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" .SECTION B

LINEAR ALGEBRA

TEXT: Florey, Francis G. "Elementary Iinear Algebra with Applications”
Prentice-Hall, 1979, ' '

The course consists largely of selected reading from Chapters 5,
6, 7 and 8 of the text. Tt is therefore essential that you ochtain
4 Copy as soon as possibie. Additional notes and some remarks which

Supplement material in the text are included in the course description.

Lineér”Aldébra”is'Ehé study of "vector (i.e. iiheaf)éﬁﬁcééﬂ;juThe
concept of a vector space is an abstract one. Vector space is not a
'concrete' ohiject, though particular examples are. Anything which can
be made to satisfy the axioms is a vector space. The importance of the
concept lies in the extremely laxrge number of "mathematical objects"
which exhibit the structure of a vector s=pace (some of these objects are
listed in the examples given in section 5.1 p. 163 - 169 of the text).
By recognising these objects as vector spaces we can, in one sense, think
of them as being the same. Since ardinary two or three dimensional
euclidean space is one such example, when we attempt to prove a result
for some less familar example we can see what the problem amownts to in
ordinary space, use our "geometrical intuition” to find a proof in that
case, then, provided our broof only relied upon the vector space structure
of euclideanspace, translate it back to obtain the result sought. Further,
once a result ig proved for general vector spaces we then know it is
true in all the examples. Thus, once we have accumulated a body of
results for vector spaces, showing something is a vector space amounts
to immediately knowing a lot about it.

The applications of linear algebra are numerous. A few are treated
briefly in the text. Unfortunately there is insufficient time to include
these sections in the course. T hope that you will none-the-less
inspect them and perhaps make the effort to work through one or two

that particularly interest you.



As with any body of 'formal' mathematics, the theory of vector
spaces develops upon itself. Subsequent work rests heavily upon
earlier definitions and results. It is therefore essentidl that you
learn definitions and results as they occur (if necessary write them
on the ceiling above your bed and recite them each night). While
it is important that you strive for understanding, as opposed to
learning parrot fashion, initially you should not waste too much time
worrying about what a definition or result means. A feel for this
should develop as you progress through the course. Most students

find the early part of the course difficult. It is a different

oy | Wiee!
kind of mathematics(?ha@iyou are probably used to. However with
e e

perséiverénce‘most students find that it eventually fits together and

really isn't all that hard.

Working problems is probably the best way to develop a feel for the
material. Problems form an integral part of the course. Each of the
sections prescribed from the text is concluded by a set of exercises.
You should attempt as many of these as possible as soon as they are
encountered. Assignment questions dre drawn largely from among
these exercises. Do not let problems accumulate until the end. Aalso
don't be discouraged if you are unable to do some of them. 3al1
mathematicians at all levels, experience this. Be on the look out
for ways of using previous results to simplify and assist in the proofs
of current problems. The proofs of theorems, and lemmas are important
here too. Earlier proofs frequently contain the essential technigues
for solving a current problem. You should treat the proofs of theorems
etc. much the same way as you would a worked example.

Requests for additional explanations or assistance are welcomed and

will be dealt with as promptly as possible. May T wish you success and

=B

enjoyment from your studies.

Dr. Brailey Sims 4

{Lecturer)
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NOTATION: Some of the symbols available to the printer are not pPresent on
typewriters or are difficult to reproduce by hand. It is therefore necessary
to adopt a sligthly different notation in written work, typed notes, exam
papers etc.(ﬁ?ﬁﬁ)the one employed in the text. As you will see from the
following table I have tried to choose as similar a notation as possible to

that of the text. I hope it will not cause you any inconvenience.

The handwritten notation is merely a suggestion. Provided it is clear what
you mean T don't mind what notations or style you choose to use in assignments,

exams, etc, so find one with which you feel comfortable.

As the notation in the right hand column suggests, different authors
employ radically different notations. The alternative one given is
perhaps the most commonly used notation. (Indeed, it is the cne T normally
use. While I will endeavour to parallel the text as nearly as possible,

please forgive me for any lapses into this alternative notation.)
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BACKGROUND ~for the course

The material in Chapters 1 to 4 of the text provides essential

background material to that of the course proper.

For example:

The material of Chapter 1, sections 1.1 and 1.3, is important in
motivating the fundamental ideas developed in Chapter 5;

Section 2.2 provides basic motivation for the material of Chapter B8;

Chapter 3 (in particular the matrix work - sections 3.4, 3.5, 3.6,
3.7 and 3.8) is basic to the work in Chapters 6 and 7;

For Chapter 7 the material of Chapter 4, sections 4.1 and 4.2, is

also essential.

With the exception of some material in sections 4.1 and 4.2 the content
of all these early chapters should be familiar to you from your First Semester

work in Pure Mathematics 111-22. T+ is essential that you revise this

preliminary material, however, it is not necessary to complete this

revision before starting the course proper. Rather I would suggest that

you allocate some time each week to the revision of this material, pacing
your revision o that it keeps ahead of where it is needed in the course

proper - as detailed above. To this end I will include some questions

on this early material in the assignments.

You should aim to achieve understanding and computational skill from
this revision,a detailed knowledge of proofs for the material of Chapters

l.to 4 is not essential.
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COURSE DETAILS

(Background preparation: Briefly read through Chapter 1 sections 1.1
and 1.3 - the material should be familiar to you from First Year, the
only difference in notation is the use of ||A|| instead of |A[ for

the "length" {Magnitude) of the wector A.)

Lecture®
section 5.1
Lecture

Lecture gsection 5.2

section 5.3 including the proof of theorem 5.6
Lecture

1

2

3
Lecture 4
5
Lecture &
-

} Section 5.4
Lecture

Lecture 8 Section 5.5

Before proceeding to the next section of work you should "revise" -the
material in section 6.1 (pp. 206-210).

Lecture 9| |Section 6.2 ~ paying particular attention to the definition
6.2 and examples 6.4 and 6.7.

Lecture 10 [Section 6.3 (pp. 216-219) - excluding the applications.

Lecture 11 Section 6.4

Lecture 12 Section 6.5 - including the proof of Theorem 6.10.

Lecture 13| Section 6.6. (Note at this point you may find it necessary to
revise the work of Chapter 3, Sections 3.4, 3.5 and 3.6, on

Lecture 14)| Matrix Operations.)

* Throughout the course you should aim to cover approximately two

lectures a week.
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Lecture 15

Interpretation of some results in Section 6.6

Note that in the verification (p. 165) that F, the set of all
real valued functions defined on R (Example 5.1(e)), is a
vector space under point-wise defined addition and scalar
multiplication the fact that the common domain of all the
functions is R was not needed, indeed the domain could have
been any set A and the arquments would hawve established that
F(A,R) the set of all real valued functions defined on A is

a4 vector space. Further it was only the vector sSpace properties
of R which were needed and so the same arguments in fact prove

that F(A,}) is a vector space where A is any arbitrary set

and W is any vector space. In particular <f V, | are tuwo
vector spaces, then FN W) the set of all functions
(transformations) from \ to W is a vector space with respect

to the point-wise defined operations.

addition: (f+g)(V) = £(V) + g(V}| £, ge F L0
scalar multiplication: (rf) (V) = r(£(V)) velV
re R

If we denote by L(V,W) the subset of F(V,W) consisting of

all linear transformations from V to w, then exercise 6.6,
problem 8 establishes that | (V,lf) is a subspace of [ (V).
Thus, the set of all linear transformations from one vector space
into another, is itself a vector space with respect to point-wise

defined addition and scalar-multiplication.

(qv. exercises 6.6, problem 11)

Indeed, when Y and W are finite dimensional, theorem 6.11 may
be interpreted as establishing an isomorphism between LXV,W)
and the space of dim W % dim V- matrices (example 5.1 (d) of

p.164) - see exercises 6.6, problem 13.

Section 6.7 - note that in the proof of theorem 6.16 the
assumption that Y is finite dimensional is not used, thus the
theorem is valid for any vector space, V, finite or infinite
dimensional. It is only in the Corollary 6.2 that Finite
dimensionality is needed [indeed it is essential, as the
conclusions of problems 16 and 17 of exercise 6.4 do not, in
general, hold true for infinite dimensieonal spaces. (Optional:

Can you give examples which demonstrate this?}].



To the conclusions of Corollary 6.2 you should add

(iv) T is non-singular if and only if there exists S: V+V
such that ToS = I.

(v) T is non-singular if and only if there exists S: { + V
such that SoT = I.

That is, for finite dimensional Y, T is invertible if and

only if it has either a right or left inverse. [Show that in
-case either (iv) or (v) applies, then the right or left inverse,
S, is in fact T ! the unique inverse of T.]

To prove {(iv), (v). Note that from the appropriate argument
in the prcof of theorem 6.16, T is onto (1-1) if T has a
right (left) inverse and then apply (i), (iii) of Corollary 6.2,

[at this point you could look at section 6.8, however the guestion of
matrix rank will be taken up again after our work on inner-products and

a slightly different approach adopted. The study of this section could
therefore be deferred till then.

Note: Only definition 6.11 and the first five lines of the proof to
theorem 6,20, which establish: The column rank of A equals the rank
of T: Rn > Rm, where T <s the linear mapping represented by A
relative to the standard bases; are relevant to the course, the remaining

results will be established differently.]

Lecture 16 Section 6.9

For the next two sections it will be necessary for you to have revised
the material of Chapter 4, sections 4.1 and 4.2.

