
2 

contradicting the diametrality of C. I 
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3. FURTHER CONDITIONS FOR NORMAL STRUCTURE AND THE FPP. 
1 

(3.1) THE CONDITION OF OPIAL. 

A Banach space [dual space] X satisfies the weak [weak*] Opial condition if when- 
I ever (x, ) converges weakly [weak*] to x, and xo # x, we have 
I 

liminf JJx, - x,II < liminf llxn - xoII. 
. n n 

If equality is allowed in the above inequality we will say X satisfies the non-strict weak 
1 [weak*] Opial condition. 

I 
i In the weak* case it is natural to allow (x,) to be a net. Otherwise we would need 
? 

to restrict attention to spaces with a weak* -sequentially compact ball. [For example; the 1 1  dual of a separable space, or more generally the dual of any smoothable space - Sullivan 
1 1  

P 
I and Hagler, 19791. 

Remark: Arguing by the extraction of appropriate subsequences readily establishes the 
equivalence of Opial conditions with seemingly weaker ones. 

The weak Opial condition was introduced by Zdjislaw Opial [I9671 to expand upon 
results of Browder and Petryshyn [I9661 concerning the weak convergence of iterates for a 
non-expansive map on a closed convex subset to a fixed point. 

I A more extensive examination of the condition was made by Gossez and Lami-Dozo 
E L  [1972]. In particular they prove the following. 

I (31.1) THEOREM: If X is a Banach space satisfying the weak Opial condi- 
tion then X has weak normal structure, in particular then X has the w-F.P.P. 

Proof Suppose X fails to have w-normal structure then by Remark (1.20 (1)) X contains 
a nontrivial weakly null sequence (x,) satisfying 

which contradicts the weak Opial condition. I 

REMARKS: 

I (1) As observed by Tingley, in order to deduce weak normal structure it is sufficient to 
require that X satisfy a weaker condition than that of Opial, namely; 
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if llxnll + 1 and xn jW 0 then 

limsupJ)xn-xll > 1, f o r s o m e x E i 5 { ~ ~ ) ~ ~ .  
n 

He raises the question of whether or not this last condition is equivalent to weak 
normal structure. 

(2) The use of Mazur's result in the above proof leaves open the following. 

QUESTION Does a dual space with the weak* Opial condition have w*-normal 
structure? 

None the less we do have the following result, proved indirectly by Karlovitz [1976]. 

(3.1.2) PROPOSITION If X is a dual space satisfying the weak* Opial condition, 
then X has the w*-FPP. 

Proof [van Dulst, 19821. Let C be any w*-compact convex subset of X and let T : C -+ C 
be a non-expansive map. Choose (x,) c C so that llxn - Tx, 1 )  + 0 (an approximate fixed 

w point sequence for T). Passing to a subnet if necessary we may assume that xn - x,. 
Then 

lim inf JITx, - xn 1 )  
n 

= lim inf ~(TX, - Tx, ( 1  
n 

5 liminf ~Jx,  - xn((  
n 

contradicting the weak* Opial conndition unless Tx, = x,. I 

REMARK: An analogous argument to that in the proof of the above proposition gives 
a direct proof of the w-FPP for spaces satisfying the weak Opial condition. Indeed these 
arguments establish the following stronger result. In a space satisfying the weak 
(weak*) Opial condition any weak (weak*) limit of an approximate fixed point 
sequence for a nonexpansive map T is a fixed point of T. 

QUESTION: What can be said of spaces satisfying the non-strict Opial con- 
ditions? 

As we shall see in the next chapter the weak (weak*) Opial conditions are natural gen- 
eralizations of the type of orthogonality conditions recently shown to be sufficient for a 
Banach lattice to have the w(w*)-FPP. 

We remark that L1[O, 11 fails even the non-strict weak Opial condition. To see this, let 
f, be the function obtained by extending periodically to all of [O, 11 the function defined 
on (0, :I by 

2 f o r O < t < k  

fn(t) = 
-1 f o r & < t < i  
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It is readily seen that fn A 0, 1 1  f n  11 1 = $, for a11 n, while 1 1  fn  - f. ( 1  1 = 1 where 
w 

fo(t) G -1. Thus the weak non-strict Opial condition is violated. 

