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PRETACE

These notes are a collection of mathematical results and techniques,
from the theory of diffevential equations, which are of importance in the

life sciences.

The division into 'lectures' is purely formal. Some of the 'lectures!
wauld require more than one lecture period when presented to a class, while
others would need less. On the average however they have been found fairly
correct. Thus lectures 1-10, 13-15, 17-20 were the basis of an eighteen
lecture, one term course on 'the differential equations of biology" which
has been given to second year students at the University of New Engiand for
several years mow. Similarly, lecturs 25 to 28, 11, 12 and 15 (qualitatively
only) are the major part of a subsequent course on "Mathematicsl Methods in
Biology'", while lectures 21 to 24 formed part of an 18 lecture second year

course on "Population Studies".

The lectures marked with an asterisk may be omitted or relocated without
affecting the coherence of the course. Their location im the notes simply

indicates their close connection with the preceding material.

The student workingithrough these notes shouwld gain a useful working
knowledge of basic differential equation theory and its applications.
However it is not the purpose of many of the lectures to provide such
knowledge but rather to develop an awareness of potentially useful material.
(To actuzlly apply this material would often require & much more intensive

study of it than these notes can hope to supply.)

I would like. to.draw the.reader's attention-to-Dr. Taylor's-section on
"Delay Differential Equations” which renders an otherwise partizl account

more nearly complete.

I would like to thank Dr. E.W. Bowen and Dr. N.W. Taylor who czrefully
read parts of the draft manuscript znd suggestasd many valuabls imrrovsments.
I would also like to thank Mr. E.J. Hannah for his cooparation in tha writing
of Series VI, and my many colleagues in other departments who inTentionally
or otherwise helped supply the numerous examplss and spplications which occur
throughout the notss. Lastly many thanks ars due to Mrs. M. Christensen who

expertly typed the manuscrivt with great patience and insight.

B.S. Octobzr, 1975,
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AN INTRODUCTORY COURSE OF LECTURES
ON THE
DIFFERENTIAL EQUATTIONS OF BIOLOGY

SERIES I - Single First Order Ordinary Differential Eaguations

Lecturs I What is a Differential EQuation -
its meaning
and Geometrical Interpretation (Slope Fizlds)?

§1.1 DEFINITION: Rather imprecisely,a Differenticl Bquation is an equatien
relating an 'unknown' function and some of its derivatives. Usually such
equations are coupled with some other subsidiary conditions, such as having the
value of the unknown function and some of its derivatives specifiad
at a point, in which case we say initial conditions have been prescribed.
The probiem is of course to find (or find out as much as we can gbout)
functions satisfying the differential equation and the initial conditionms.

The simplest instance of a differential equation is when the unknown

function's derivative esquals some given function £. i.e

a %
v' = £(x) or %= £(x)

With the initial condition: y(0) = ¢, a given constant. This equation simply
tells us that the unknown function y is an antiderivaiive of f, and so from
the Fundamental Theorem of Calculus '

X
y(x) = J Flelét + c

hl

is easily seen to be the unique solution for this case.

ILLUSTRATIVE EXAMPLE: Consider a microelectrode, whose tip has radius rgp,

bressed against the skin as shown in Figure 1. From glementary phvsics the

/ () resistance of a bar of condueting materigl
\ZJ ‘ = i
o dr with resistivity p, such as thzt shown
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So the resistance of the hamisphsvical shell
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R{rp) = O supplies the initizl condition. From thesa it follows thsat
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# We will use both notations, y' and %%-, interchangeably fbr the derivative.



For a point a long way away from the electrode,r is large and so %-negligible.
We conclude therefore that for points far removed from the electrode the resistar
is inversely proportional to the diameter of the electrode’s tip, i.e. the smaller
the electrodes tip the larger the resistance, one argument against the use of
sharply pointed electrodes.

Differential equations occur commonly in Ecology, Bicphysics, Physiology
and many other areas. Usually they involve both the unknown function y and y',
posgibly even y", and y', ... , We will see many examples of how such equations
arise and how they may be treated. Freguently it proves impossible to solve
explicitly these equaticns, in which case a number of guestions =zrise.

{1) Does the equation have a solution?

(2) If there is a solution, is it umigue?

(3} Wwhat properties of the solutions can we infer directly from the

differential equation; e.g. when is it zero, does ié oscillate,
will it fend to a limiting value for large values of x7?

We will assume that "yes" is the answer to (1) and zlso in most cases to
(2). If a physiczl situation has been carefully modelled into a differential
equation this usually proves to be the case. However, from the fact that the
physical situation has a 'solution’ we cannot conclude that our sguations will,
The proof that they do provides a first check on the plausibility of ocur model.

In later sections we will concentrate quite 2 lot on answering (3), The

next section providing a first step in this directionm.

§1.2 THE SLOPE FIELD OF A DIFFERENTIAL EQUATION: Let us consider éiffepential

equations which can be written in the form

y' = Flx, ¥)

where the right hand side is a known function of x and the unknown ZFunction y.
The graph of & solutlom to this equation is a curve in the x-y planz.
If the curve passes through a point (xp,¥p) then its slops &t thzst point

is known. 1In fact it is

y'{xg) = Flxg,vyg).

m

If,at each of = large number of points in the ¥-y plans,we hetch

& short line with slope =qual to that which a solution curve passing through
would have, we obtain what is known as the slope field for the equation.

From this 1t often croves passible to sketch in the spscific soluticn curve
passing through 2 given initial point and so gain some insight inte ths forms

of the solution. o clarify this, consider the following.



{LLUSTRATEIVE EXAMPLE. British Fisheries report that for a certain species

of fish the average weight w of an individual at age t varies zccording tc

%%_: 0.9w2/3 _ p.35w (weight in ounces)
{(Can you see why this egquation is reasonzble? - Hint: apply dimensional

considerations to the rate at which nutrients are assimulated and used in
normal metabolic processss.)

In plotting the slope field for this equation, it is useful to note that
w' has a constant value on any line of the form w = constant. The curves in
the w-t plane, in this instance straight lines parallsl to the t-axis, along
which w' has a constant value are tsSoelines (lines of constant slope).

Straightforward numerical calculztion gives

W w' = 0.9w2/3.0.35v
0 0
.5 .39
i .55
5 .88
10 .67
i§ .22
20 -.368
30 -1.8
with w' = 0 for w = 17.

This information is plotted on the w-t plane in Figure 2, frcom which we see
that the solution curve passing through the point (0, .5), i.e. corresponding
to the initial condition w(0)} = 0.5, has slope .39 at this point. 2v the time

it reaches the line w = 1 it must have changed slope to 0.35 etc. Continuing

in this way allows us to sketch in this solution curve. Similarly, = number

of different salution

have been drawn in. From these it is apparent that independent of

i

conditions all sclutions approach the line w = 17 for large values cf © and so w
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conclude that the sxoecitad mature weig



2
Figure 2. Slope Field for w' = 0.9w - 0.35w

collateral Reading.

A good exposition on rhe important questicn of existence and unigqueness

of the solutions of aifferential equatlons may be found in Boyce and Di Prima
nplamentary Differential Equations and Boundary vaiue Problems', Chapter 2,

Sactions 1l and 12.

EXERCISE.

o
1. The non-linear squation =4 - all - bﬁ? may give & zood approximation
a

+o the mass M. of litter on given ared of forest floor. Using
3 3 i=] =

—~

a=1,a=0.3, n = 0.5 drav & slope rield for this squation To¥
2

iUse this to sketch the sha&pe oF some pessidle

A

o<t <lD, 0 <M

solutions.

Crmeapem e = =

o T ——



Lecture 2 The Simplest first order Linear Equation and some

applications

For motivation, let us consider the problem of modelling, in the simplest
passible case, the growth of a population. Assume the only changes tzking
place in the population zre due to births and deaths, then
{rate of change of } _ {number of births occur-} _ {number of deaths occurn}

population with time ring per unit of time ring per unit of time
It seems reasonable to assume that the number of births occurring per unit of
time will be proporticnal to the size of the population present at that time.
Thus, letting N(t) be the population's size at time t we would have
{number of births per unit of time} = AN(t), where B is the proportionality
constant known as the specific birth rate and eguais the number of births .
occurring par unit of time per 'head' of population.