Lecture 17 Section 7.1

Lecture 18 Section 7.2 (excluding the applications on pp. 298-301).
[Note: The work on quadratic forms in sections 7.3 and 7.4
will be considered after we have made a study of inner-product

spaces. ]
Background: Read Chapter 2, Section 2.2.

Lecture 19 Section 8.1
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ASSIGNMENT 2 -~ Linear-Algebra = - ° =

Show that the set of strictly positive real nunbers, R+ s With the binary

operation, "addition" defined by

Xll+ll¥=xY

and scalar multiplication defined by

ry

fl
"

is a vector space.

Exercise
Exercisge
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

Exercise

5.1
5.1
5.2
5.2
5.2
5.3
5.3
5.3
5.4

problems 12, 13, 14 and 15 (pp. 168, 169).
problems 19, 20, 21 and 22 (p. 169}
problems 3, 8 and 14. (pp. 175, 176).
pProblems 10 and 11 {(p. 176).

problems 18, 19 and 20 (p. 176).

problems 2 and 3 (p. 183).

problem 11 (p. 184).

pProblems 13 and 15 {(p. 184).

problem 2.
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ASSIGNMENT 3- Linear Algebra

11. Exercise 5.4, problems 14 (note remark immediately preceding this
problem), 17 and 18 (pp. 191 and 192).
12. Exercise 5.4, problem 20 (p.l92).
13. (i) Exercise 5.5, problem 10 (p.198).
(ii) Is it possible to find two subspaces U and w of Ra such
that dim |J = dim |f and Ry = Ues We
14. Exercise 5.5, problems 20, 17, 19 and 21 (pp. 198 and 199)
15. (a) Exercise 6.2, problems 2, 3, 7 [in this problem also verify that
every linear transformation T: R+ R is of this form.
Hint: Let k = T(1)] and B (p.215).
(b) Exercise 6.2, problems 10, 11 and 19 (pp. 215 and 216).
Verify each of the following functions {transformations) is a

linear transformation.

b4
(1) TV + F(la,b],R): £+ J f{t)dt,
a

where \ is the space of all integrable functions on
[a,b] ana F([a,b],R) is the space of all real valued
functions on [a,b].

[See examples 5.1(i) and (k).]

(11) T: Y+ F: £rm ax£" + b(x)£' + c(x)f, where a, b and
c are given functions, V is the space of all twice
differentiable functions on R (see example 5.1(j) for
example) and [ is defined in example 5.1 (e).

[Remark: Note that the second order differential equation
ay" + by' + cy = g{x) may be written as T{y) = g, it is
for this reason that such equations are referred to as

linear equations.]

{(iii) L: V -+ F([O,M), R) where L{f) is the Laplace Transform
of £, L(£)(s) = , e “*F(x)ax. Here F([0,=),R) is the

space of all real valued functions defined on the set of
positive reals and V is Ehe space of all real valued
functions £ such that e_sxf(x)dx exists and is finite

0
for all s = 0.
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15. (iv) C: V= F([- gy g},R} where C(£f) is the convolution,
(cont.) ™

C(E) (%) = (sin«f) (x) sin(x - t)f{t)dt.

Il
0 [ —— |

STE|

()
)

[Note: The conclusion of {{v) would remain valid if C were
defined with sin{(x - £) #eplaced by any continuous function of
iwo variables K(x,t). Such thansfonmations {operatorns) are basdic
to the theory of integral equations and arise frequently .in
problems of Mathematical Physics.]

Here, V is the space of all integrable functions on [—

(¢} Exercise 6.2, problem 20 (p.216), Exercise 6.3, problem 15, 16 (p.224);
7 (p.223) and 19 1p.224).

ASSIGNMENT 4 - LINEAR ALGEBRA

6. Exercise 6.4, problems 8, 9, 10, 12, 13, 14, 16 and 17 (p.230).
17. (a) Exercise 6.5, problems 4, 7, 11 and 16 (pp. 239-242).
(b) Let T: P3 -+ P“ be defined by

X

T(p) (%) = J plt)dt;

I
that is, T maps each quadratic to a primitive (indefinite integral).
For example, T(3x2 + x + 1) = x3 + Lx2 + x.
Find the matrix [T]B B which represents T relative to the
172

natural bases
B, = {1, x, x2} of P3

and B, = {1, x, x2, x31 of Pu.

18. Exexcise 6.6, problems 2, 4, 8, 9, 12 and 13 [alsc chserve that
(L, +, ) is a ring, keeping this in wmind, may help in some of the
subsequent problems] (pp. 250 and 251).

19. Exercise 6.7, prcblems 1, 2, 3, 4, 5, 8, 12, 14 and 15 (pp. 257 and 258).

[Note: Problems 16, 17 and 18 relate to the additional notes included in

the course outline for lecture 15 and so may be of interest to you.]

'20. Exercise 6.9, problems 7, 12, 15 and 17 (pp. 275-277).
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23.

25,

26,

27.

Let T : R3 + R2 be defined by T(x

47

ASSIGNMENT 5 (Linear Algebra)
Exercise 7.1 probhlems ﬁ, 11 and 12 ( p.292 )

Bxercise 7.2 problems 8, 10, 16, 17 {pp.302, 303}

Exercise 8.1 problems 7, 8, 12, 13, 15 ({p.340)

Alsa; show that

“(xl,xz)ﬂ = ’xll + ]xzi

defines a noxm on R2.

By considering the vectors {(%,%), (%,-%) show that the above norm
does not satisfy the parallelogram rule (see F. Problem 12 p.340)
and so conclude that this norm does not arise as V{X,X) for any
inner-product on R,. Thus, the notion o4 a noimed space is4 mohe
general than that of a Euclidean space.

Exercige 8.2 problems_?, 9, }Q, 11, 14 (P.348). Also prove the
converse of 7 - that is, if A,B are vectors in the (real) innerproduct
space ¥, ( , )} such that la - B2 = ||all? + |82 , then A and B are
orthogonal.

Question 5-7 hefen fo the supplementary noites and not Lo Flonrey.

Prove Theorem 21.1, Exercise 21.1

ASSIGNMENT 6 (Linear Algebra)

i,xz,xB) = (x1+2x2+x3,%x2+%x3).

Find the matrix M which represents T with respect to the standard
bases for R3 and R2. Determine the adjoint M* and hence T*. (Verify
vour results directly from the definition of T*).

Exercise 22.1

The exercises on n.39_and p.41

Alzo verify by direct calculation (i.e., without referring to

theorem 25.2) that, if 11,12 are two distinct eigenvalues of the
self-adjoint transformation T, then corresponding eigenvectors

Xl' ¥, are orthogonal.

2
[Hint: consider (Al —12)(X1,X2)-]
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31.

Exercise 7.3 problems 3, 7 and 11 (pp.310, 311)
Exercise 7.4 problems 11, 15, 19.and 22 (pp.319, 320)
Exercise 7.5 problems 2, 8 and 13 (pp.329, 330). Also:
If the n*n matrix A has a complete set of eigenvectors

Xl' Xz, ...,Xn with corresponding eigenvalues Al,lz, ceesh

n
(not necessarily distinet), prove that

n
.I{ (A—Ai) = {A-Al) (A—l;)_).-- (A—An) =0

i=1

[Hint: for any i,j show that (A-ki)(A~lj)=(A—}j)(A—li) and so
n

show that [n (A—)\i):’ (X) = 0 for any X ¢ R"] .
i=1

Note that; wunder the assumptions on A we have, A is similar

to the diagonal matrix Al o ...
0 lz -
and so the characteristic
- A
ey n —

polynomial of A is

‘ n
det (A-AI) = II

J0g -

1
The above result ié therefore a special case of the Hamilton - Cayley
Theorem which is sufficiently general to encompass any self-adjoint,

and therefore any symmetric, matrix A.

(Optional) - Simultaneous diagonalization of two quadratic forms.

(this result is of use in the advanced theory of vibrations and certain
aspects of algebraic geometry, where you may meet it in third year).

Let P(X) = XT AY and O(x) = XTBX be two guadratic forms on Rn and further

assume that P is positive definite, that is the (real) symmetric matrix

A has all its eigenvalues strictly positive.

X . . , -1 T
Then by Florey Section 7.4, there exists exists a matrix P s.t. P T = P

and
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_l 0 el
P AP = 3
2 tte is a diagonal matrix
e A
5 o

with hl,hz, vens Kn n strictly positive real numbers (not

necessarily all distinct).

i/ -
r /X; 0 v e
1/
Let R =7 © Ay e
1/
Tt va_
L n|

r
T_: . . . .
Then R AR = In, the nxn identity matrix (show this) and

T . . , \ . .
Further R'BR is still a (real) symmetric matrix, since B is

{verify this) and so again, by Florey section 7.4, there exists

a real symmetric matrix Q such that Q_l = QT and QT(RTBR)Q ig
a diagonal matrix.
Now let S = RQ then
STBS‘is diagonal (why?)
and
sTag = QTRTARQ = QTInQ = I (Why?)

That is, both A and B are simultaneously diagonalized by the
matrix S.
Relative to the "new coordinates”

U = S_lX {how do we know S_l exists?) we therefore

have that both the quadratic forms P and ! are in diagonal (or normal)

form.



50

Note: U = fX]B -~ the coordinates of X relative o the basis
2

B, = {sxl,sxz,...,sxn'} where B, = {X_,X

1 1 2,...,Kn} is the standard

basis for R .
n

By following the above steps simultaneously diagonalize the guadratic

forms on R2 which corespond to



In what follows it is convenient to replace the real numbers R by the
complex numbers ( as the field of scalars over which bur vector space
is defined. (The eigenvalues of a linear transformation of a finite
dimensional space are the roots of a polynomial - the characteristic

polyncmial - and so may be complex numbers) .