In order to facilitate the investigation of specific spaces we consider the relationship 
between the Cpial conditions and other properties of the space. I<arlovitz [I9761 established 
intimate relationships between the weak [and weak* ] Opial condition and "approximate 
symmetry" in the Birkhoff-James notion of orthogonality, we however will persue a different 
line. Recall, the duality map for a Banach space X is 

By an (extended) support mapping for X we shall understand a mapping of the form 

where p is a strictly increasing continuous gauge function with p(0) = 0 and f is a selection 
from D(&). 

Opial [I9671 observed that a uniformly convex space which admits a weak to weak* 
sequentially continuous support mapping satisfies the weak Opial condition. That uniform 
convexity need not imply the existence of such a support mapping had been observed 
by Browder [I9661 and Hayes and Sims (in connnection with operator numerical ranges). 
Indeed L4 [O, 11 does not have a weak to weak (equal to weak* ) continuous support mapping. 
Opial extended this to LPIO, 11 for all p # 2. In fact, ~i-an and Rao have characterized 
Lp(fl, C ,  p) spaces with a weak to weak continuous support mapping as those spaces for 
which every A E C with 0 < p(A) < oa contains an atom. 

The early results were substantially improved by Gossez and Lami-Dozo [1972]. They 
showed that the assumption of uniform convexity is unnecessary: 

A Banach space [dual space] with a weak [weak* ] to weak* sequentially contin- 
uous support mapping satisfies the weak [weak* ] Opial condition. This condition 
is not however necessary: For 1 < p < q < cx the space (lp $ lq)2 satisfies the weak Opial 
condition, but [Bruck, 19691 no support maping is weak to weak continuous. 

The result of Gossez and Lami-Dozo is an immediate corollary of 

(3.1.3) THEOREM [Sims, 19841: The Banach space [dual space with a w- 
sequentially compact ball] X satisfies the weak [weak* ] Opial condition if and 
only if whenever (x,) converges weakly [weak* ] to a non-zero limit x, there is 
a S > 0 so that eventually D(xn)x, c [S, cx). 

Proof. ( )  Assume this were not the case, by pasing to a subsequence and scalling 
we can find (x,) converging weakly [weak* ] to x, with 1 = llxnll >- llxaoll > 0 and 
f n  E D(x,) such that lim fn(x,) 5 0. 

n 
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But 
1 = liminf llx, - 011 

n 

> liminf ((x, - x,II 
n 

> liminf fn(xn - x,) - 
n 

= lim inf (1 - f n  (2,)) 
n 

= 1 - lim fn  (2,) 
n 

whence lim fn(x,) > 0, a contradiction. 
n 

(e) [a modification of the proof in Gossez and Lami-Dozo 1972.1 

Using the integral representation for the convex function t H $ (1s + tyl12 [Roberts and 
Varberg, 1973,12 Theorem A] we have 

where 

to establish the weak [weak* ] Opial condition it suffices to show that if (yn) converges 
weakly [weak* ] to y, # 0, then 

1 2  1 
liminf -Ilynll > liminf - l l y n  - y m l 1 2 .  

n 2 n 2 

Now, 

1 1 
liminf n - I I Y ~ I I ~  2 t lim inf - l l y n  - y,((2 

n 2 

+ liminf n lo g+(yn - y, + ty,; y,)dt 

By Fatou's lemma [see for example, Halmos 19501 it is therefore sufficient to prove that 

liminf n g+(yn - yrn + ty,; y,) > o 

for each t E (0'1). 

But, by a well known characterization of the upper Gateaux derivative [see for exam- 
ple, Barbu and Precupanu, 1978, 52.1 Example 2' and Proposition 2.31 we have 

+ 
9 (Yn - Ym + t ~ m ;  Y,) = Max{f (Y,): f E D(yn - yw + tyw)} 
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and so since yn - y ,  + t y ,  converges wealcly [weak* ] to t y ,  # 0 we have for n sufficiently 
large and some 6 > 0 that 

f ( ~ Y w )  > 6 for all f E D ( y n  - y ,  + t y , )  

That is, for n sufficiently large (depending on t )  

(3.1.3.a) REMARK: From the (+) part of the above proof we see it is only necesary 
that X satisfy: If ( x ,  ) converges weakly [weak* ] to x ,  # 0 we have lim inf max{ f  ( x ,  ): f  I 

n . - 
D ( x n ) )  > 0. Thus for a space satisfying this we also have 

liminf mini f  ( x , ) :  f  E D ( x n ) )  > 0. 
n 

Precisely what this means in terms of the geometry of support mappings is unclear. 