Similariy tzke
{number of deaths per unit of time} = &N(t), & being the specific death rate

for the population (assumed constant}.

. rate of change of population| _ dN s
Then, since { with +ime 300 We obtain
daNn

E‘: BN - 6N = (B - 6)N
as the differential equation which describes the populations growth. Usually
this would be combined with the initial condition N(0) = Ny, Ny being the
known initial size of the population. Except that we have used N in place of
y and t instead of x this is a differential equation of the form;

1}

N ky , (k being constant)

and ¥vixg) = vy

Draw & slope fi=ld for this equation (what ars its isoclines?). Sketch
in some typical solution curves.

Because of tha simplicity of this particular scuation, vou mizht like to
try guessing its solution before procssding further, whers the sclution is
obtained by a method applicable to a wide range of similar differsntvial
equations. Mote that the squation is asking for a function y which when
differentiated onces becomes k times itself,

Take yg # 0. (If yg = 0 then a solution is easy, y(x) = 0 for all =.) How
assume y(x) # 0 for any x (actually this can be deduced directly from the
equation); we must check this assumption later, for if it proved fzlses the
following line of preasoning could be invalidated.

Rearrange  the equation to

1Sy
dx

Integrating both sides from xp to x we have



x x
-1 dy
1 =X = - = -
J Y s dx j k dx k(x - x=g).
*0 *g

From the integral change of variable thecrem, the lefit hand side is

= y
iny - inyg = &n ;E
and so
EnL= k(= - Xu)
Yo
or
¥ = ¥o €XD k (x - xg) .

Clearly v # 0 for any %, and so, as direct substitution will confirm, this
is the required solution.
Returning to our population model, replacing x and vy by the zppreooriate

symbols, we have that the population size is

N(t) = Ng expl(R - 8)x].

So the population described by this simple medel grows exponentiall
increasing toward an infinite value if B > 6 or dying out if B < §.
The technique employed in solving y' = ky, y(xg) = yp may be extendad

to any differential equation that can be arranged into the form

fly)y' = glx), ylxg) = yg, provided

both f and g are integrable functions. Such equaticns are term arable,

m
[a¥
7]
M)
s

and for them the identity

¥ X b
[ f(yldy = J flyly'de = f glx)dx
Yo Xxg o
implicitly relates the solution y and the variable x. We will encounter many

further examples of such squations.
Apart from the particular case of population sliresdyv considarzd, zny
guantity whoss rzts of changes i

=
dascribed by the sgustion yv' = ky.

which this is ths czse.

2.1 The Grogwth ¢

-1,
fl
[1)]
¢,
o

e
e
ju
0
o
[
=~

For & ¢2ll of mass ® its growth rete may be croportional te m, in which

— = km and so m = mge

Of course growth of this form would not continue indsfinitsly (unlesz our cell

ware 2 truly excaptional one, which grew infinitsly largz), so ususzlly



some restriction, like m < my would be operative, the cell undergoing
division once mass m; is reached rather than centinuing to grow.

Possibly z more plausible model would be to assume that thes growth rate
of a cell is proportional ta the rate at which it can absorb nutrient and
so proportional to its surface area and hence to the two—third power of

its mass. This leads to the equation

dm 2,
= km® (see exercises).

2.2 The Weber-Feckner 'Law’

Physiological experiments suggest that thes smallest change we can detect

in a stimulus' magnitude (the 'just noticeable difference') varies in such a

way that the fractiomal change is = constant (Webers Law). That is, if S is
the physical magnitude of the stimulus then we will just notice the change

A
to § + AS where —§-= k, 2 constant.
Fechner proposed that this constant represents a standard incrsase in
.Q_S_ or A_S_. = S:':
5 7 AT ’

Treating AI, AS as very small we then have as z first approximation.that

the psychological magnitude of the stimulus, I. Thus AT =

§ is related to I through the differential equation %%-= kS, k being the constant

of proportionality. So, from our previcus work,
1
I =(i92n S + C whare C is a constant.

In other words the psychological intensity of the stimulus is linezrly relatad
to the logarithm of its physical magnitude.

It is for this reason that the intensity of sounds (decibels), <he brighitness
of stars (magnitudes)-and many other similar quantities are measured &n

logarithmic scales.

2.3 Decay and Balf-lives

m

The rate at which 2 substance bresks down is Frequently propcrtional to the

amount of substancs present. This is the case, for gxzmple in ths Zscay of a
radioactive substance, in the destruction of tissue dusz +o harmful ==zSistion
in the graduzl break-down of a chemical compound, in ths decay of cowpost on

a forest floor.

Viriting this as (1 + g%;}“ (1) = kAI leads to thea
difference squation (I + AI) = (kAT + 1) S(I) which mzy be
solved to give  S(Ig + nAI) = S(Ip)(kAI + 1)° no=1,2,3,...
Here n is a measurs of ths psychological intensity (in units of AI,zheves ths
base level Ig) @nd tsking logarithms gives n =(log g—Ji[lOg(kAI + 1)} S0 wa



In such cases, if M denotes the amount of undecayed material present

we have the differential equation

%%—= -kM where k > 0 is the proportionality constant,

the minus sign indicates the decrease of M with t. So for M(0) = M
we have M = Mge_kt. M decays exponentizlly with +.

The questicn "how long before all the substance has decayed away?'
is clearly meaningless, since there is no finite values of t at which M = 0.
How then can we meaningfully measure the speed of decay? The size of the
constant k is of course z measure of this but its interpretation is difficult.
However, if we note that for any Ffixed constant t the ratio M(t + T3/M(t) = e_kT
is a constant independent of t, we have that the fraction of the material
present at t remaining by t + T is a constant depending only on k and T but

=kt in 2

not on . If we now choose T so that e = %-(i.e. T = T = 0.69315/k)

we see that during any interval of length T the amount of undecayed material

is reduced by a half. This value of T is thus called +he half-1ifz of the
decay. It affords a convenient mzasure of the speed of decay. (Note, that

from a knowledge of the half-life, k may be caleulated and vice versa, )

EXERCISES:

L. In 1879 four hundred and thirty-five striped bass were Dlanted in San
Franeisco bay from the Atlantic and zllowed to breed For 20 years.
Then in 1899 the net cateh was 1,234,000 fish. Assuming thzt evary

tenth fish was caught find A if the growth of the population is described by

dN _
ol AN,

{Adapted from MzcArthur & Conmell)

2. For smz2ll doses the rate at which aspirin leaves the blood strezm is
proportionzl to the amount of aspirin in the blood. Typically, if
the concentration of plasma aspirin is measurad in mgms/litre zad the
time in hours, then the proportionality constant is 0.0u. Darive a
differentizl equation to describe this situation.

&4 0.864 gm dosz of aspirin is known to produces =n ipitial
20 mgms/litre plasma aspirin concentration. Usz this to find the
plasma aspirin concentration, resulting from a 0.6 gm dose, &5 =
function of time. &fter what tims will the plasma aspirin

concentration be reduced to half its initial valus?

o
f
Gy

(Extracted from Water=on "Aspirin & Gastric Haemcrrhage', Brit.

1955-II pp. 1531-1533.)

3. When a beam of light, initially of intensity I, passes through s short
distance Ax of liguid, its intensity is reducad by an amount AI dus to

absorption.



{continued)

It is found that‘é%JAx is a constant.

e.g. For water {2.9 x 1073 for red light (x in cms) and

AT _
/%7y 5 x 107 for blue light

Convert the relationship é%{ﬁx = A into a differential egquation and
hence find I as & function of Iy, the intensity at the surface, and x
the depth of liquid which the light has traversed.

Assuming that the intensity of red and blue lights are equal at

the surface,find their relative intensities at a depth of 10 metres.