The will not alter any of the basic theorems on linear -

algebras, as only the field properties of R have been used.

However, in the definition of inner-product we must replace
1P by

(¥,X) = (X,Y) for all X and ¥ in V
{here, and elsewhere, " " denctes complex conjugate).
Consequently we have
(AX,¥) = A (X,¥) for all X, ¥ in ¥ and A in C,
but

(X,A¥) = A(X,Y). (Verify this.)

All the.other properties of an inner-product remain unchanged.
[Tf this modification were not made, for any X # 0 in V we would
have

0 < (iX,iX) (by 3P)

i(X,ix)

(112 (x,%)

- (.XJX)

< 0 (as, again by 3P, (X,X) > 0)

and so our axioms would be inconsistent.]
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The following may serve as g heuristic motivation for the definition
of an inner-product in the space of all continuous real (ox complex

valued) functions on the interval [a,b], V = Cla,bl:
b
(£,9) = J f(x) g(x) ax
a
(qv. Florey Example 8.1, pp. 333-334.)

A clue as to how an inner product may be defined in Vv may be
found by examining the definition of the inner-product in the finite
case.

For x = (%1, Xor Xgr vu-y xn)
y = (er Yor ¥Yagr «-es Yn) (xjg yj complex numbers)

defn - - - -
(x,y)=== xlyl + xzyz + X3V 4 + ...+ xnyn

Now, the vector x may be regarded as the "baby" function, whose domain

{1,2,3,-..,n} is mapped into the complex numbers according to

1 b x

which we summarize by writing X: j =+ xj. Similarly y is equivalent to
the funetion y: 3 -+ yj.

From this point of view the individual terms, X\Yqr Xp¥or ow.y OF
the inner-product X.Y represent the wvalue of x at each domain point
3 (xj) multiplied by the conjugate of the value of y at the same
domain point. The inner-product is obtained by summing these pProducts
over all possible domain points.

In the case of interest to usS, our vectors are again complex
valued functions defined on the domain [a,bl. rFor £, g € V the
corresponding point value product is £(x} g(x) and the "sum" over
all such values corresponds to
b
f £(x) glx) dx.

a

We are therefore led to define an inner product in v by

b
(f,q) = f £{x) g(x} dx for ail £, ge V.
“a



These notes further the study of Fuclidean (or inner-product) spaces

initiated in Chapter 8 of Florey.

Lecture z1 - ORTHOGONAL COMPLEMENTS.

If X,Y are orthogonal vectors in the Euclidean space V, ( , }; that
is, (X,Y¥) = 0, then we will write X L ¥. WNow let S be any non-empty

1
subset of V. The orthogonal complement of S, denoted by S is the set

of vectors in V which are orthogonal to every element of S. That is

S.!.

{xeV: (x,8) =0 for all s ¢ S}

THEOREM 21.1: The orthogonal complement st of any non-empty subset S of
the Euclidean space N, ( , ) is a subspace of V.

Proof. EXERCISE.

We now turn to the important special case when 8 = M is itself a

subspace of V.

THEOREM 21.2: Let M be a subspace of the finite dimensional Fuclidean
space YV, (, ), then V ig the dirvect sum of M and Ml; that is
V=-MoM

Proof. Let Xl,Xz,...,Xm be a basis for M and let ¥ X

J_'XJZ"""xm'xrtﬂ-l""Ir n

be an extension to a basis for V.

Using the Gram~Schmidt orthogonalization procedure convert

Xl,Xz,...,Xn to an orthogonal basis Yl’Yz""'Yn for V:
¥y = X1
Yy = xp - K20¥1) ¢y
(Y]_ IY]_)
Y3 = X (XSIYI) Yy — (x31Y2)
(¥1,¥1) (¥Y2,¥2) eteo.



Then, since ¥, is a linear combination of X_,X_,...,X, we have that

k 1'72 k
Yl'Y2""'Ym is a basis for M and so it suffices to show that
A . pL
Ym+l""'Yn ig a basis for M,
Clearly <:Ym+l""'Yn >c M*. (Wwhy?) On the other hand, if

V=ayY +a¥ +...+ta ¥ +a
™ m

s L
Y qte--ta ¥ e t M~ we must
171 272 ) a ¥ isan lement of W

have
(V,Y9) = 0 as Y] € M and so

0= (alYl+a2Y2+...+anYn,Y1) = al(Yl,Yl) + a2(Y2,Yl)+...+an(Yn,Yl)

= al(Yl,Yl). Since (Yl,Yl) + 0 we therefore have ay = 0.

Similarily, (V,Yz) 0 and so a_ = 0

N

(V,Y3) 0 and s0o a_ = 0

0 and so a = 0.

(v,Y )
m m

= Fuuot i <y LY > h
am+lYm+l anYn is an element of i1’ Yn and so we have

Mt < <:Ym+l""'Yn > , completing the proof.

COROLLARY 21.1: For M a subspace of the finite dimensional Buclideaw

space V we" have

dim ¥V = dim M + aim M



EXERCISE'(cptional) 21.1: For any non-empty subset S of the Euclidean
space ¥, ( , ) show that the orthogonal complement of the orthogonal

complement of S is the span of S; that is, (S'I')‘L =<8 >,

ADJOINT TRANSFORMATIONS.
We aim to show that if Vq,( , )i and V5,( , )y are two Euclidean
spaces and T is a linear transformation from V; to V;, then there

*
exists a linear transformation T (the "adjoint" of T) from Vo to V;

such that

&
(TX,¥)p = (X,T ¥)y for all X € V; and ¥ ¢ V;

EXAMPLE 21.1: Let V; = Vp, = Ry with inner-product (X,¥) = X.¥ = x1¥1+ XpV2
where X = {(x1,x3) and ¥ = (y1,y2). Then, if T : V; = ¥y is defined by

T{{x],%x2)) = {x1-%xp, Hz1+txp)

we see that

(T(x1,%x3),{¥1,¥2)) (x1-%9)y1 + {x1+x2)y2

% {y1tye) + %3 (y2-vi)

I

((x1,%9) ,(¥y1+¥2.,¥2-¥1))

* *
and so {TX,¥) = (X,T ¥), where T is the linear transformation defined

by

*
T ({y1y2)) = (y1ty2,y2-v1)



*
EXERCISE 21.1: Determine the matrix representations for T and T in the

above example with respect to the standard basis for Rp, {(1,0),(0,1)}.

The desired conclusion will be seen to be a direct consequence of the
following theorem, which represents a special case of the finite

dimensional Riesz -Fréchet representation theorem.

THEOREM 21.3: Let Vi, ( , )y and Vo ( , )y be two finite dimensional
Buclidean spaces and let T be a linear transformation of Vi into Vp, then
for each vector ¥ e V, there existe a unique vector Vy e V such that
(TX,¥)g = (x,vy)lfor all X in Vy.

EXAMPLE 21.2: Fﬁr Vi,V; and T as in example 21.1 and Y = (1,2} we see
that

(T(X),Y) = 3x; + %p = (X,(3,1))

for all X = (xj,x3) ¢ ¥;. Thus v, = (3,1).

Tecture 22 - proof of theorem 21.3 and construction of the adjoint
transformation.
PROOF (of theorem 21.3): Let M= {X & Vl: (‘I‘X,Y)2 = {0}, then M is a

subspace of Vl {check this) and so by theorem 21.2.

V. =MaM .

1
if ML = {0}, then M = Vi and for all X e Vl we have that

(TX,¥) =0 = (X,0)
therefore it suffices to take Vy = 0. If ML i {0} we may choose a non—zero
vector V from ML. We begin by observing that for all X ¢ Vl

(T[(Tv,%x - (TX,y) V], ¥) 5

I

(TV/Y)Z(TX;¥)2 - (TX,Y)z(TV,Y)2

= 0.



and so conclude that
(Tv,¥) X - (TX,¥),V M.

In particular then for all X e Vl’

(TV,¥) X - (TX,¥),V,V}; = 0 (as v e M)
or
(Tv;¥)2(x,V)1 - (TXIY)Z(V}V)l = 0.
Since (V,V)1 £ 0 (3P. of the definition of inner-product, Florey

p.333), this last equation may be rearranged to give

(TVrY)2
(TX,Y,)2 WT (.X,V)1
ar
(TV,¥) ,
(xx), = & (v,v), v

for all X € Vl'

Thus the theorem is satisfied by taking

w7,

VvV, = ===
4 (V'V)l

{which we note depends only on.y and V not on X} .
Tt only remains to prove that the element Vy, whose existence has
been established above, is indeed unigue. Thus, assume VY' iz another

such vector, then we have

(X,VY_) i = (TX,¥) = (‘X'VY ")
or (X,V; - VY') = 0 for all X ¢ Vl' In particular, taking
— - ]
X = Vi V& we have
V.-V ', V. -V,') =0
(Y YY f oy Vr)
and so, by P3. of the definition for inner-product we have VY - VY' =

or Vv.' =V .
Y 4

0



As a result of Theorem 21.3, for T ¢ L (Vl’v2) we may define the

adjoint transformation

* -
T+ V2 Vl by
* =
T* (¥) VY
(here vy is the uniques element of Vl such that (TX,Y)2 = (X'Vyh_
for all X e Vl')

That is

(TX,¥)y = (X,T*Y); for all X « Vl' Y g V2

Theorem 22.1: For T e L(Vl,Vz) the adjoint transformation T* g a
linear mapping from V2 to Vl’ that 15 T* € L(yéfyll'

PROOF: For ¥, Z € Vz, scalar A and each X € Vl we have

(X, T*(y + Az))1

(T%,¥ + Az)2
= (TX.Y)2 + A(_Tx,z)2
= (X,T*Y)l + X(x,T*z)l
= . T* + ’
(X Y)1 4 AT,Z)1

= (X, T*Y + AT#Z)l.