(3.1.4) EXAMPLES. 

( 1 )  For 1  5 p < ca the space lp  satisfies the weak Opial condition. For p = 1  this 
follows by the Schur property. For p > 1  the duality map is single valued and given 

Thus, if x n  - x ,  # 0 we have 
W 

where f i  = D ( x i ) .  Consequently, since liminf llxnllp -> l lx,Jlp,  we have 
n 

liminf f n ( x W )  > Ilx,II: > 0. 
n 

Further, if P = 1  and x n  -"' X ,  # 0, choosing fn E D ( x n )  so that 

we see that: 

00 

given e > 0 there exist no so that lx,(i)l  < e 
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and so 

Since ( 1 1  f n  is bounded and xn(i) -, x,(i) it follows that 

Thus limfn(xm) = 1 1 ~ ~ 1 1 ~  = fm(xm) > 0, and so l l  satisfies the weak* Opial 
conditron. In particular, l, has the w-FPP. 

(2) For p # 2 the space L, [ O , 1 ]  fails to satisfy the weak Opial condition. The case 
p = 1 has already been considered. The same example works in L, [O, 11 for all p # 2. 
Indeed for the sequence fn defined previously we have for any number c  E [-2,1] 

a minimum at c, satisfying 
2 + c, 1 -- - 2 3 .  
1 - c, 

That is; 

In particular then for p # 2 

IIfn + ~ o ( l p  < ( ( f n ( (  (as C, # 0) 

and so the space fails to satisfy the weak (non-strict) Opial condition. 

(3) The space X,: = (12, )I.((,) where llx,ll: = v llxllm has the non-strict weak 
Opial condition for 0 < a <_ 1, but fails to satisfy the weak Opial condition 
for any such a. 

To see that X, has the non-strict Opial condition suppose, without loss of generality, 
that x, dw 0 and that liminfn llxnll = 1. By passing to a subsequence we may 

1 assume that either (1xnl12 + , or l l ~ ~ l l ~  -+ 1. In the first case, for x # 0, 
liminf, ((x, - xl12 > k, so liminf, JJx, - X I / ,  > 1. In the second case, if there exists 
an x := (x(i)) such that lim inf, 112, - xll = 1 - 6 for some 6 > 0, then since 
limn xn (i) = 0 and so only finitely many of the x, 's can nearly achieve their norms 
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on the i'th coordinate it follows that for infinitely many i we must have Ix(i)l near to  
6 making it difficult for x to live in 12. 

Taking (x, ) = (en), the sequence of standard basis vectors and x := . $ . 
j i ,  1, f ,  . j  shows that the space K,  faiis to have the weak Opial condition, as we 
have; 

1 -0  
Ilen - zJJm f 1 and Ilen - ~ 1 1 2  I 1 + - 

l + a  
< 11% 

and so liminf, Ile,JJ, = 1 = liminf, JJe, - xll,. 

(3.1.5) REMARKS: 

(1) Relationship to U.C.E.D. The uniformly convex space L4 [O, 11 of example (2) above 
amply demonstrates that: U.C.E.D. is not sufficient for the weak Opial condition to 
be satisfied. 

On the other hand ll has the weak Opial condition but is not even strictly convex, so 
weak Opial + U.C.E.D. 

Thus U.C.E.D. and the weak [weak* ] Opial conditions are effectively independent 
conditions sufficient to ensure weak [weak* ] normal structure. 

(2) van Dulst [I9821 has shown that every separable Banach space admits an equivalent 
norm with respect to which the weak Opial condition is satisfied. 

He also gives an equivalent renorming for any separable dual space with respect to 
which the space satisfies the weak* Opial condition. (This was the basis for Remark 
(2.11.2) (3). 

(3.2) UNIFORM KADEC - KLEE CONDITIONS. 

The material of this section is a development of ideas in van Dulst-Sims [1983], which 
are based on notions introduced by Huff [1980]. 

Recall a Banach space has the property of Kadec-Klee (also known as Property H, 
and perhaps more properly termed the Radon-Riesz property) if whenever x, dw x and 
llxnl) + llxll we have ((zn - zll + 0. 

This may be reformulated as stating: every weakly compact subset of the unit 
sphere; 

Sx: = {x E X: llxll = I ) ,  

is norm compact. 

Define the measure of compactness of a subset S by 

+/(S): = SUP inf l l ~ m  - X n  1 1  
(z,)ES mf 
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The supremum being taken over all infinite sequences of points in S. 