"This comstitutes an important environmental change for some marine

cregtures.

It has been found (Watt et al) that the growth of human populztion in

developing countries is described by %¥-= A" For some constant v > 1.
Find N as a function of t. (This same equation with r = g—has been used

3

to describe the mass of a.growing celi.) IFN(0) =1, A =1 and r = 2

plot the solution.

The number of worker bees of the species "Bombus humilis I11" still

alive after d-days from a hive initially containing 100 workers is
-0. :
N =100 e qu. How many days wust elapse before the numbar is

halved? (Adapted from Brian, 1965)

Radiocactive iodine 1311, used in diagnostic medicine, decays according
dn . . . .
to the law ol -0.886N, where t is time in days. ¥ is the mumber of

atoms present.  What is the half-life of this isotape; after how many

days will N = Np/4?
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Lecture 3 Another useful first order linear equation

Consider the growth of a population due not only to births and deaths
but also to immigration (emigration). In such a situation we have
{rate of change} _ {number of births} _ {number of deaths} + {number of immigrant:

of population per unit of time per unit of time arriving per unit c:
time

If we make the same assumptions concerming the occurrence of births and deaths

as were used in the last lecture, this yields

g%.:BP - 6P + £(t) where P is the population size

and f(t) is the vate of arrival of immigrants at time t, assumed known.

We are therefore led to the differential equation

y' = ky + £.

For a discussion of how this class of egquations may be solved see Exercize 3.
Here we will restrict attention to the case when £ is 2 constan:t. In the terms
of the example, this corresponds to & constant yate of immigration.

Hence let

y' = ky + a (k, a being known constants)

1]

and YCXU) Yo-

Then under the changs of variable z = y + %—this becomes
z' = kz

a
Z(Xg) =y t T

and is of the form previecusly comsidered, for which we found

z = (yp + %J GNGxx0)

end so we have for the solution to our present prohblem

_ gy kizn-zg) =
v = (yp + k) e -7

Interpreting this iIn ths case of peopulation growth in ths presence of immigration

lsads to

frf
Fan
el
M
|
i ]
o
b
™
1|3
Ml I
11
Caan )
™
i
(=]
et
i
t
™
H
O

where r is the constant rate of immigration, or

B(t) = Poe(B_a)t + 2 i' 5 [9(8_6)t - 'f_:l

Here the last term represents the effact of immigration, the first term eing

the solution to the corresponding problem in the abssnce

o
E
o}

ny immigration.

For 2 comparison ses the graph below.



immigration present

mmigration =bsent

. 1 1 1 [} 1 1 L 1 1 I >t
Q . ) 3 5 5 & 3 & 9 lo n {z°

Following the previously established format we now look at some other

instances in which the equation y' = ky + a appears.

3.1 Development in the presence of growth-limiting factors.

Here we consider the growth of a population whose rate of development
is not proportional to the populations size, P, but rather to F - ¢P. F may
represent the total space available to the population (or the total nutrient
available) while ¢ is the space occupied per 'head' of population. Thus
F - cP measures the amount of unoccupied space (unutilized nutrient) into

which the population can expand. In such a case the growth is dsscribed by

Era kP - keP  (k being the constant of proportionali:

and reflects the fact that when F = cP the rate of growth is zero, further
development being impossible since no more space (nutrient) is availabla.

This is an equation of the form just considered, from the solution of which we
have

('—) = PG é-kCt 3

+ B e—kct)-
c

The graph of a typic

].J
It
I—J

function of this form appears below,

P a
E
“t

Note that the growth is 'cut-ofs! by the limiting size P =

o
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3.2 Diffusion

For a single cell in a bath of metabolite held at a constant cencentration

c,» it is found (or follows from the laws of statistical mechaniecs) that

rate of diffusion of metabolite| _ |rate of change of metabolite
across the cell’'s membrane concentration within the esl1l

oJdifference in concentration of the metszbolite]
between the interior and exterior of the cell

or éenoting by ¢ the interior concentration

de _
I T Meg - @
, . -kt
From which it follows that c{t) = (cg - ce)e + ¢, where eg = c(0), the

initial concentratien within the cell. Obsarve that regardless of the value
of cp, elt) eventusily approaches c, and so the interior concentrstion comes

inte equilibrium with that of the bath.

3.3 A model for the Central Nervous System

Here we give a very brief introduction to Rashevsky's model for neural
pathways within the central nervous system.

Regard the continuocus response to a stimulus of @ neural pathway as due
to the blending of a large number of on-off responses from individuzl zxons
and synapses. It will then be proportional to the number of excited neurons.
Rashevsky assumes that these individual neurons are kept excited v means of

'neuron cycles' such as shown.

H ﬁ
i (( : 2:& When A is triggered it excites B which
‘EZL~_4—“2’, in turn retriggsrs A.

So the number of excited neurons is proportional to the number of zctivated

cycles, which we denote by . Then

rate of change
of g

We are therefore lad to an equation of the form undsr consideration, viz.

.

S/h
3 g_e—na/an

h

where o, h, Ea are
-

n

Doropriate constants.

ale

Strictly, the concsntration gradient acress the cell membrane.
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Such models have been elsborated to explain -

Reaction times -
Colour Vision -
Flicker -

and Gestali.

3.4 The Build-up of litter on a forest floor

Denoting by M the mass of litter per unit of area of forest floor, it is

plausible to assume

aM _
—d?“A aM.

Hers A vepresents the rate at which mew litter.accumulates and is regarded as

2 constant of the forest. While the last term zccounts for the removal of

litter through decay and cother factors,taken to be propertional to M. Hore
L]

realistically, this last term could be replaced by -aM — bM® the first

component vepresenting removal by decay and similar processes, while the sscond

one accounts for the reduction in litter due to erosion etc., which is taken

to be proportional to the exposed surface area of the litter (hence the

two-thirds power). See Exercise 1 to lecture I.

Collateral Reading

The theory of neural pathways considered is developed in a much fuller

form in

N. Rashevsy '"Mathematical Biophysics, Physico-Mathematical
Foundations of Biology." Vol. I and II, Dover, 1960.

as.is the theory of cell development.

EXERCISES:~

1.

Consider a population which has a fractional birth-rate of 0.2 znd a
fractional desth-rzts of 0.1 per year, also assume that the population

is depleted by &

=
!_J
ug
o]
14}
Iz}
]_l
ja]
=
ol
rk

a constant rate of 1,000 per yez». Dapive
a D.E. to describes th I

grovith of the population. Z th cpulation wers

m
o

e::
initially of =ize 10,000, find its size after 1, 2, 3, 4, 5 yesrs,

~zrential equation describing & pepulation which has a

Derive the 4
fractional birth-rate of 0.3 per year and a fractionzl death-rzte of
0.1 per year and which is alsc supplemented by immigration szt ths

a
constant rate of 500 per year. Sclve the eguation and so dets

what the population will be in 10 years time if it starts off

size of 10,000.

Consider a population, growing exponentizlly with time, which iz hest to

& population of par

1

sites of size y at time t. Then with =zssumptions
similar to those used in lsctures it is reasonasbls tc assume thz- "rats
of growth of parasite" is proporticnal to "amount of host currently
uneffected by the parasite'" which leads to an eguation of the form

U2 o® - %y (whera k i - I
v! = g y (whera k is a positivs constant).
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3. {(cont.)

. . bd . . .
Shew that this can be written as (uy)}' = ¢"y where y is an appropriatel
BDrOTL Yy

chosen function of x, known as an integrating factor for ‘the equation.

Hence solve the equation. Use your solution to graph vy as a function of
= if y(0) = 1, kX = 1. Also show that the fraction of host infectad by
parasites tends to the valus I%E-for large values of time (x).