Thus, (X,T*(y + AZ)l— (T*y f}IT*Z])I = 0 for all X ¢ Vl. In particular,
(T*(Y +22) - [T#Y + MT¥2], TH(Y + A2) + [T%7 - ATZ]); = 0 and so,
by 3P. of the definition for inner-product, we have

T*(Y + AZ) - [T*Y + AT*Z] = O
or

TH{Y + AZ) = TXY 4 AT*Z.

For all Y,% ¢ Vz and scalars A.
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The mapping T — T* is of considerable'importance
with many properties analogous to the operation of complex conjugation.
For example:

(1) (T+3) *

T*+5%, T,8 € L(Vl,Vz);

(i1} (AT) *

AT*, T e L(Vl'v2)' scalar i;

(iii) (SoT)* = T¥*oS*, T ¢ L(Vl,Vz), S e L(Vz'V3);

(iv) If T is invertible, then so is T* with

' -1 -1
(@ = e w e L)

Proof of (iii): For all X e Vl’ Z € V3.we have

(%, (SoT) *2), = (SoT(X) 12 4 (s(T(X)},2),

It

(T(X),S*Z)2

(X,T*(S*Z))1

(X, T*05* (2)},.

EXERCISE 22.1. Prove (i), ({ii) and {iv)
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LECTURE 23 - Matrix representation of T* with respect to a pair of

orthonormal bases.

Let Vl, { . )l and V2, « ., )2 be two Euclidean spaces with orthonoxmal
bases

Bl = {xl,xz,...,xn} and Bz = {Yl,Yz,...,Ym}

respectively, and let T ¢ L(Vl,Vz).

Recalling that the entry in the j'th row and i'th columm, t;i' of the

nxm matrix [T*]B"B representing the adjoint T* is the coefficient of
271

X, in the expansion of T*Yj with respect to the basis Bl we have by Florey,

Corollary 8.2 p.347,

t*, = (T%Y,,X.)
Ji J 1 1
= (X,, T*Y.)
i, 3 1
= (TX, ,Y.)
1773

But, again by Florey Corollary 8.2, this is the conjugate of the coefficient

of Yj in the expansion of TX; with respect to the basis Bl'
Thus we see that tgi, the entry in the j'th row and i'th column of
['I'*]B B is the conjugate of the entry in the i'th row and j'th column
271
of {7l .
BlBE

That is,
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i
i

t¥, s
Ji 1]

DEFINITION: The adjoint matrix of the m*n matrix M, is the nXm

matrix M* whose entry in the j-i'th place is the conjugate of

the i~j'th entry in M.

That is, the i'th row of M* is the "conjugate" of the i'th column
of M,

[Note: If the entries of M are all real, then M* is the transpose
of M, MT.]

In terms of this definition we have
[T*] = [T1%
BZBI BlBE

EXAMPLES:
1 2
1) Let M =| 3 1+1i
2-1i 4

then

2) Let Vl = RB and V2 = R2 with "dot" product for inner-product in

both spaces.

Let Bl denote the standard orthonormal basis for V., that is

ll’
B, ={(1,0,0),¢0,1,0),(0,0,1)}. Similarly let B, = {(1,0),(0,1)}.
If T:Vl > V2 is given by

T(xl,xz,xa) = (xl+2x ' xl— x3)

ITi =
BB, 1l 0 -1

2

then
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'Thus

l._l
o

=)
s
vy
I
(=]
_
*
i
A8 ]

% — -
and so T*(y,,¥,) = (¥1Y,,2¥1,-¥,)
Verify this by direct substitution into
= (X,T% :
(TX'Y)Z x,T Y)l

L.H.S.

T
{ (xlnf:z

tx3) r (erY2) ) 2

N

(xl + 2x2,xl—x3).(yly2)

Il

(lel + szyl + XY, - XY,

R.H.S.

%
(xl,XZ,xa) ; T (yl,yz) )1
= (xlyl+xlyz,+ 2x2yl - X ¥,

L.H.S.

LECTURE 24
Theorem 24.1: For any T € L(Vl,Vz) where Vl,( R and Vz,( )y
are Euclidean spaces we have Ker T c (T* (Vz))q'.the orthogonal complement
of the range of the adjoint.
Proof. If X ¢ Ker T we have

T = 0, so (TX,¥) = 0 for all ¥ ¢ Vz, thus (X,T*Y) = 0 for all
Y e V2. That is, X is orthogonal to every element of T*(Vz) and the
result is established.
Corollary 24.1: The pank of T equals the rank of T*; that is

dim T(Vl) = dim T* ('Vz)'
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Proof. By Florey Theorem 5.12 p.195,

dim T(Vi) dim Vl - dim Ker T

> dim Vl - dim (T*(Vz))l'by Theorem 24.1

dim Vl.— dim Vl - dim T* (Vz)) by Corollary 21.1

dim T*(Vz).
Sinilarly dim T*(Vz) 2z ‘dim(T*)*(Vl)

= dim T(Vl), as (T*)% = 7T
Thus dim T(Vl) = dim T*(Vz) as required.
Corollary 24.2: If M 18 any mxn matrixz, the row vank of M equals
the colunm vank of M.
Proof. For definitions of row and column ranks see Florey p.259.
Now, let T denote the linear transformations from Rn to Rm whose
matrix representation relative to the standard bases is M, then the
column rank of M equals dim T (Rn)' see the first five lines to
the proof of Theorem 6.20 in Florey p.262. By Corollary 24.1 we
therefore have that the column rank of M equals dim T*(Rm) which
by the same argument as ahove equals the column rank of M*, Since

the columng of M* are the rows of M the result is established.

‘LECTURE 25 - Self-adjoint transformations
DEFINITION: Let V,( , ) be a Euclidean space, T ¢ L(V,V) is a

self-adjoint transformation if T* = T.

Thus T is self-adjoint if and only if (TX,¥) = (X,TY) all X,Y e V.
. By the results of lecture 23 we see that T is self-adjoint if and

only if

[T*]B = [T]§ =IT]B for any orthonormal basis B of V.
EXAMPLES:

1) The identity map Ty is self-adjoint on ¥ . For any basis B
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we have
100..
010.. :
= e = I* = [I%*]
[IV]B T 0o01.. n VB
2) T : R2 -+ R2 : (xl,xz) —-—+—(xl+x2,xlvx )

is self~adjoint when inner-product equals "dot" product.

[ Y I & U | E

where B = {(1,0),(0,1)}.
[Also verify this by direct substitution into
(TX,¥) = (X,TY).]

3} For Vl' { , )l.and VZ' { , )., any two Euclidean spaces and

2
T e L(Vl,Vz),

T#T is self-adjoint on Vl

Proof - EXERCISE.

Theorem 25.1: IFf Y, ¢ , ) is a Euelidean space and T ¢ L{V,V) <&
self-adjoint, then the eigenvalues of T are all real.

Proof. Let A be an eigenvalue of T corresponding to the (non-zero)

eigenvector ¥, then

AX,X) = (OX,X) = (TX,X) = (X,TX) = (X,AX) = X (X,X).
Thus (Aei)(x,x)=o and so since, by P3. of the definition for inner-product,
{X,X) ¥ 0 we have A=A = 0 or A=A, that is A is real.

EXERCISE: If A is an eigenvalue of T*T where T ¢ L(Vl,Vz): Vl,( . ) v

if Vo

are Fuclidean spaces, show that A = 0.

THEOREM 25.2: If T is a self-adjoint transformation of the Euclidean space

v, (

’

, | into itself, them T has a complete set of eigenvectors which

form an orihogonal basis for V.
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The proof is broken into several steps (lemmas).
Step 1) - Imvariant Subspaces
Basic to the proof is the notion of an invariant subspace: The
subspace U of the vector space V is invariant under the linear
mapping T if T (U) < U; that is T maps each element of U to an
element of U. By restricting the domain of T to U we may think of
T as defining a linear mapping from U to U. If VY is a Euclidean
space with innerproduct { , ) and T is self-adjoint; that is
(TX,Y) = (X,TY) for all X, ¥ ¢ V, then it is certainly true that
(TX,¥)=(X,TY) for all X,Y e U and so T restricted to U defines
a self-adjoint transformation on U.
Examples of invariant subspaces:
(1) Xer T is invariant under T - indeed T{Ker T) = {0} < Ker T.
(2) (Important to our proof)
Let xl,x2,...,xm be eigenvectors of T with corresponding elgenvalues
'11'12""’hm’ then U = <&1,X2,...,Xﬁ> the subspace spanned by
Xl,xz,...,xm is invariant unde; T.
-~ To see this, let X ¢ U, then

X = alxl + a2X2 + ...+ amxm for some scalars al,az,...,am and so

M
L]
0

alT (xl) +.. .+am'I' (Xm)

.ot
allle+ amkmxm

which is a linear combination of Xl,...,xm and so in U.
(3) (Important to our proof) If T is a self-adjoint transformation of
V and U is an invariant subspace under T, then Ut is also
invariant under T.
- TLet X € Ul; that is (U,X}=0 for all U ¢ U, we must show
(U,TX)=0 for all U ¢ U. But, (U,TX) = (TU,X) and TU ¢ U, since
U is invariant under T, we therefore have (TU,X)=0 and so (U,TX)=0

as required.
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EXERCISE: Show that U is inyariant under T if and only if Ut is
invariant under T* (Note: (3) above is a particular consequence of
this.)