REMARKS: 

(1) y is equivalent to the "usual" measure of compactness; 

K(S): = inf {E > 0: S has a finite E - cover ), 

indeed K(S) 5 y(S) < 2K(S). 

(2) y enjoys the following properties. 

(a) y(S) = 0 if and only if S is (norm) compact. 

(b) If S1 c S 2  then y(S1) 5 7 ( S 2  

(d) [Kuratowski] If S1 > S2 > . . . > Sn > . . . is a nested sequence of closed non-empy 
sets with y(Sn) + 0, then 

00 

(i) K = n Sn is non-empty and compact, 
n=l  

(ii) For any E > 0 and n sufficiently large S, 5 K + eBx. 

(3) By theorem (1.16) a diametral set D has y(D) = diam (D). 

(4) In terms of y the Kadec-Klee property becomes: If S is a weakly compact subset of 
Bx with y(S) > 0, then dist(S, 0) < 1. 

Given E E (0, l)  we shall say that S is E-Uniformly Kadec-Klee (E-UKK) if there 
exists 6 > 0 so that whenever S is a weakly compact subset of Bx with y(S) > E we have 
dist(S, 0) 5 1 - 6 or equivalently S n (1 - 6)Bx # 4. 

REMARK: E-UKK may be compared to the notion of c-inquadrate, where if S is met -  
rically b2g ( diam S > E) we have S n (1 - 6)Bx # #. Here the same conclusion follows if 
S is topologically large ( y(S) > E). 

Note: our E-UKK is the w-UKK of van Dulst-Sims [83]. 

(3.2.1) PROPOSITION: For a Banach space X t.f.a.e. 

(i) X is E-UKK 

(ii) whenever C Bx is a weak compact convex set with y(C) > E we have 
C n (1 - 6)Bx # 4. 
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(iii) whenever (x,) c Bx has sep(x,) : = inf llx, - xm 1 1  > E and x, - x we have 
m#n w 

( (x J J  I 1 - 6. 

Proof. Clearly, (i)+ (ii) and (iii)+ (i). (ii) + (iii). Suppose there exists (x,) c Bx 
with sep(z,) > E, x, - x and IJxII > 1 - S. Let f be a norm one linear functional which 

W 

strictly separates x from (1 - S)Bx and let no be such that for n 2 no we have 

Then, C = ~ { x , ) ~ = , ~  is a weak compact convex set with r(C) > E and 
f(y) 2 g ( f ( x ) + l - S )  > 1 - - S f o r a l l y ~ C .  That is C n ( 1 - S ) B x  = 4 .  I 

If X is E-UKK for all E E (0 , l )  we say X is UKK. Huff's original definition of this 
not ion is the equivalent reformulation resulting from proposition (3.2.1) (iii). 

(3.2.2) THEOREM [van Dulst-Sims, 831: If X is E - UKK, then X has w 
normal structure. In particular X has the w-FPP. 

Proof. Suppose X contains a weak compact convex diarnetral set containing more than 
one point. Then, by Theorem (1.18) and the ensuing remark (1.20), there exists (x,) c X 
with x, -0 and l i m d i s t ( ~ , + ~ , c o ( x ~ ) ~ , ~ )  = d i a r n c o { ~ ~ ) ~ ~ ~  = 1. Since 0 E co{xk)gl ,  

w n 

by Mazur, it follows that (Jx, 1 )  + 1. Let S be as in the definition of E-UKK and choose no so 
that for n > no we have dist(x,+l, C O { X ~ ) F = ~ )  > E and llxnlJ > 1-6. Let y, = x,,+, - X n o  

then (ly, 1 )  5 1, sep(y,) > E and y, - -xno. But JJxno ( 1  > 1 - S, contradicting E-UKK by 
w 

part (iii) of the previous proposition. 

The above theorem may be strengthened as follows. 

(3.2.3) THEOREM [van Dulst-Sims, 831: Let X be UKK and let C be a 
weak compact convex set. Then, the Chebyshev centre of C,C(C), is norm 
compact (convex and non-empty). 

Proof. Suppose C(C) is not compact, then it contains a sequence (x,) with sep(z,) > E,, 

for some eo > 0. By passing to a subsequence we may assume x, - x. Let S be as 
111 - 

in the definition of r:; - UKK, fix y E C, and let y, := (x, - y)/ rad (C). Then 
IJynJ( I l,sep(yn) 2 e0/ radC andyn-(x-y)/ w rad(C), SO by UKK Ilx-yJl < (1-6) radC. 