The use of an integrating facter, as illustrated by this Droblem, allows
more general equations of the form y' + £(x)y = g(x) to be solved, (lock
up first order linear non-homogeneous equations and the use of intsgrating

factors, in almost any book on differential equations).
Modelling Project

' PASTURE GROWTH 'IN THE ABSENCE OF GRAZING

1. The General Model:

Consider an initially barven pasture containing Ny latent sseds per unit
area. Let the number of sseds germinating between t and t+dt be n(tldt,
provided dt is sufficiently small.

Let the average weight of an individual plant, time t after garmination,

be w(t). Then the +total numher of planis present at %ime t is;

t
N{t)mz-J n(t)dz.
¢

While the weight of pasture per unit area at time t is;

t

CW(t) = J {nl of plants germinating} x {weight attained by a plant,}.aT
0 per unit time at time T germinating &t T, by time t
is reached
so
T
Wit) = j n{T) w(<-T}&T , the convelution af n & w.

[

Assuming the individual plants have a

and initial weight wg at germination,

© 2. If the probability of a seed, ungerminated 2t tims t, germinating bstween

xdt (kX =z constant) show

rt
u
g
[aH
o+
-+
[w ¥
i
1=
w

a{t) = kNUenk—L where Wy eguals ths

initizl numbsr of zeads present.

3. Using the results of 1. and 2. and the above exprasg

in
t
o
=]
w
Hy
I
[u]
M
=
rt
—
]
=]
[a7]
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Using values k = 0.25 (days *)
A= 0.1 (days 1)
Ng = 69 (seeds/dm?)
and wp = 2.8 (mgms)

Graphically compare the calculated values of N(t) and W(t) given by 3.
with the following vzlues obtained experimentally by R. C. Smith:

PLANT NUMBERS

t{days) N(t) (1 dm?)
2 25
62
i 62
20 69

TOTAL PASTURE WEIGHT

t{days) W(t) (mgms/dm?)
2 74
8 281
iy : 543

20 1016
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Lecture U4 Aging Processes

Under the assumption of an age-dependent mortality-rate, we examine the
demise of a population imitially consisting of P, individuals all of the same
age.

Denoting by t the =elapsed time from the initizl instant and by P(t) the
corresponding size of the population we have

{rate of change

X == if] i % cpulati i
of population } {spec1r1c mortaliity rate} {p pulation s ze}

or %%—= -Rm(t)P where Rm(t) is the specific mortality-rate For individuals
at time t.

Assuming P(t} # 0 for any t, 0 St < 1 we have upon separating variables

and’ integrating
T
in B(1)/Pg =.—£ Rm(t)dt.

To progress further we need to determine plausible forms for Rm(t).

Brody Failla Theory: Here some measure V of the individualls Tvitality" is

postulated, and the specific mortality-rate is assumed to be inversely proportion
to V.

It is further assumed tﬁat vitality decreases with age at z vrate propertiona
to its own amount. (This is plausible if we take the number of 'healthy' cells
within the organism as a measure of the vitality, t being assumeé that healthy
cells are lost according to a simple decay process -~ ses 2.3 - dus to the effects

of background radiation, random mutations ete.)

Thus %% = -kV op V = Vue—kt and so
Rm(t) = Roekt .

There is a considerable weight of experimental evidence vindicating this form
For Rm(t), see Figurs 1. Although of course, maEny altsrnztive raticnszles for
this form have been cffered.

- For exampls, in thz Simms-Jones model the concept orf vitality is dispensed
with, Rm simply baing assumed prcpor@ional to the amount of dscay present,
while Strehler suggests a much more ambitious explanztion based on "sntrapy"

arguments.
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[y =T-% 8 L. L ] 4 A ] 1 b ygd _—
4 8 12 I6 2o 24 29 32 7 t( )

Figure |. Specific morvality-rate of +horoughbred mares,
plotted on a logarithmic scale, against age
(adepted from Sacher).

. R . kT
Independently of these derivations, if we accept Rm(t) = Rge

0.084+

{for white U,5. males it iz 0.12 a where t is age in years) we then

have

.4ap _ .kt
Erale Rge P.

Separating variables and integrating gives

P t
J p~l ap = _g, J T ar
g 0
" 2 _ -Z kt
S0 in :_5'0— = -‘129_ [E - l}
' ' - .'_:.{..'El akt
or P(x) = [?0 eRD/k} e

This is known 2s Gomperiz'Formula, the truth of which iz well estzblishad
from cbservation. It is of grest importance in actuarizl work. Ths zraph for

P, as given by CGompertz' formula, is illusirated in Figure 2.
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Yo

o

Figure 2. Gompertz' Curve

. s kt
Makeham proposed that Rm be modified to Rm(t) = Rge ~ + A, the constant A
allowing for age independent deaths due to factors like zccidents. In some

circumstances this Makeham variation leads to a more zcourate modal.
Collateral Reading.

A good account of the various theories of aging is given in Chapter IV
(p. 86 on) of

B. L. Strehler, "Time, Cells and Aging",
Throughout the remzinder of this hook much of the experimental evidence and

underlying biological theory may he found.

EXERCISE:
1. The Makeham variztion of Gempertz' formula derives From the eguation

%§-= —b(ekt + cIN.

Solve this lequation. :
How does its solutiop differ from CGompertz' formulz?

(Mote the sam

li]

equation might also be used to describe a popuizZion growing
i

]
Q
H

mal' way but whose death rate varies expenentially with
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Lecturs 5. Non Linear Differential Equations I,
~ Thz Logistie Equaiion

In our previous models for population growth it was deemed reasconable in
one case to take the rate of growth propertional to the populations size P,
and in the other proportional to F - cP due to the presence of a growth
limiting factor F.

A more reiiable model should result if we take both of these to be the

case, That is, if

%—-varies dirsctiy with the two factors P and (F - cP)
. . dr
or oy = kP(F - cP)}.

(It would be instructive to sketch the slope field of this eauation, say for
k=TF=c=1.) Here the right hand side, is not z linear functicn of 2, but
is = quadratic in P.

We are thus led to investigate Riceati's Bquation

y' = ay® + by + ¢ when a, b and c are constants.

We will further assume the initial condition y(xp) = yg.

Upon factorising the right hand side this becomes

y' = aly-r1){y-r;) where vy and r, sre the roots

(possibly equal- or-complex) of ap? -+ -bp + ¢-= 0,

-b + vBZ - lac
2a '

given by

Thus provided y{t) # »; or rp at least for 0 <t < x we have upen

separating the varizblss and integrating

-f-}-

D I

et [
[aR
rt

Y -1 -1 * -1 -1
(y = r1) “({y - r3) “dy = (v = r1) "(y - ra)
Yo X

z
= J a2 dt = alx - =xg).

X0

The left hand intsgrsl

=]

2y be svaluated using partial fractions to write

1 _ 1 T 1
(v - 1)y - 73) (ry - 15) - Ty Yy - ra
provided r; ¥ vy, (In case r; = vy the integral is simple and the solution is

left to you.) whence it beccmes

¥ v '
i -1
T - 7y [ J y -~ r1) *dy - { (y - r3) dy'}
yo Yo
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S T [%n(y -r1) - tnlyg - r3) - &nly - r2) + nlyg - rz)}.
I‘l - I‘2 )

So in bk s R {r; - vslalx - xp} + gn Y0 - 71
y -T2 Yo - Tz

or taking exp of both sides

y-m _ (¥o - rl] e(rl - rg)a(x - Xg)
¥y - Tz Yo - TZJ

=z, say.

Happily, this implicit relationship between y and z (and hence %) can be
solved to yield y explicitly.

Thus . y -7y = z2(y - ra)
) — EZr rp =T
or y=9_= 2 =71y - i - z1
_ _ Ty - T3
and so y=m - L EYD_r]J E(rl-rz)a(x—xg)
Yo-T2

Further, provided yg # ry or rs; we see that ¥ = r; or rp implies that
e(rz—rl)a(x—xg) = 0 or = which is not possible for any finite valus of x
provided r;, rp are real. So this is the required solution for all values
of x.