Step II) ILet dim V = n. Since the eigenvalues of T are the roots of
the n'th degree characteristic polynomial, the fundamental theorem of
algebra guarantees that T has at least one eigenvalue Al {(possibly

repeated n-times). et Xl be an eigenvector which corregponds to ll;

that is TX, = llxl, X # 0. DNow let Ul be the one dimensional subspace

spanned by X Ul = <ki>m Then, by (2) of Step I, Ul is invariant under

ll
T and so by (3) of Step I, Ui’is alse invariant under T. By the remarks
at the start of Step T we may therefore regard T as defining a self-

adjoint transformation from Ui to Ui.

By the same reasoning as above the self-adjoint operator obtained by

r

restricting T to Ul

hag at least one eigenvalue lz (possibly equal to

_hl) with corresponding eigenvalue X _e Ui . That is; TX_. = A X

2

orthogonal to X, € U (X, € ut }.

X, # 0 with X 1 1 1

2

Since Xl,X2 are linearly independent we may form the 2-dimensional

subspace U2 = <:Xl,x2 >, Again by Step I,U2 and therefore U; are
invariant under T and so by restricting T to U; we obtain an

eigenvalue and corresponding eigenvector X That is;

3"

X, = A

3 = 3X3, X3 # 0 and X

is orthogonal to both X, and X,.

3 1 2

Forming the 3-dimensional subspace U3 = <k1,x2,x5> and continuing
in this way we obtain mutually orthogonal eigenvectors
Xl,X2,X3,X4,X5,.... Clearly this proceedure can continue until

we obtain n mutually orthogonal eigenvgctorsxl,xz,...,Xn, for which

Un = <:X1,X2,...,Xn > has dim n and so equals V, Proving the theorem.
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The material from here on is not included in Florey "Elementary Linear

Algebra with Applications". The following might be useful references,

Strang, Gilbert : "Linear Algebra and its Applications" 2nd edition 1980,

Academic Press.
(See Section 6.4 for relevant material on Rayleigh's Principle for
determining the smallest and largest eigenvalue of a real symmetriec

matrix.)

Isaacson and Keller : "Analysis of Numesical Methods”, dJohn Wiley.

(See Chapter 4 Section 2 for a discussion of the Power Method of

approximating the "largest" eigenvalue of a matrix.)

Marsden, Jerold E. : "Elementary Classical Analysis", Freeman.

(Chapter 2 is concerned with topology in euclidean n-space.)

NOMERICAL DETERMINATION OF EIGENVALUES

Letcture 29:

In &ll our problems so far we have considered relatively small
matrices (4x4 or less). To determine the eigenvalues of such a matrix we
have first determined the characteristic polynomial p(A)} = det(M - ATI) and
then extracted its roots (if necessary this last step could have been done
numerically using "half-interval" or Newton's method, for example). Let us
consider the situation when M is an nxn matrix with n large. If we compute
the nxn determinant of the first step by cofactor expansion, say
det A = allAll + a21A2l + ..+ anlAnl s then if each cofactor is available
we require n multiplications and a similar number of additions. Now each
cofactor is an (n~1)x(n-l) determinant and so could itself be e¥xpanded into
cofactors, reguiring (n-1) multiplications. A simple inductive argument shows
that we will require the order of nx(n-1)x(n-2)x...x2x1l = n! operations
to determine p(}) in this way. Even if we could perform the operations on
a high speed computer it would require bi{flLions of years to determine a
25x25 determinant in this way. Problems of this magnitude occur quite
frequently in Econcomic, Ecological and other applications of linear algebra.
Clearly, alternative procedures are necessary. Fortunately in many

applications it is not necessary to determine all the eigenvalues of M,
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frequently a knowledge of the "largest" or "smallest" eigenvalue and
corresponding eigenvectors is sufficient. It is to the problem of finding

these that we address ourselves.

Rayleigh's Principle.

Let M be a real symmetric nxn-matrix with eigenvalues (necessarily
real, though not necessarily all distinect) Al < Az”s cer = An .
Define the Rayleigh quotient of M to be the function

R : RM{o} » R
defined by XT "xl'
where X =| x

T
XX 2

&

R{x) =

For example, if M = I:B l] we have

S bl IR
R(X) = [xl'x2]|:xl]

2 2
+
3xl+2xlx2 3x2
2 2 .

xl + x2

Our main result is the following.

Theorem 29.1 : The maximum vafue of the Rayfeigh quotient of M,
X Mx
XX

Funthenr, A4 X A8 an elgenvecton of M corresponding to the

R{X) = » 48 An(the Largest eigenvalue of M) .

etgenvalue A,r then R(X) achieves its mamimum at X = X

Proof. Let B ={X1,X2,...,Xn} be an ordered {orthogonal) basis of eigen-

vectors corresponding to the eigenvalues 11 < Az £ ...

{Such a basis exists by lecture 25, theorem 25.2)

< & of M.
n

Since the numerator in Rayleigh's quotient is a quadratic form we

have by lecture 27 that

XTPDPT
RGO = T
Y -
XX ] o . . .
where D is the diagonal matrix 0 Az . .
. ... A
_ 1

and P is the matrix representing the change of basis from B to the
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. -1 T . .
natural basis of Rn. Recall P~ =P as M is symmetric.
T T T -1 T T T
Further, X X =X IX =XPP X =X P P X = (P X)T(PTX) and so

: ' T T T
R(X) = (P"X) D(P X)

T T, T
(P7X) (P X)
;'YTDY
T LT
Yy
2 2 2
+ ...
_Mva® + Aaya Ay
v12 + yo? + ...+ v ?
[v1
where ¥ = \yot = PTX is the coordinate vector of X relative to the
-yn_
basis B.

The result now follows from the observation that

"o
0 .
P Xn = . and so for any X # 0 if
G
b l -
v
P X = we have
Y2
) - b
R(Xn) _ [o,0, 0,1]_ A
o]
0
-ld
= A
o 2 2
2 ¢+ + ... F
) A_vi Aya© ALY
Y12 + Y22 oo+ Yn2
llylz + ?Lzygz + ... + }‘nynz
2 , {as A1, Ag,... = A)
vi? + vy +o.oo+ Yi

1
e
P
»
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EXAMPILE: For M

Il

3 1
1 3 we had

_3_X12‘+ 2xX1%s +,3X22

R(X)

Xlz + X22

.23{1]{2
3 +

x12 + x22

2

where u = X1/x,
u +

S

s . . 1 A . .
clearly this is a maximum when u + E-has 8 positive minimum that is when
u =1 (or x; = x9) and so we conclude that 4 is the largest eigenvalue
of M and that (1,1) is a corresponding eigenvector. [Indeed the

eigenvalues of M are 2 and 4]

REMARKS: T) For any vector Xg € Rn we see that the value R(Xp) is
a lower bound on the largest eigenvalue of M.

IT) Since R(X) = R(cX) for any scalar c # O {why?) we may,
without loss of generality, seek the maximum of R(X) for vectors X with
X x K2y = 1.

In this form the problem becomes; maxrimise
XTMX
subject to the constraint
XTX =1
and so is conveniently handled by the method of Lagrange multipliers.
ITT) By replacing M by -~ M we readily conclude that the
minimum value of the Rayleigh quotient is the smallest eigenvalue of M

and that this value is achieved at any corresponding eigenvector.
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EXCERCISES:
1) Use Rayleigh's principle to find the largest eigenvalue, and a

corresponding eigenvector of

0 1 0 1 1
a)l 1 0 and b) 1 0 1

2) For any symmetric matrix M show that the largest eigenvalune is
at least as large as the largest value on the diagonal of M,
[Hint: Consider the value of the Rayleigh quotient at each of the
natural basis elements of Rn.]
3) Let M and N be two symmetric matrices, show that the largest
eigenvalue of M+N is no larger than the sum of the largest eigenvalues
of M and N.
Lecture 30: The Power Method

For non-symmetric matrices the problem of determining the
largest eigenvalue is not so simple as it was for symmetric ones.
In general we must resort to approximate methods. One such procedure,
applicable in certain circumstances, is introduced below.