Since y is arbitrary this gives rad C I (1 - S) rad C, a clear contradiction. I 

(3.2.4) EXAMPLES. 

(1) Vacuously every finite dimensional space and every Shur space has UKK. In particular 
el has UKK. Indeed any el sum of finite dimensional spaces has UKK [Huff, 801. This 
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shows that in general UKK does not imply U.C.E.D. The next example establishes 
the essential independence of these two properties even in the presence of reflexivty. 

(2) By theorem (2.11) the space 

is a reflexive space which can be given an equivalent U.C.E.D. norm. However, as we 
now show, it admits no equivalent UKK norm [Huff, 19801. 

For any Banach space X and E > 0 define for S G X 

P,(S):= {x : there exists (x,) C S with sep(x,) > E and x, -x} 
w 

Claim If X has an equivalent UKK norm, then for each E > 0 there exists no such that 
P,".(Bx) = 4. 

Since the conclusion is isomorphically invariant we might as well assume that the 
UKK norm is the given one. Now let 6 be that associated with E in the definition of UKK, 
then by (3.2.l)(iii) P,(Bx) G (1 - 6)Bx, iterating p:(Bx) 2 (1 - 6),Bx. Choosing no so 
that (1 - 6)"o- '  < 5 we see from the definition of P,(S) that pro (Bx) must be empty, as 
pro-'(Bx) has diameter less than E and so cannot contain any sequence with a separation 
constant of E or more. 

To see that X = (12 $ . . . $ l2 $ . . .), cannot be equivalently renormed to be UKK it 
suffices, in the light of the above claim, to show 

Let en,, . . . , en,,-, be any 2P - 1 basis vectors in lp, then for 

is such that 

Thus one half the sum of any 2P - 1 basis vectors is in pt (Be,). 

An identical calculation yields that one-half the sum of any 2P - 2 basis vectors is in 

P? (Be, ). 



58 FIXED POINTS OF NONEXPANSIVE MAPS 

Continuing in this way we eventually arrive at $en E pip-'(BtP) for any n and so 
T 

0 = w - lim $en E ,8tP(~4,).  
n 2 

S. Swarminathan [Private Communication] using similar arguments, combined with a 
result of Rudin [1955], has shown that the space H 2 ( ~ )  cannot be equivalently renormed 
to be UKK. 

(3) The space L4[0, 11 shows that UKK need not imply the weak Opial condition. The 
previous example shows that the converse implication may also fail: 

has the weak-Opial condition. 

To see this, let xn = (xik)), xik) E lk, converge weakly to xo # 0. Let fik) be the 
( k )  ( k )  unique (by smoothness) element of D(xn ), then fn: = (fn ) is the unique element of 

D(xn). Choose ko such that xik0) # 0, then xik0) - xik0) and so by theorem (3.1.3) for 
w - 

lko we can find no and 6 > 0 so that for n > no we have fikO)(xikO)) > 6. 

Now we can find a finite subset N of N so that ko E N, 

and, again by theorem (3.1.3), there is an nl > no so that n > nl implies 

It follows that for n > n~ 

That X has the weak Opial condition now follows from (3.1.3). 

We now turn to weak* -case, when X* is a dual space. 

In view of the previous discussion it seems natural to say for E > 0 that X * is E-UKK* 
if there exists 6 > 0 so that whenever C is a w*-compact convex subset of Bx. with 
y(C) > E we have C n (1 - 6)Bx* # 8. X* is UKK* if it is E - UKK* for all E > 0. 
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The appeal to Mazur's theorem in (3.2.2) precludes a similar argument for the w*-case, 
non-the-less the conclusions remain valid. To see this we make use of the following. 

(3.2.5) LEMMA. Let X* be a n  E-UKK* dual space and  let 6 be  t ha t  associated 
with E by the  definition of E - UKK* . If C is a w*-convex subset of X with 
y(C) > E and  if fl, fi, .  . . , fn are points of X* with C C Bl[fi] for i = 1,2,. . . , n  
then we have 

n 

c n n B1-6 [fi] # 4. 
i= l  

PROOF. By the definition of E - UKK* the result is true for n = 1, Suppose the result 
were to fail, then there is a largest n (2  1) for which it is true. Denote this largest n by no, 
then there exists a w-compact convex set C E X* with 6(C) > E and points fo, f l ,  . . . , fno 

with C C Bl[f;] for i =0,1,  ..., n but for which 

no 
Let Co: = C n n Bl-6[fi] then, by the definition of no, Co # 4. Further Co n B1-6[ f O ]  = 4 

i= 1 
so there exists a w*-continuous linear functional x and real number k with 

Let 

and let 
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c2: = {f E C:x(f) 5 k). 