Although we will simply refer back teo this solution, its complaxity
is such that it is much better to learn the steps leading to it, rederiving
the solution in any specific example, rather than try to remember iis final
forn. T wake Hengé of this selution when rjand ri are complex cenjugates
requires the Euler formula. However, this case arises extremely rarsly in
biological problems, and so will not be pursued further:

In the case of the population growing according te

e

d e B
= k2(F - ¢P) we have vy = 0, r = E—and g = ~Xe =0
. F/c Ynp - F/c
Plt) = ——-ﬂ-i—;:— whers A = —5 E/
1 - ‘i:..::_ <kt =0
. L ~RFT . . = .. e e ,
As t + =, e -~ 0 and 26 P + F/ec, this is the sams iimiting vaiuz =zs

occuprpred in 3.1.

The sigmoid (S-like) graph of this function, known as the logissic curve

=

is illustrated in figure 1. he corresponding curves for populaticn growt

zccording to our two =2zrlier modsls are also indicated for the purposs O

Fh

comparison.
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Figure I. The Logistic Curve fogethar with the
corresponding curves (dotted} feor our
previous growTh models. Dois reprzsent
experimental values of drosoohila
population.

The logistic curve is found to provide a good description in many
instances of population development (particularly the growth of microbizl
populations}. The particular curve illustrated in Figure 1 was chosen to
describe the growth of a population of Drosophila. The dots represent the
experimentally determined size of this population derived from datz attributed
to Pearl and Parker and adapted from Lotka.

Since a developing organism may be regarded as a growing colony of

organised cells, the logistic curve is also useful in describing the growth

by

of individual organisms. (Look up, and plot, some datz on average heigh

rt

versus age ror humans.)

Epidemology. As we shell see,the logistic curve providas a useful dascription
for the spread of z dissase (or parasite).

Let n be the fixsd size of a population compossd of individuals all
aqually susceptible To infeetion by the dissase. Take tha disezsz zo
that once an individual is infected it remains so indefini

assumptions would bs very nearly satisfied by many plant

for epidemics in humzn populations more sophisticatsd ir
czlled for.) '
Benoting by v{t) ths number of individuals infected by tims t =nd by x=(t)
()

n
the number susceptible to infection at time t we have y(t

#(t}) = n - y{t). If we now assume that the disease is transmittsd through

random contacts between infected and susceptible individuzls we will have the
- —— . d o . . \ - ;
rate of spread of the diseass [E¥J proportional to the liksly number of such
[

contacts and s6 to both =(t) and y{t).

Yhence

4y _ 1o,
Eye ky=

]
g
[}
i
g
—
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and the epidemic progress according to a logistic curvas.

Collataral Reading.

A careful discussion of growth according to the logistic curve and
its relationship to other forms of growth is to be found in

Lotka "Eiements of Mathematical Biology", Dover, 1956, Part TIi.

The appliication of logistic curves to the description of plant diseases
is a dominant feature of

J.E. Van der Plank's "Plant Diseases", Academic, N.Y., 1963.

EXERCISES:

1. Tf the rate at which a mould grows on & piece of bread is assumed
proportional to the amount of mould aiready prasent (i.e. to number of
spores produced) and the amount of free bread surface lefT, develop a

differential equation to describe the mould's growth.

2. Solve from first principles the differential equaticon

A 0.05 y{10 - ¥}, and check your answer,

dt
. s N R . =
3. The logistic curve y = SRR describes the number of infected
1+ ke -
individuals y at time t in a population of size W during zn epidemic.
Upen rearranging, this can be written as i&n ﬁ_z_§': at - n k i.e.

n ﬁ“%_§' is linearly related to t. (In fact in solving the differential
. o . . . . . -
equation y' = oy - ﬁ-yz we arrive at this relationship first, c.. notes.)

s first to estimate

H

The simpliest method of fitting 2 logistic curve to - data

M (as the valus y tends tao as t tends to infinity). Then for =zach data point

[ ld

plot Ain T egeinst €. The slope and vertical intercept of ths straight

line of best fit through these points then give us ths constants o and Zn k

raespectively.

n
m
o]
H
o
e
3]
(]
Jn
e}
1e
n
1)
=}
i
2
jo

Armold, 1371, in studying the epidemic progrs

g
tritici on the heeds of Les variaty Wheat obtainsd the following data:

7 (Bust assessment) . t (time in wssks)
0.25 10
2.3 17
8.75 22
8.5 28

gta polnts on an &ccurats graEdh
(Hote: for czlculsticn purposes it is better to write
"
H N
¥ = as y = .
—-at ¥ -at+2ink )
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4. Part of the =oil nitrogen system is illustrated diagramatically by

[ =¥ —F—>

where soil nitrogen, in the form of ammonium ions, is convertzd by a
nitrifying population F to nitrates.
If ¥ denotes the amount of nitrogen in the ammonium phase it is

reasonabls to take

% = - aNP (where a is a positive constant}, why?

Further since P derives energy for its growth from this nitrogen we

might assume that

® = bNP (b is another positive constant),

Show that this pair of equations implies that both ¥ and P vary with time

according to logistic curves.

PROJECT ¢ A Simple Model for part of the Soil Phasphorus Cycle.

1. Iptroduction. No attempt is made to develop a compiete model Incorporating
all the various states in which soil phosphorus occurs. Only the csntral
transition between scluble phosphorus salts and adsorbed phosphorus is

considered.. Namely

Tsa

soluble POy adsorbed POy

s << A
AS

Y

Our basic assumptions concerning the transfer rates zrs

o fi -
Tga S, (Asat A)
PAS = A

Intuitively thess zrs based on 2 simple capture - evaporation modsli.

- . .

Rate of adscrpiion is provoriional to the likelihood of = Frez P50, <ow arriviag
at an  adsorption site, and this in turn 18 proporitional to the mumbsr of free
PG ions {measured by 5) and to the number of adsorpiion sites (and 22 o

A =4},
- lear )

The rate of loss from the adsorbzsd state is proporiional to the nwbsr of
adsorbed ions with sufficient energy to escape, whicr, assuming a Tizad energy

distribution among the adscrbed ioms, will be a fixed Fraction o

<,
v
hl
[\
é)
3]
y
Q
3
BJ
0
2y

itons i.e. will De proporiional to 4.
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Thus Tgy = cS(Asat-A)

PAS = kA

.. e - . ~ ~k/e A
When the system is in equilibrium, i.e. r,, = r,., show that § = ——— hence,
—— "BA AS A -4
sat
if Asat = 6.4y moles/cm3 soil and the following values of § versus A are known
8{u moles) Aln moles/cm® soil)
5 b4
10 5.3
20 5.9

X k
determine an average value for “/c.

Graph the equilibrium relationship between S and A,

The Dynamic Model., In the closed system

- da _ds _
at dr  TAs T “sa

so 7 45 _ xa - eSCA_ . - A)

at sat

= - 2 - -k b =
(es? + (c(a_, —P )+K)S Pt]whe_e P_ = A+S

a Ricatti equation, which may be integrated. Show that this leads <o

ct {(rs-rp)

Ty - psle
s(t) = = 2
1 - CECt (I‘z—l"l)

and so0 A(t) = P7_
[

- 5(t), where vy < pr; are the roots of the quadratic

k k
2 + (& -P_+)x -=P_=0.
sat . C c T
Hence find 7y, T2, C using 8(0) = P_ = 10 u moles znd the valus ¢ I found
- T <
gbove.
GCraph this solution if c¢ = 1; what effect would changing ths value of c

have on the sclution?
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Lecture 6 Non Linear Differential Equations IT
- allometry, Stevens' Law

Allometry is the study of relative growth, particularly of the distinct
'organs' of an individual. Thus, for example, it is readily observed that a
child's limbs develop at z different rate from his torso.

Letting x;(t) denote the size (length, volume, weight etc.)} of an organ
and x5(t} that of another azt time t, then it is reasonable to assume

dx.
—= = £, (x.) (i = 1,2)
L 1

dt
where f; and f; are known functions. (This is consistent with 211 of our
previous growth modsls, some of which will be referrsed to saon.)