Suppose that M is an nxn matrix which has a complete set of eigen-

vectors X_., X

1 g ...,Xn, corresponding to the eigenvalues A_,3 AB,...,h

1’2’ n
{not necessarily all distinct). Further suppose that M has one
eigenvalue of larger medulus than all the others and that the eigenspace
corresponding to this eigenvalue is of dimension one. Without loss of

generality we may take this eigenvalue to be hl.
Any vector X € Rn may be expanded uniquely as
= + + oo+ X
X x X x X Xn n

11 22

and so we have
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MX = X A X ALK, e+ XA X

=
]
1l

2 2 s
eas T
xlkl X, + x2l2 X, + X 27X

1 2 nnn

and in general

.k X k
MX = xlklxl + 32A2X2 + ... + anan
k ?‘Zk

Ay (X o+ ox, W] Xt - R, Ry X )

Thus, provided we start with an X for which X, # 0, we see that the

"direction" of MkX approaches that of Xl as k= (for § = 2,3,...,n
k

AL
lxll + 0 as k»»}. Of course, without normalization these successive
1

iterates need not themselves converge, however it does follow that as

ke
1 k .-
MR MK \
k. 1
(M X, M X)
1 1 .
EXAMPLE: Let M = 2 4 [From the onget let us note that the eigenvalues

of M are 3 and 2 with corresponding eigenvectors (1,2) and (1,1).1]

Starting with X = g.} and computing the successive iterates we obtain
1 5. _ |5 3. _ |19 b _ |65
o= [ = B e [ ;- [0 ]
{4) {2.89) {2.42) (2.25)
5. _ |210 6y _ | 664 7. _ | 2060
= [454] X = 11306 ME = 4256
(2.16) {2.10) (2.07)

The figure in brackets beneath each iterate is the ratio of the second
to first component which should be approaching 2 if these iterates are to

successively more closely approximate multiples of the eigenvector (1,2).
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The corresponding approximations to the largest eigenvector (3) are

o ((5,14),(1,4))

((1,2), (L4 ~ 3
({19,46),(5,14)) _
((5,14), (5,14)) 3.34

{(65,146),(19,46))
((19,46), (19,48)) ~ -2t
((210,454) , (65,146)) _ . .
{(65,146), (65,146)) .
((664,1396), (210,454)) _ , .o
{(210,454), (210,454)) — °°
({2060,4256) , (664,1396)) _ , .o

({664,1396),(664,1396})

Several refinements to improve the rate of convergence are available,
however the above method serves to illustrate the basic idea. To be
"certain" of the approximation obtained it is strictly necessary to
repeat the procedure starting in turn with each element of a basis for
Rn (the sequence of iterates which converge to the largest estimate for
A1 then being chosen). Clearly this procedure is best carried out on a
computing device. If possible you should az an EXERCISE prepare a
programme for the above mehtod and run it for several different matrices
and starting vectors.

EXERCISES 1) Use the power method to estimate the largest eigenvalue
{and corresponding eigenvector} for each of the following matrices (in

each case determine at least 5 successive iterates).

a) 5 -1 b) 1 -1 4
3 1 3 2 -1
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**%2) Prove the convergence result claimed for the above procedure.

k k
[HINT: Let Xk = M X = Al(xle + Zk)
A)E Nk
7. o= | S I P X .
where k A x2X2 A *n'n
1 1
X - ¢
. k 11
Note that ||Z || + 0 and so deduce that if Y, = - - p
k k kaﬂ |xllﬂxlﬂ

then Yk + 0 ag k3= |

Hence conclude that

(Mxk,Xk) Xy xl xlxl
—-—-——=(M[Y + _:I,Y + ]+A .
%) ke g Tl kT, T 1

{Note, at this step you may need to use the "obvious" estimate that

”MYk“ < n(max{[mij!}) “Yk".)

TOPOLOGY IN EUCLIDEAN SPACES

Lecture 31.
In Florey chapter B8 the "distance between" two vectors X,Y of the

euclidean space Y, { , ) was defined as

a(x,¥v) = |Ix-¥ll

vV {(X-Y , X-Y).

The function d(X,¥} is referred to as a metric on \ and was seen to satisfy
the following.
i) da(x,Y) = 0 for all X,Y in Y

ii) d4dx,y)

0 if and only if X=Y

iii) 4a(x,¥) = d(¥,x) for all X,¥ in Y

i

[that is, the metric is symmetric in its two arguments X and Y]
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iv) For any three vectors X,Y and Z in V we have
d(x,¥) < d(x,z) + d4(z,Y)
[this last inegquality is often referred to as the triangle
inequality -~ effectively it states that the length of one side of a

triangle cannot exceed the sum of the lengths of the other two sides.,

v———-.EiELEl“ar;“ddd—f
X

d("f.m-

e o

da(z,v)

Y

These are properties which, as the German mathematician Herman Minkowski
(1864-1909) remarked in 1906, "any notion of distance ought to possess".

Any set (not necessarily a vector or euclidean space) on which a function

d satisfying the above four properties is defined is referred to és_a

metric space (see Exercise 1 at the conclusion of this lecture.) Such
spaces were introduced and extensively studied by the French mathematician
Maurice Fréchet (1878-1973) in 1906. They have pProved to be of considerable
importance in modern mathematics and what follows serves as an introduction
to their study. We will however confine ourselves to examples of metrics

which arise from an inner-product according to the formula

d(er) =¥ (X“er—Y).
When V = Rn and the inner-product is 'dot product' this gives the usual

euclidean formula for the distance between two points X = (xl,x ...,xn)

2'

and ¥ = (yl,yz,...,yn): d(x,y) = /(xl—yl)2+(x2—y2)2+.--+(xn-yn)2-

Of course, a different inner-product on Rn will lead to an alternative
notion of distance. For example, in the "plane" Rz

1
(X,Y) = x1y7 + H(x%3vp + Xoyy) + T ¥2¥2
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defines an inner-product * for which the distance between two points is
different to that of ordinary Euclidean geometry: 4({0,0),(1,1)}= V7/3
for instance. (See Exercise 2 at the end of the lecture.)

For euclidean spaces other than Rn this provides us.with a
"distance" between objects with which we would not normally associate
such a measure. For example, if \ = Ci0,1] the space of continuocus

1
functions on [0,1] and for £,geC[0,1l] we take (f,g) = J E(x)g(x)dx,
0

then we have as the "distance" between £ and g;

1
d{f,qg) = J (£ (x)-g(x))2dx.
0

Frequently we speak figuratively as though some notion of distance were

present, for instance: 'Orange is a colour nearer red than violet';
3
. x , . . .
For small =, x - —g-ls a closer approximation to sin %, than x'.

Such notions are made precise by the presence of a metric. Thus

in terms of the metric given above we have

d (%,sinx) 0.061

3

while dix - 5—é-,sinx)

[l

0.002.

* Indeed, identifying X = (xl,xz} with the polynomial x(t) = %3t + x1

1
and ¥ with y{t) = yat + y; we have (X,¥) = J x(t)y(t)dt, the
0

usual inner-preduct for the space of polynomials on [0,1].



It is also worth remarking that in terms of the last metric the
"root mean square voltage" of electronics is the distance of the
voltage function from zero. A similar interpretation of the
"variance" in statistical theory is also possible.

Using this generalized notion of distance it is possible to
define for arbitrary euclidean spaces (indeed metric spaces)
topological concepts similar to those for the real line or the plane,
these include: the convergence of sequences; the interior and boundary
of a set and the continuity of functions. It is to the development of
these ideas that the remainder of the course is devoted.

Exercises: 1) (i} For points X = (x;,x5) and ¥ = {(¥1.,¥2) of the
"plane" R2 show that each of the following define metrics.

(2) d(x,Y)

|X1-Y1| + lxz-Y2|

0 if X =Y
(b) 4{x,y)} {

/212 + x22 + /ylz + Y22 otherwise

{This metric is sometimes termed the "post-office" metric,
can you see why?)

0 if X=Y

(c) dX,Y) = { 1 if XY

(This metrxic is referred to as the "discrete metric! and may
be defined on any set.)

(i1} In conventional geometry a circle is_defined to
be a set of points equidistant from a given point - the centre. When
'distance’ is measured according to each of the three formulas of part
i), sketch the "circles" of centre (1,1) and radius 1%. That is,
sketch

{x e R : atx,(1,1)) = 14}

2) Given that

1
(X,¥) = x1y1 + %lxpyp + Xoy1) + F Xa¥5.
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defines an inner-product on R2 determine a formula for the associated
distance between two points

d(x,¥) = ¥Y(X-¥,X-Y).
Verify that a({0,0),(1,1)} = V7/3.
Sketch the "ecircle"; centre (0,0) and radius 1 which results when
distances are measured according to the formu;a obtained.

3) For any metric prove the important inequality

lax,2) - az,v)| < ax,v)

(This corresponds to: the difference in lengths of two sides a triangle

cannot exceed the length of the third side.)

Lecture 32,
Let us begin by observing that on the'line' R, the distance between

two points x and vy is

dl{x,y) = Ix—y[ ( = V{x~y)2).

Recalling that a sequence of real numbers

xl,xz,...,xn,...,

[which we abbreviate to (xn)m or simply (xn)] converges to x
n=1

if,"given any € > 0, there exists an N such that Ixn~xl < & whenever
n > NY, we see that the notion of convergence may be extended to

sequences of vectors in an inner-product space as follows.

DEFINITION: Let Y, ( , ) be an euclidean space and d(X,Y) = v (X-Y,X-Y)
be the associated metric. We say the sequence of vectors (Xn) cy
converges to X € V if; given an € > 0, there exists an N such that

d{xn,x) < € whenever n > N.

We often abreviate this by writting d(xn,x) + 0, or simply Xn =+ X,
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EXAMPLES: 1) Let V = ([0,1] with inner-product defined by

1
(£,9) = J fx)g(x)ax.
0

Then the sequence of functions

£ (x) =1 - e (n=1,2,3,...)

converges to the constant function f(x) = 1.

¥ f
;P vy =-£(x) |
'y = fz(x)
lY = fl(X)
1
|
|
|
I) _>x
0 it

To see this, observe that

= — —
d(fn,d) Y(_fn f,fn £)

1

|

&
(1 - e nxo_ l)zdxj

f
[

4
1 -2n
[5;[1 " e ]]

—

I
[l =]

1A
:jh

n
1
and that 75‘;1"*3" 0 as n =+ =,
[47)
2) Let V r (-,.) denote " with inner-product

'dot-product' and let

X, = (x1,x1,x1, ... ,x1
1 172 3 m
X = (x2 2 X2, ... %2}
2 1 2 3 m
X o= xDxDaxD, L. xD)
n r 2 3 m
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be a sequence of vectors in V. We will show that
-+ = s
Xn X (xl,x2, ,xm)
if and only if x? + X, as n+ = for each 1 = 1,2,...,m.