Then, 
c1 r c c Bl[fo] 

while 
Cl n B1-6[fo] = 4. 

Since C1 is w*-compact and convex it follows from E - UKK* that y(C1) 5 E and so since 
C = C1 U C2 we must have (by remark 2(c)) that y(C2) > E. But then, C2 is a w*-compact 
convex set with y (C2) > E such that 

contradicting our choice of no as the largest value for which the implication held. I 

(3.2.6) THEOREM [van Dulst-Sims, 831: If X* is a dual space with the E - 
UKK* property for some E E (0, I), then X* has w*-normal structure and hence 
in particular X *  has the w*-FPP. 

PROOF. Suppose not, then we can find a diametral w*-compact convex subset K of 
X with diamK = 1. Then y(K) = 1 > E and for each x E K, K c Bl[x]. Let 
E, = K n B1-6[x], then E, is a w*-compact subset of K which is non-empty by the 
E - UKK* property. Further the above lemma ensures that the family E, has the finite 
intersection property, and so by the w*-compactness of K there exists xo E E,, but 

zEK 
then for any x E K we have xo E E, C B1-6[x]. SO llx - xo 1 1  < 1 - 6, contradicting the 
diametrically of K.  I 

Indeed the stronger analogue of theorem (3.2.3) is true. 

(3.2.7) THEOREM [van Dulst, Sims, 831: Let X* be a UKK* dual space and 
C be a weak* compact convex subset of X*. Then, C(C) is norm-compact. 

Proof. Suppose this were not the case, then we can find a weak* compact convex subset 
of X* with diam C = 1 and y(C(C)) > EO for some EO > 0. From the definition of rad C 
it follows that 

C(C) C_ Bl[x] for each x E C. 

Let 6 correspond with €0 in the definition of UKK* then 
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is a non-empty weak* compact convex subset of C for each x E C. The argument now 
proceeds along the same lines as those of the last part of the proof for theorem (3.2.6). I 

We now consider necessary and sufficient conditions for a dual space to be E - UKK* 
. Some conditions will be sufficient, others necessary. 

Our first result shows that for the w*-compact convex sets in the definition of E - 
UKK* it is sufficient to consider "w*-slices of Bx*". 

(3.2.8) LEMMA: X* is E - UKK* if and only if there exists a k E (0 , l )  such 
that for every norm one w*-continuous linear functional f on X* the slice of 
the dual unit ball 

S[f, k] := {x E X* : llxll I 1 and f(x)  2 1) 

PROOF. (*) is obvious, since for any k > 1 - 6, where 6 is given in the definition of 
E - U K K  *, we have that S[ f ,  k] is a nonempty w* - closed convex subset of the ball which 
is disjoint from Bl -a [O]. 

( )  Let K be a w*- compact convex subset of the dual unit ball with y(K) > e 

and suppose that K n B(l-6)[O] = 0, where 6 = 1 - k. Then we may separate K from 
Bl-6[O] by a w*- continuous linear functional f to obtain inf f (K)  > sup f(B1-8 101) = 
1 - 6 = k. Thus K S[f, k] and so y(S[f, k]) >_ y(K) > E, contradicting our hypothesis. 
I 

Recall the duality map 

is norm to norm upper semi-continuous if given E > 0 and x E Sx there exists 6 > O 
such that for all y E Sx with Ilx - y 1 1  < 6 we have D(y) C D(x) + B,[O]. D is uniformly 
norm to norm upper semi-continuous if there exists a common 6 for all x E Sx. 
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(3.2.9) LEMMA: D is norm t o  norm upper semi-continuous if and only if for 
each E > 0 and x E Sx there exists a k E (0,l)  so that  the  slice S[x, k]: = {f E 
Bx.: f(x) - > k} C - D(x) + B,[O]. (The continuity is uniform if and only if k may 
be chosen independent of x E Sx.) 

PROOF. (e) Suppose D(x) + B, [O] contains the slice S[x, k] determined by x. Then, 
setting 6: = 1 - k, for y E Ba[x] n Sx we have 

for all f E D(y). That is, D(Y) C S[x, k] and the result follows. 