Qur aim is to relate x; to x;. This would be worthwhile for instance, if

1

the size x; were easily measured whils the direct measurement o #3 was difficult,
perhaps requiring & fatal operation.
Using the function of a function theorem we have

d}{z - dx, d}{l = fz(xz)
dx) dat / 4t f1lx7)

This differential equation, relating x; to ¥;, may be separated znd integrated

to yield
%2 X1
2] e = [ 110 ey
%2(0) x#;(0)

orovided 0 < x; < 2, where z; is the smallest positive zero of £, (3 =1, 2).

Turning now to specific cases, the simplest model of growth reguires us to
take fi(xi) = ¥; %;. Y, being the specific growth rate of the i'th organ assumed

constant, and so

ALl of which is justifiad since x.(t) # 0 for any t, and From which it follews

that
My = Ale where 4 = Ezigl;‘ and ¥ = ?2/71-
XI(G)

Thus xp is related to x) through a simple power functionm. This iz The traditiona

form of the Allomeiric Low and

8

s found to serve very well in practica.

For example, the weight o

+h
i
=
:
3]
[
w
o
H
1l
=
a]
k3
[ )
|-ln
n
I-h
]
5
(a1}
rt
[s}
[v)
(D
1
]
o
1]
it
1]
n
rt
8]
‘_J
rl
I

forehead area x; by

®g{grammes) = 611" " (%) hsing measured in cn

to guite a high degres of accuracy.
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We now examine the form of allometric law which results from one of our

other models for growth. Hence, take

—— = a, - h,x, (a,, b, > 0 being constants)
i%i i* 7i

- see 3.1

Then followingdghe argument outlined above, and observing that, for meaningful

i .
> 0, we obtain

values of x%., <
1° 4at

aq - bgkz(o)
ba{a; - blxl(O))Y

Xp = %i—- Alay - byx;)) where A

and vy = by/b)

This is a generalization of the traditional allometric law in +ha sense that for
an appropriate choics of the constants it reduces to the traditionzl law

(ay = 23 = 0 and by, by < 0}, however such a choice of congtants is quite
inconsistent with the growth model assumed. We therefore have zn sltsrnative

form of the allometric 'law' which is most conveniently written as

%9 (=) - X9 - {X1(m) - X1 }T
%2(=) = %2(0) ~ %1 (=) = %;(0)

xi(m) denoting the maximum size of the fully develaped i'th organ i.e.

=8 . . o s . .
} xi(m) = l/bi (i =1, 2). A comparison of this and the traditional gllometric

law, arranged to agree at the initial and Final organ sizes, is given in figure 1

below. dp.xa-

xz(no)- 25'=3 , y
i

/

/

/7
V4
2{:1 //
/ ¥=05
Vs
7
7/
/7
/ '

/,/ nigue curvs 7or

. TrzditTional s

//’/ withia Tha =zcc

o Ths moditis

4 v =07 e

/ = -

7
"
2 (o)1= #
s ‘1' L] 1 ey x
o] / :C,I(a) '—"C‘(m) !

Figure |
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We could of course go on to derive the allometric laws corresponding to our
other growth models, see Exercises 1 and -3.

The differential equation that produced the traditional allometpic law,
y' = ky/x, arises in connection with Stevens’ 'Law’ which appeared in the 19u0's
2s a challenge to the long accepted Weber-Fechner Law, see 2.2 for background.

From a series of experiments Stevens concluded that, for prothetie stimuli
at leastﬁ (loudness, brightness, heaviness, taste, smell, temperature etc.),
the constant fractional change in the physical magnitude of the stimulus
expressed in Weber's Law corresponded to a constant fracticnal change in the
psychological intensity (not an absolute change as postulated by Fechner),.

This leads to

AT _ . AS AT _
TTETE o7 gt ks
and so for AT, AS sufficiently smzll the relationship between I zné S is SXDYESS &

approximately by

dal
- = kI
is /8.

Whence from our previcus arguments I = ASk and so & power relationship,
rather than a logarithmic one, exists between I and S.

For example, brightness (in arbitrary psychological units) was found very
nearly te vary according to 0.01 80'33 where S is the physical intsnsity in
milliamberts.

-In 1959 G. Ekman proposed that Weber's Law be modified to allow for tha
presence of a lower sensitivity threshold, t, below which a stimulus fails to

register.

In which case Stevens' hypothesis produces

AL _ k&S e
T 3% and o leads to the diFffsrsncial
. dal _ .
egquation 5 - kI/{S+t).
Show that thiz may be solved to yield
- . K - -
T = AlS+t) ~ the Stevens' Zkmzn 'Law'.

In many cases |t| is sufficiently small +that it may be saf2lv nsglected
(Eg. for brightness t = -0,0372) and so Stevens'’ Law appliss. Heowsver, in

other cases, such as heaviness, this is not so.
Collateral Rzading:

A reasonebly comprshensive sccount of allometry, from a&n ess=ntizlly non
mathematical stand point is given in

Alexander "Shape and Size',
For accounts of the work of Stevens and Ekman, reference is best made o theip
original publications, although the undéerlying mathematical simplicity of their

assumptions is somewhat obscured.

There is some doubt as to which assumption is best in the case of metzathetic
stimuli such as pitch.
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EXERCISES:
1. If organs grow according to differentizl eguations of the form
be
—— = o¥ {some constants a, r > 0)

Show that the size of two organs is related by the traditional allometric
law
y = Ax'

if we assume y = 0 when x = 0. (In Ffact this is the only common form of

growth which leads to such an allometric law.)

2. It is suggested that the brain weight vy (in gms) of a bird is related to

its body weight x (in Kgms) by

¥y =k x

Assuming this, use the following data to estimate k.

. ¢. 3 .B
Bird ® (Kgms) ylgms) x5 ‘f/xo °
Goldcrest 0.006 0.35
House Sparrow 0.03 1
Kestrel 0.2 i
Common tern .25 3.2
Buzzard 1 7.9
Golden Eagle 5.6 22.4

Average

. . - - : 0.8 -
Using this value of k graph the function y = k x and on the same graph
indicats the azhove datz points. Comment on the accuracy of the lawv,

(Adapted from: Alewander "Size and Shape'.)

3. Derive an zllomstric law under +the assumption that organs grow zccording

to diffapentizl =quations of the form

d=

E{: CL:{{E". - }{).

Is the allomeiric law so deducad a 'generalization' of the trzditional law

y = Ax'?
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Lacturs 7 The mumerical Solution of ordinary first order differential

equations - The Euler Tangent Method.

More complicated differential equations than those studied so far cannot,
in very many cases, be solved explicitly. In such cases it is often necessary
to fall back on & numerical solution. Here we examina thg most simple methed
of obtaining such a 'solution' - The Euler tangent method .

Essentially the method is to convert the equation into a forward difference
equation by replacing the derivetive g%%El—by the difference quotient

Y(t+h)h" y(t) where h is azn arbitrary (but fixed) increment.

We develop the method for differential equations of the Form

d .

a%—= Fly,t) with y(0) = yp

where, as we shall see, it affords a simple extension of the concept of a slgpe
field,

# we choose to dencte by ¥y, the approximation to the solution's (v(t))

value at t+ = nh we hzve

¥ -¥
“ntl n o
— f(yn, nh) or

¥

el =V T r(yn, nth)h

From this relationship we are able to solve the problem iterativsly as follows.

Knowing yg ws can find

¥1 = ¥a + £(yg, 0h

and so have an sprroximation to v 2T t = h. Then we mav continus =y Findine
- - - =

Graphically

he m=thods rtrocesd as i

rt

n L 1 1 ) \_-t
o h zh 3h 4h sh °

igure |

Becguse of +t!