That is if and only if each of the component sequences converges

to the corresponding component of X.

1 1 1 1

Xl = { xl ' x2 ’ x3 P oeee g xm )
2 2 2 2

X2 = { Xplr Xy v Xy y aen X )
_ n n n n

Xn = { x| Xy Xy men X )

=) Let xn + X; that is,

1l

d(xn,x) /(xn - XX - X)

n 2

+ 0

Thus, given € » 0 there exists an N such that
d(Xn,X) < g for n > N, but then, for n » N we have for each

i=1,2,...,m that

0
n n 2
[ =% | = (e =% )
0 0 0 0
s[5 ol - w2
i=1 +
= d(X_,X)
n
< E

n ;
and so X, =+ x as regquired.
1
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(<) Assume for each i=1,2,...,m we have
n . . .
X, * %, as n + «; that is, given £ > 0 for each i there
i i

exists Ni such that

X - xi] < g/¥m for n > N, (Use e/vYm in place of E in the

i .
definition of convergence.)

Now, let N be the maximum of N_,N

1 2""'Nm' then for n > N we have

[x? - xil < E//E for all i=1,2,...,m

and so
d(x ,x)=‘/i3 (= - x.)2
n . i i
i=1
s/il r—:z/m
i=1
= E.

Thus Xn + X, establishing the result.

DEFINITION: Let A be a subset of the inner-product space Y, (, ).

We say that X e V is a Zimit point of A if there exists a sequence

(An) of elements of fA which converges to X.
NOTE: Every element A of A is a limit point of A. To see this
note that the "constant sequence" A,A,A,...,2A,.... is a

sequence of elements of A converging to A.

EXAMPLES: 1) Let {,<, > be R with inner-product ordinary
multiplication and corresponding noxm [[x]| = Ix] the absoclute
value function. If f| is the open interval (0,1) then:
{a) 1 is a limit point of A. The sequence %}%ugy...,l“iy...
is a sequence of elements of | and
I(l - %J - 1[ = %-+ 0 as n + =,

(b) No point x > 1 is a limit point of A. To see this, let

d=x~1+then d > 0 and if (an) i5 any seguence of elements
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of A then a < 1 for all n and so
Ix - a ] >d
n

whence (a_) cannot converge to x.
n ‘

—_— R
‘““““—.(r“*"—4x—4?*ﬂ¥9' o >
0 A 1 X -

2) The point (- ?rq;rﬁ is a limit point of the "open disk"

2
A=1x-= (x,/%,) € R, ”XH = xl +x, <1}
A 2-axis
2 1-axis

. 2 ,
in R” with "dot-product" as inner-product.

To see this note that the sequence (Xn) where

.1 L 1 =2,3,4
=tz 5 51 (n=2,3,4,...)
. . . 2 1 1
is a sequence of points in A {HX =1 - —-(72 - —J and 2 - E-> 0

1 1
for all n, 50 “X 2 < 1] which converges to (- -3 /—1, as

”X "‘(‘/_r‘/_)”=”(gr'5)“
Vi?n +0asn ~+ o,

If

1
3) 1In Clo,1] with.[ fg as inner-product, the function sin x is a
0
limit point of the set A of all polynomials.

x3 ntl  x2ot
Let pn(x) =x-C F .4 {-1) o1y then from Taylor's

Theorem with remainder, for all xe[0,l] we have

. 1
[pn(x) - sin xl < TEETT
and so
1
o _ s 2 1
Hpn sin|| = [Dlpn(x) sin x|%dx < Zny 0

as n - o,
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Intuitively, X is a limit point of A if and only if there are points

of A arbitrarily “"near" to it.

DEFINITION: Let A be a given subset of the inner-product space \, <, >.

The set of all limit points of /| is termed the closure of A and will be

denoted by A.
NOTE: From the previous "note" we see that always fA c A.
We will call A a closed set if it is its own closure that is if A = A.
EXAMPLE: From exaﬁple 1 {a) and (b) above, if A = (0,1) in R with absolute
value as norm, then 1 ¢ A and no x > 1 is in the closure of A. Similar
arguments (give them) show that 0 ¢ A and that no x < 0 is in the closure
of A. Thus we conclude that

A = (ﬁ) =- [0,1] the "closed" interval from O to 1.

Identical arguments alsc establish that [0,1] is a closed set in the above

sense, that is [C,1] = [0,1].

EXERCTISES: 1) 1In R with absolute value as norm prove that (0,1) = [0,1].
2) (a) 1Im Rz with "dot-product" asg inner-product show that

the closure of the “"open-disk"

—-—
b
|

(xl,xz):]lgﬂ2 = x12+x22 < 1} is the "closed-disk"

x

~

(xl,xg):“§”2 = x12+x22 < 1}.
*(b) 1In Rn with "dot-product" as inner~product show that

the "unit-ball” B = {x « Rn:”§” < 1} is a closed set.

3} In any inner~product space V,( , ) show that the intersection

of two closed sets is a closed set.

.
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)

4) Let f_ be defined by

2 1
nx , 0 € x £~
n
1 2
fn(x) = 2Zn - n x R H-< X = - (n=3,4,...)
0 ' 2—( ® <1
n

n{ qrixuah pis

[ ]
0 i/n 2/n 1

Show that fn(x) * 0 for each x & [0,1] and hence deduce that
fn(x) + £(x) for each x € [0,1] as n =+ = is not a sufficient
condition to ensure that an - f +~0asn-+ ® in the space

Cl0,1] with inner-product defined by

1
(f,.9) = [ fg.
0
Also give an example to show that the above condition is not
necessary; that is, an - flf + 0 as n + » need not imply that
fn(x) + £(x) for all x ¢ [0,1].
[Hint: consider functionsof the form illustrated below.
¥
A
1

n = 21314."---)
y = fn(x)

o 5 X
0 1/n 1

{This shows that the analogous results to those of Example 2

on page 13 for sequences in R do not apply in Cla,bl.)
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Lecture 33

The idea,that the closure of a subset A of the inner-product
space V, { , ) consists of the points of A together with those points
for which there are points of A arbitrarily near, is made precise in
the next lemma.
LEMMA: 33.1:

Let \, ( , ) be an inmer-product space and ]\ a given subset of V.
Then X is in the closure of A if and only <if for each e > 0 there
extets a point A of A with X - &l < e.
Proof.

=) If X is in A , then X is a limit point of A and so there
exists a sequence (An) of points of A with An + X, but then, by the
definition of convergence, given £ > 0, for some N we have

”An - xll< e for all n > N. ,

Taking A An for any n > N gilves the desired result.

() If for each € > 0 there exists a point A of A with [[X - all<e,
then in particular for each n = 1,2,3,.... there is a point of A .

. . 1 1
call it & , with llx - a |l < = {take e = — ).

n n n n -

The sequence (An) so constructed is such that

”An - %Xl +0 as n~+ o and so X is a limit point of fi and hence
in the closure of A as required.
From the noticn of closure we can derive a number of others which are
of importance in analysis and particularly in advanced calculus.
DEFINITION:

Let V, { , }) be an inner-product space and A a subset of V.

The'boundary of A is defined to be the set

——

pary ) =A N Y\ K.
Thus X is a boundary point of A if and only if it is a limit point

of both A and the complement of A, (V\ A).
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Intuitively, the boundary of A consists of those points for which
there are points both "inside" and "outside" of A arbitrarily near
to them.
EXAMPLES.

1) In R with absolute value as norm we have for the open interval

{0,1) that

bdry (0,1) {0,1) N (R\ (0,1))

i

[g,11 N ((~=,01 Y I1,=))

{0,1}

il

{each of the above assertions are readily checked by argquments

similar to those of Example 1 on page 15.)

*L"’_HN\\~_£; boundary points

2) In R2 with "dot-product” as inner-product the boundary of both

. ' 2 2 2
= . = <
the open disk {x (xl,xz) : Hg” X, +x, 1}
and the closed disk {x : [lxll < 1}
is the unit circle Ix = (x.,x) : lxl® = x> + x> = 1}
~ 1" 2 - 1 2

A bdry fA

The proof of this is left as an exercise - it should be some-

what easier after the next theorem has been established.

DEFINITION: ret VY, ( , ) be an inner-product space and fi a sibset of V

The interior of J is defined to be

int (&) = A\ bdry (A)
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and so consists of those points of A which are not boundary points.

EXAMPLES: From the above examples we see that:

(a) The interior of the closed interval [0,1] in R with absolute

value as norm is the open interval (0,1); +that is
int (£0,11) = (0,1)
Similarly int ((0,1})) = (0,1)

(b) In R2 with "dot-product" as inner-product the interior of both
the "open digk"
{xe R2:lxl <1}
and of the "closed disk"

{g € R2 H ”§ Il

1A

1}

is the "open disk"

{xeR:lxll <1}

A set which is its own interior is termed an open set; that is A is open
if and only if int A = A. Thus the "open disk" {x e RZ: xll< 1}
in R2 with 'dot~product' as inner-product is an open set in this sense.
Similarly it may be seen that the "open interval"™ (0,1) is an open subset
of R in this sense.
From the definitions we have that
ine A=A\ An VY A)
Using some basic set theory we arrive at the following result.
LEMMA 33.2: TFor any subset A of an inner-product space V, { ;) we have
int () =V\ VB
PROOF: We begin with the observations that for any sets A,B,C we have
i) ANBeC\BitAcC
i) ANB=AN AnB
iil) ANBeANC CeB
iv) 1f BN (Cc A, then By Ce AN C.