( a )  Suppose D is norm to norm upper semi-continuous then there exists 61 > 0 so 
that D(y) C_ D(x) + B: [0] whenever y E Ba,(x) fl Sx. 

Let 6 = min{bl, $1 and let k = 1 - f .  Then, for f E S[x, k] we have 1 f(x) - 11 5 $, 
so by the Bishop-Phelps BollobAs theorem, there exists y E S(x) and g E D(y) such that 
Ilx - yll < 6 and 11 f - gll < 6. But then, D(y) G D(x) + Bi [(:I] and so 

That is S[x, k] C_ D(x) + B,[O]. I 

(3.2.10) COROLLARY: For the  conditions listed below we have 
( i ) a  (ii)* (iii). - 

(i) (a) D is norm t o  norm uniformly upper semi-continuous. 

and 

(b) For each x E Sx, D(x) is norm compact. 

(ii) X* has UKK*. 

(iii) (a) . D  is norm t o  norm upper semi-continuous 

and 

(b) For each x E Sx, D(x) is norm compact. 

PROOF. (i) a (ii) Given any E > 0, from (3.2.9) there exists k E (0, l )  such that for 
all x E S we have S[x, k] C_ D(x) + B, [O]. From this and (i) (b) it follows easily that 
+y(S[x, k]) < E and hence (ii) follows by (3.2.8). 

(ii)* (iii) From (ii) via (3.2.8) we have +y(S[x, 1 - !I) + 0 as n + oo, hence by (d) of 
Remark (1). 
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00 

D(x) = n S[x, 1 - i ]  is norm compact (giving (iii) (b)). Further for any E > 0 we 
n= 1 

have for n sufficiently large that 

from which (iii) (a) follows by (3.2.9). 

(3.2.11) EXAMPLES 

The most obvious example is 

(1) el has U K K * :  we prove this using the characterization given in (3.2.8). First observe: 
00 

In el let f = ( f i ) z l  E S[x, k ]  where x = (xi) E co with IIxlloo = 1. That is; C 1 f i l  5 1 

00 

and xi fi  2 k where xi -+ 0 and max Ixi( = 1. 
i= 1 

Given any E > 0, let M be such that lxil < E for i > M ,  then 

Now, let f n  = (fin) be a sequence in S[x, k ]  converging weak* to f E S[x, k ] .  

Then If;- fr1 - + O a s m , n - - + c o a n d  

Thus 
inf IIfn - f m  11 L limsup I l f n  - fm 1 1  m#n m,n 

< 2(1- k + E). - 
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Since s was arbitrary it follows that 

Y ( ~ [ x ,  k]) 5 2(1 - k). 

(2) An easy calculation establishes that if (X, 11 . 1 1  1) has the s - UKK [s - UKK*] 
property (with corresponding 6), and ) I  . 112 is an equivalent norm [dual norm] on X 
with mllxlll 5 1 1 ~ 1 1 ~  < MIIxII1, then (X, I I . 1 I 2 )  has the st-UKK [st-UKK*] property 
where e' = Fa (with corresponding 6' = 1 - =(I-  6)), provided s and 1 - 6 are both 
less than G. 
In particular it follows that the space X,: = (12, 1 1  . 11,)  where llx,ll: = V Ilxllao 

is s - UKK (for any s > 2 d m )  provided 1 2 a > 5. Infact X, is c - UKK for 

REMARKS : 

(1) The space ll shows that the implication (ii) (i) of corollary (3.2.10) is not generally 
valid. The space X = (12 $ l3 $ . . . l, $ . . .)2 provides a counter example to (iii) 
(ii) of the same corollary. 

(2) The conclusions of theorems (3.2.6) and (3.2.7) for ll were first proved by Lim [1980]. 
Indeed for this space he obtains a stronger conclusion than that of (3.2.7), namely that 
the asymptotic centres with respect to a non-empty subset of ll are norm compact. 
For C a non-empty subset of a Banach space X and (A,: a E A) a decreasing net of 
bounded non-empty subsets of X ,  let 

r(x): = inf rad (A,, x) = lim rad (A,, x), 
a a 

r: = inf r(x) 
zEC 

and 

A: = {x E C: r(x) = r). 