2 Forrester made of this methed, In ceonnection with computer
solutions to car

tain biological systems, it is, in some circles, kncwn as
Forrsster's method. However ons can hardly

doubt the precedence of Lzonhard
Fiilarwm (1707 _ %A=y
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One disadvantage of the method is that it provides no means for
estimating the error |yn - y(nt)| at any stage. More advanced (and accurata)
schemes for the numerical solution of such equations have beeﬁhdeveloped,
some of which also provide errvor estimates. We will not consider these here,
the interested reader being referred to the relevant books. One thing however
should be clear, In most cases decreasing the value of h will improve the

dccuracy of the approximation

éz-(nh) ~ Yar1 T Yg ,

dt h

and so we would expect that taking smaller step sizes (smaller values for h)
would improve the accuracy of our approximations. Up to & certain point this
is true, but enother influence also comes into play. The smeller the value
of h used the larger the number of steps needed to reach a2n approximation to

the solution value at any t > 0. Since at each sten insvitable round-off

errors occur in the calculation, the accumulated effsot of which increases as
the number of steps does, we see that the errer resulting from this factor will
increase with decreasing step sizes,

Another disadvantage of the method is that an inadvertent ervor in the
calculations at any stage will be propagated (and perhaps magnifis=ad) throughout
the remaining calculations. Methods which avoid this last diffFiculiy are known
as predictor-corrector methods and are best employed when calcualtions are being

done by hand andé the possibility of slips is considerable.

rt

Let us illustrate the Euler tangent method by applying it to the equatien

%%—= y(et - ¥) which might represent the growth of

iy

parzsite on an exponentially

developing host (or any other situation where the "limiting factors" are increasi

‘exponentially},
FLLUSTRATIVE EXAMPLE. TFor the differential equation

L = y(e® - y) with y(0) = v, = 0.

i

we have for the zopproximzte valus of v at (a+l)h

nh

Taer T Yp PRl - Yplh-
Taking h = 1 we have
yp = 0.5 (given)
¥1 = 0.5+ 0.5 (e% - 0.5) x 1 = 0,75, similarly
¥p = 2.23
¥3 = 13.7
While for h = 0,5 we obtain
vyg = 0.3 yr ® 0.625 Note: here y,, ccrrssponds to
Y2 = 0.93 ¥3 = 1.78 ¥ zbova.
v = 4,13 ¥5 = 10.8%9
yg = 17.9 vz = 37.3
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These two approximations are compared graphically in Figure 2. If we
proceed wmuch further in either of these two instances the accumulation of
errors becomes such that the value of vy exceeds the corvesponding value of e
with the result that meaningless negative values are assigned to the solution.
Thus except for values of t mear 0 little credence can be placed on the

approximations obtained. While the explicit solution to this eguation cannot

be given in terms of elementary functions the equation can nevertheless be

solved (using the change of variable u = 1/y and zn integrating factor - see

Exercise 3.3) to give
et _ t o% _
y=e {eyg 1 s J e dx) !
¢
From which we readily conclude that y > 0 for all t. (Further an application
of L'H8spital's rule should quickly cenvince us that y + = as t + =,

From analogy with 3. one might expeect that v + e°, whereas in fact
t
v+e - 1.}
HT
‘I‘e‘t
1
1l
- i
]
|
TG o
p ! “close epproximation fo actual
;1 solution
{
I
20 1 r)
!
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Collateral Reading.

Boyce ané di Prima "Elementary Differential Equations and Boundary

Value Problems’, Wiley,

contains a useful aceount of the more advanced and acecurate numerical methods

available for solving differential equations, as do most books on Mumerical

Analysis.

EXERCISES:

1.

Use the Euler tangent method to obtain approximate values For the solution
of y' = 1 - 0.5y - 0.5y° (see Exercise 1,1) at x = 0.5, 1, 1.5, ..., 5
if y(0) = 0.

The growth of a population (or the spread of an infection) is oftan
described by an accumulated normal curve instead of a logistic one.
Such curves ara soluticns of differential zquations of the form

_(t-p)2
a Ae (t-8) /a_ Use the Euler tangent method with h = 0.1 to plot

dt ay _  -t2
the solution for the specific case when Ei‘: = and W({0) = 1.
‘ L

(The study of curves such as these is the subject of Probit znalvsis.)

If you are familiar with a programming language, such as ALGDOL or
FORTRA¥, you should davelop & programme to numerically solve differential

equations by the Euler-tangent method.
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SERIES II - SYSTEMS OF DIFFERENTIAL EQUATIONS

Lecture 8 Systems of Equations ~ Linear Systems

"Traditionally" let us start by examining a population problem.

Consider a closed area containing two interacting species (one may
provide; food, shelter, fertilization, ete. for the other, as in the instance
of pollination of a plant species by bees, or alternatively it might inhibit
the otherk growth through depletion of vesources, ete.)

Denoting by x; the size of the first population and by x, that of the
second we have

dx; _ |rate of change of 1 4 Jrate of change of 1 due to
dt in the absence of 2 the presence of 2

and

dxy _ |rate of changs of 2 rate of change of 2 due to
dt in the sbsence of 1 the presence of 1

Making the simplest possible assumptions, that in the absence of interaction the
rate of change of each species is proportional to the size of that species!
population (c.f. 2) while the vate of change of one Species due to the presence
of the other interacting species is proporticnal to the size of ths interacting
species, the above equations become

dxy
dt

ax] + bxs

dxz
dt

cxy + dxg where a, b, ¢, & are constants.

Thus-our two unknown functions are related through a pair of simultameous
differential equations referred to as a system of differential equations (in
this case a linear system, since each of the comstituent equations s linear).

Usually initial conditions, such as having %;(0) and x,(

along with =such z system.
There is a grsat veristy of mezns whereby systams
solved. The mathoé we will follow (& matrix version of

appendix to this lscturs

)
Hoting that if 5 = 0 the first eguation of the system wouléd

a
at . s
®y = Ce , with a gimiiar re

suit for the second if ¢ = 0, we ara led o tr
for a solution of the Form

At
®y = Ae

At - . . -
xs = Be with approprizte values of the constants 4, 3 and )
Substituting these for %; and xp into the svstem =nd rezrrenging givas

. At :
(AA - 22 - B3)e"" = 0 and
AT

(AB - c& - d3)e

We will certainly have z soluticn, then, provided A, 3 and A

0 - as a necessary and sufficisnt conditicn for them
to be a solution,

are chosan to satissy

XA - 24 - bB ) and

AB - cA - 4B 0.
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of equations in three unknowns and so they do not uniguely

of A, B and A.

However as we shall see they do uniquely

determine A znd the ratio A/B.

Determination of A. From the first of these two équations we have

A -z

5 while from the second §-=

B

| 1

A - d
!

whence

|

(A - &)(A - a) = be.

This is a guadratic eguation in A, A2 - (a + d)A + (a&d - be) = 0, known as
the eharacteristic equation of the system, from which the permissible values

of A may be obtained, viz.

a+ d x/(a ~d)2 + tbe

A= 5

A number of possible cases nowWw arise.

CASE 1. There are two real and distinet values of A {i.e. -Ubec < (2 - &)2).

Denote these values by A; and A;. Then for A = Ay we have

aTa
w

[+

B Ay - &
g = =
z 5 (and - d)

Whence, leaving the value of A arbitrary, we have that

At
Xy = As 1
and A N
- & t . .
Ry = {_15“'}A gl as a soluition of the system.
S8imilarly, for A = A, ws have
oy = A Aot
and
Ao - & At .
Xz = [ 2 —Zlare™® a5 2z s2cond solution whare
in general A' nesd not squal A
Since the system is linear z mors general sclution is obtainzd by adding
these two together to give
Hl = Aa)\}_L T A‘:lxz‘t
gnd .
<o = A\ - &2 "ellt . Ag =~ 2 lr_th
P 2 b I 1 b EE Y .
It can be shown thet any solution of the system is in this cass, of ths above

form. Values for tha two arbitrary constants A and A' can now be chossn to

- - . - B P . . .
In some cases ons af these two exnDressions Ior E—may Drove Llndeverninats, in

which case the other should not be neglected. In the text azbovs it

15

assumed that this is not the casa.
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satisfy the initial conditionms, i.e. in the instance mentioned A and A’ would

he chosen as the solution to the pair of simultanecus equations

A+ A

1]

=71 (0)

and {lLﬁiqu + Pﬁti}f%A' x2(0).