In

Al

in
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We first show that int A c YV \ (V \ A :

I

AN (Ao @)

AVAN VD), by (D
AV h by (ii)
VN WVA ., by (i) again.

int A

in

In

To complete the proof we secondly establish that

Vv v Alc int A .

First however, we observe that

VY Wy e VN VA B, by (iii)
= A
and so VY WY = AN VA A) BY (iv)

b;tr then VN VAR =4\ (VA
ANV AN VNRE), by (iid)

In

int (f)

as required.

A point of int (f\} is termed an interior point of A .
Combining the previous lemma with lemma 33.1 we arrive at a powerful and

useful characterization of interior points.

THEOREM 33.2: Let V, ( ) be an inner-product space and A a subset of V .
Then X is an interior point of A if ana only if for some £ > 0 we have
{¥ € V : lly-xll < e} is contained in A; that is, if and only if there is

an "open ball® (of radius E) centred on X which lies entirely in A.

Note: The above characterization is often used as a definition of interior

point - see your Advanced Calculus notes for example.



-40-

PROOF': First note that from lemma 33.1 with V'\ A replacing A we have

that X is in YV \ A if and only if for each £ > O there exists a point Y

of V\ A with llY -~ %l < e. Negating this we see that X is not in VA,
and so by lemma 33.2 X is in int f\, if and only if for some € > 0 there
is no point of Y \ A closer to X than e. That is for this e the set
{yev: Iy -xl <e} is disjoint from V\ A and so must lie entirely

in A as required.

EXERCISES:
1} Prove that the-boundary of the "open-disk"

{x e R? : Il < 1}

and of the "closed-disk"

{x e R? : llxl =11
is the unit circle
Hx e R? ¢ lldl = 1}

in the space R2 with dot-product as inner-product.

2) Prove that the "open interval® (0,1) in P with.absolute value as

norm and the "open~disk" of exercise 1) are open sets.

3) For any two sets A and B in an inner-product space V, ( , ), show
that
int (1) v int (B) c int (A u B).
Also, give an example to show that equality need not held; that

is, in general imt (A u B) & int (A} u int (B).

*4) For any subset A of the inner-product space V, ( + ) show that
i) int (A) is an open set

i) A = int (A) v bary (A

Lecture 34, Continuity

We conclude our brief introduction to the study of metric spaces
by extending the notion of continuity to mappings between inner-product
spaces.

A real valued function £ of a real variable is continucus at xo
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if, given any & > 0 there exists a & > O such that

X - xol <g§ = [f(x) - f(xo)l <Ee ,

This may be generalized to a function

£:V+ W whereV, (,)_and |, (,)

v W

are two inner-product spaces, as follows.

DEFINITION: Let V, ( , )., and W, { + ) _ be two inner-product spaces. The

v W

function £ : V - W is continuous at X, € V if, given any £ > 0 there exists
a 6 » 0 such that

Ix - %ll, <8 = lex) - £l <& .

Here the two norms

”XHV = V(x,x)v
HY”W = V(Y,Y)W

are used to replace the absolute wvalue function on R.

EXAMPLES:

1) Let V =R% and ( , )V be "dot-product". Also let W = R with
ordinary multiplication as inner-product; that is, absolute value as norm.
Then a function £ : RZ + R is continuous at the point (x5, yg) € R2 if,

given € > 0 there exists a § > 0 such that

If(x,y) —-f(xo,yo)l < e whenever J?k - xo)2 + (y - yo)2 < §.

This should be familiar to you as the definition of continuity used in the

multivariable calculus.

2) Let V = Rn and H = Rk both equipped with dot product as inner-

product and let T be the linear mapping from V to H defined by
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T(x) = M x
where x = -.xI‘ and M is given k X n - matrix, M = [mi.]
x
2
X
-n_i

We show that I' Zs continuous at each point of Rn.
We first observe that if

M, = Max lmi.I ’

i,

n
then for any x ¢ R we have

n n n
heeall =l m, % » Im.x , .oy § m, x)l
= L Mg LT ’ e
5= 1073 T52p23 T 2, K39
k n A
= (X (E m, . x,)2)7?
k n
<

(F (7 my =127
i=1 =1

k

5

= (_Zl(<mo, A YA E S P Y R PN N B
1=

and so by the Cauchy Schwarz inequality
k

”T(?_()” g(lzl(”(mor Mgr ses mD)” ® H(lxllr |ler “es 7 lxnl)“)z)%

3
—
= (} (J/Z mg x ) x2 )2‘-);§
i=1  4=1 j=1 7

(ormg llx )2 )
1

]
~—
I} 1R

= (knnd lx2)®

= am dxl .

That is ”T(g)”=§ K Iz I for some positive constant K.
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The desired conclusion now follows from the linearity of T.
Thus, given any e > 0 and Xg € Rn, taking § = e/ we have
IT(x) - Tix )l = Io(x - x )l

<k lx - x

whenever ”g - §0” < § and the continuity of T is proved.
[Because of this "automatic™ continuity of all linear mappings on finite
dimensional spaces analytic notions such as continuity are relatively
unimportant in the study of elementary vector spaces and so the theory is
largely algebraic.]

3) Let V = ([0,1] with inner-product defined by

1
(£,9) = f E(x) g{x) dx.
o

Then the linear mapping defined by
1
T: V+R: £+ J f(x) dx
0

is continuous at each f ¢ Y . That is integration is a continuous operation.

To see this note that

1
T (8) -7 (] = | J (£(x) - gix)) dx |
0]

1
= | j 1x (£(x) - g(x)) ax |
0

= [(l, £ - q)| {(here 1 denotes the constant
function 1(x) = 1 for all
% e L[0,11))

szl Hf - gl (by the Ccauchy Schwartz

inequality)
=l - 4l

land so T{(g) = T(f) as g -+ £.]
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4) Let V be the space of all real valued functions on [0,1] with
continuous first derivatives, and inner-product defined by
(£,9) = fl £(x) gl(x) dx.
0
Then the linear operator of differentiation
D:V~+(labl: £+ f
is not continuous.

This follows directly from the next theorem if we observe that the sequence

of functions (fn), where £, (x} = xn, is such that

1 1
||fn||2=[ f§=J X2P ax = .0
g 0

so (fn) converges to the zero function, but

2

1 -
”D(fn)H2 = J n2 x2(n L dx = ETE:ij -+ o as n - o,
0

50 (D(fn)) does not converge to D{0) = 0.

[This example shows that in infinite dimensional spaces linear mappings
need not in general be continuous, in contrast with the conclusion of

example 2.]

A well known equivalent to the continuity of the real valued function f
of a real variable at the point Xy is that

Limit f(xn) = f(x,)} whenever (xn) is a
n- e

sequence of real numbers which converges to Xg-

We conclude by establishing the same "sequential characterization" for

the continuity of a function between imner-product spaces.

THEOREM 34.1: Let vy, ( , )v and H, { ., )W be two inner-product spaces
and let f be a function from V to w, then £ is continuous at X, € V

if and only if whenever the sequence (Xn) in V is such that Xn + X,
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we have f(xn) + f(XO).

Proof. (&) Given any € > 0, since f is continuous at X, there exists
§ > 0 such that || £(X) - f(XD)”w < £ whenever |[[X - XMl < 8. Now assume
Xn > X,, then from the definition of convergence with e replaced by the

above 4§, we have; there exists N such that

“Xn - Xll <8 for all n > N.
It therefore follows for n > N that Hf(Xn) - f(XD)” < g, and so by

definition f(xn) + £(X,) as required.

(<} Here we establish the contrapositive. That is we show that if £
is not continuous there exists at least one sequence (Xn) converging to
X, for which f(Xn) does not converge to f(X,) - Thus assume f is not con-
tinuous at X,; that is, there exists an £ > 0 such that for each 6 > O
there iz at least ore point X with |[|X - Xoﬂv < § but [[£(x) - f(XO)HW > e
(otherwise, for every & there would be a § such that

lx - Xll, < 6 =ll£(x) - E(x )l < e
and so £ would be continuous at X,).

. . 1
In particular then for each natural number n, taking 8§ = =, we have

=]

that there exists a point Xn such that

1
- = - >
hx - %,ll < L but llE£(x) fx ), = e

The sequence (Xn) constructed in this way is convergent to Xg

1 .
(”Xn - XD”V <= 0] as n <+ <) but f(Xn) does not converge to f(X,)

{for all n ||f(Xn) - f(XO)”W z g > 0) and the result is proved.

EXERCISE.

(a) For any pair of inner-product spaces {, ( , ). and W, ¢, )W show that

v

a mapping f : V - w which satisfies a Lipschitz condition

[5 3
te(xy - f(_Y)lIW < kllx - YHV

(where k 2 0 and o > 0 are given constants)is continuous.
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(b) For R with absolute value as norm show that any real valueé funection
of a real variable with a bounded derivative satisfies a Lipschitz

condition (with exponent a = 1). [Hint: use the mean value theorem, ]

{c) Show that the only real valued Ffunctions of a real variable
satisfying Lipschitz conditions of the form
|f(x) - f(y)l < k|x - y|2

are constant functions.

{d) Show that a linear function from { to W satisfies the Lipschitz
condition of (a) if and only if

Ireoll, < k025 for all ¥ in Y

(**) show that this is only possible for T not identically 0 if

a = 1,