A is the asymptotic centre of (A,:a E A) with respect to C. If A, = C we 
obtain the Chebyshev centre of C, C(C). We say X has w (w*)-asymptotic normal 
s tructure if for every w(w*) compact convex subset K of X containing more than 
one point the asymptotic centre of any decreasing net of non-empty subsets of K with 
respect to K is a proper subset of K.  Since K is diametral if and only if C(K) = K we 
see that w(w*)-asymptotic normal structure implies w(w*) normal structure. In 1974 
Lim proved the equivalence of w-asymptotic normal structure and w-normal structure, 
however no such equivalence seems known in the w*-case. None-the-less Lim's 1980 
result verifies that ll has w*-asymptotic normal structure. This suggests; 

QUESTION: Does UKK* imply w*-asymptotic normal structure? 
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(3) We note that from corollary (3.2.10) and the results of section 3 in Giles, Gregory 
and Sims [I9781 we have that X* has the Radon-Nikodym property whenever X* 
has UKK*. Further X is reflexive whenever X** has UKK*. We also remark that 
a result of Lima [I9811 establishes a connection between UKK* and approximation 
theory (more precisely, the theory, of M-ideals). 

(4) Lau and Mah [I9861 consider the space r (H)  , the trace-class of operators on a Hilbert 
space with the trace norm (which may be identified with the dual K(H)* of the ideal 
of compact operators on H). They show r (H)  has the w*quasi-normal structure 
introduced by Soardi [1972]: a dual space has w-quasi-normal s tructure if for every 
w*compact convex subset C with more than one point, there exists x E C so that 
Ilx - yll < d i m  C, for all y E C. Unfortunately this is not enough to establish the 
w*FPP for F(H). Based on the analogy with ll(F) Lau and Mah ask whether r ( H )  
has UKK* and hence w*-normal structure and the w*-FPP. Arazy [I9811 had already 
established the w*-Kadec-Klee property for F(H). Building from Arazy's argument, 
Chris Lennard [I9861 has answered the question of Lau and Mah in the affirmative, 
showing that r ( H )  has UKK*. 

(5) D. Van Dulst and V. de Valk have made a through investigation of the various Kadec- 
Klee properties considered in this section for Orlicz sequence spaces. For example, 
they show that for an Orlicz function M, satisfying the A2-condition is equivalent 
to hM or lM having any of the properties KK*, UKK*, or e-UKK* for some e E 
(0,l) .  [See Lindenstrauss and Tzafriri, 1977, for definitions and notation.] They also 
establish the following interesting result for subsititution spaces. Let M be an Orlicz 
function satisfying the A2-condition and let (Xn) be a family of UKK spaces. Then 
the substitution space. 

(XI $X2 $ - - - X n  $ ...) hM 

has weak normal structure. 
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(3.3) T H E  ASYMPTOTIC NORMAL STRUCTURE O F  BAILLON AND 
SCHONEBERG. 

In 1981 Baillon and Schiineberg introduced a weakening of normal structure which 
they called asymptotic normal structure ( not to be confused with the asymptotic normal 
structure of Lin, cf. Remark 2 at the end of (3.2)): The Banach space X (dual space) has 
w(w*)-ANS if whenever C is a non-trivial weak (weak*) compact convex subset of X and 
(x,) c C is a sequence satisfysing 1 1 ~ , + ~  - x, 1 1  + 0, then there exists an x E C such that 
liminf, llx, - X I ]  < diamC. 

Clearly w(w*)-normal structure implies w(w*) - ANS. 

Since an approximate fixed point sequence (x,) in a w(w*)-compact convex minimal 
invariant set for a non-expansive mapping satisfies 1 1 ~ , + ~  - x,II + 0 (Proposition 1.3) but 
lim llx - xn 1 1  = diam C (Theorem 1.8)) we have:- 
n 

(3.3.1) PROPOSITION: w(w*)-ANS implies the w(w*)-FPP. 

(3.3.2) EXAMPLES 

(1) Baillon and Schoneberg [I9811 show that the reflexive space 

has ANS if and only if a > f ,  while it has normal structure if and only if a > 5. 
Thereby establishing that ANS is genuinely weaker than  normal structure. 
They also establish the FPP for X I .  Since we will obtain the FPP for all a > 0 in 

2 
Chapter 4, we will not persue the details here. 

(2) That ANS is far from necessary for the FPP in reflexive spaces is further illustrated 
by Bynum [I980 and ???I who shows that the reflexive space 

lacks ANS for all p, though it has the FPP for 1 < p < m. 
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