ILLUSTRATIVE EXAMPLE. Let us consider two populations of size x; znd xp

interacting according to

dx
EEL = Uxy T X3

&

= -2x
at 1 + Xa
Thus the presencs of xp is advantageous to X while x;'s existence is
detrimental to the growih of 2.

At

Substituting =y = As , xp ¥ Belt yields

M - YA - B = 0 and AB + 2A - B = 0 whence

_A-b [A]"l _ -2 2

sa {A - LY(h - U4) = -2 or A= - 5% + 6 = 0.

Factorizing this characteristic equation leads to

A=2o0or 3
B A - b
Tor A = 2 we have T - — -2 znd so
x = AEZt
Ky = —ZAEZt
while A = 3 gives
®y = A'aat
Hg = —B’eat.
So the general solution is
B * Aézh + A'ESL
+ +
vy = —2822° - are?"

Thus if the initizl sizas of the two populations were

x1(0) = 25 , =p(0) = 50, then

4 + A' = 25 and -24 - A' = 50 from which we
copclude & = -75 and A" = 100 so
%y = 100" - 758"
2% +
and xg = 18027 - 100" (see Figure 1).

0F course in the rezl situation once ®p was reduced to zero, at t = in 1.5 = 0.k
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it would remain so from then on,while %; would continue +o develop azccording

to %%l = 4x;. This situation is also illustrated in Ffigure 1.

M
oo growth of 1
(]
=
3200 |~
200 - - growth of i in
‘ .~ complete absence
- of 2
100
-———*ﬁﬂffcff’ Towth of 2
o l ‘\Lg\ 3 \ . ‘;__t
ool 2 -3 T~ *5 6
\"s
S
e

Figure 1

We will now consider the remaining two cases briefly.

CASE 2. The two values of A are complex conjugates with mon-zero imaginary

parts (i.e. -4bec > (a - d}2). 1In this case denote the valuss of ) by
Ay = o+ if and A5 = 0 - if (¢,8 real).
Here the czlculations are precisely the same as in the previous case

except that compiex numbers are zadmitited throughout. Thus the soiurion is

®x1 = & (fe”7 + A's
®y =

where A, A' are erbitrary complex numbers.

However it is rsadily sszen that both the peal and imaginary parts of this

solution must also be solutions and so using the Euler Formulz we oh

T2in real
oscillatory solutions of the form
®y = eat (B sin Bt + C cos Bt)
xp = ¢ (D sin 8t + E cos gt)
where B, C, D and E are appropriately inter-related constants whosa values

may be determined from the eguation in conjunction with the initial con ions.

(ah
I
rt
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CASE 3. Here the two values of A are real and equal (i.e. -Uhc = (a - d)2).
Since this case arises only infrequently in practice we will not pursue it

further, except to nets that the general solution is of tha Fform

(At + B)e Tt

X1

(Ct + D)ekt where A, B, C and D are aporopriately

"

R

interrelated constants.
Collateral Reading.

An account of systems of equations from a matrix viewpoint (sees appendix)
is to be found in
Boyce & DiPrima "Elementary Differential Equations and Boundar
Value Problems.
A mathematically more advanced treatment is given in
H. Hochstadt "Differential Equations, a modarn approach”.
From the applications point of view a brief treatment is +o he found in
5.I. Grossman and J. Turner "Mathematics for the Biologiczl Sciences"
and & slightly more extensive one in

E. Batschelet "Introduction to Mathematics for Lifa Scientists'.

APPENDIX to Lecture 8.

MATRIX METHODS FOR PIRST ORDER LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

(Most useful for systems of three or more equations, although we iliustrate

the method on systems of 2 equations.)

Consider the system

dx —
El—= ax] + b}{z Xl=}:1(t)
where are 2 unknowvn Tuoncotions.
dx-; - - —
oo ox) + dyg X3 = xa(t)
[
- - . . bod - . _ .
If we form the vsctor y = [xl] whoss components are the two unknown functions

and choose to dafine —= by

dxy
. d
£ = ‘tz i.e. th tor wi
4 - a
ac 9f { 5 i.2. the vector whoss
at

components are the dsrivatives of the corresponding componsnts of wx, “hen we

may write the above svstem as the matrix equation

'® Ax where A is the 2 x 2 matriz [é ?}.

. . _— . s dx i s
From anzlogy with the single first order eguation o ¢ ax 1T is rezsonszble
. L

to try & sclution of the Form
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AL
c1e .
X = ceAt = 1"\t| where ¢ is a constant vector |S].
- ~ Cze = Cz

In which case, since g%—= Ax = lgelt (check that this foilows trivizlly from

the above definition), the above matrix equation becomes

AgeAt AceAt

. N - At .
For this to be true for all values of t, as required if x = gce  is to be

a solution, we mnesd A and c to satisfy the matrix equation
Ag = Ac
Rearranging this we therefore require ¢ to be a non-trivial solution of

[& - Q\I]g. =

[

Now such an homogenaous system only has non-trivial solutions if the matrix

[A - AI] is singular and so the permissible values of A are those For which
the determinant |A - AI| = Ou, i.e. are roots of the "characteristic" equation
of A.

Corresponding to each value of A so determined, A, say, we can then Tind a
non-zero vector e; by solving {A - AiIlgi = Q. B

(Note: There is not one such e, but infinitely many, for if ¢, is z solution

then so is kgi for any arbitrary constant k £ 0.)

. . Ait
For each distinct Ai we are thus able to construct the solution %, = ¢.e .
If all the li are distinet, the most general solution is & linsar

combination of these solutions, viz
® = Lk.c.e Ait
) 18:°
ILLUSTRATIVE SOLUTION:- The system %§-= 2x + y.
dy
—_— = 3
a - ¢
. s - dw ® L 2 1
may be written as ths matrix eguation —= = Ax whera x = znd & = |-
e dt Ni :a

which has solutions x = ce” where A is determinsd from

|a - az| = ‘ i": A2 — 2x%-3 = 0

50 A = -1 or 3 while ¢ = {21] satisfies [A -~ AZ]e = 0O
< 2 <

]
so for A = -1 [é ;] {ClJ =0 or 3c; +ecp =0 Teking ¢; = 1 gives ¢p = -3

similarly for A =

l_l

BT

Such values of A ars celled eigenvalues of A and the correspondinz non-trivial

N
; _‘} {C1] = 0 so0 a sultabls c is [l} agnd = sacond
3t

=

solution is i F {

=

solutions for ¢ ars then termed eigenvectors.



Thus the general solution is

x =4a

i
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1l -t 1] 3t
3]e + b[l]e

{wvhere a, b are arbitrary constants whose values may be determined from the

initial conditions) or in the

X
y

EXERCISES:

1. The growth of two species

is desecribeé by the system

language of our original problem

-t
ae

+ beat

—3ae"t + beSt

of sizes N and W, which react detrimentally

%L = UMy - M,
dN1 _
i -UN; + U4Ny
Solve this system and find Ny, Np if at time t = 0, }; = 20D and Ny = 1,000.
Draw vough graphs of their growth. On the same grapls also show the
growth of each species in the zbsence of the other.
2. Two interacting populations have sizes of Wy = & - xt), Ny = B - xs(t)
at time t where A, B are constants and whers %%l-= -¥] + X3
dx
-d—t—g" = —K1 - Xz
If A =B =1,000 and at + =0 Ny = 1,000, Ny = 800, show that this system
has solutions of the form :
—HtT .
%y = e (a1sin Bt + By cos Bt)
x = e Pt {Ansin Bt

235

Tunctions of

+ Ez ceos BT.)

-
[

rf

Draw graphs o

m
th
]

t - =2
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Lecture § Linear Systems from an alternative view point

- Compartmental Analysis

A useful concept in developing bicphysical models is that of

[1}]

compartment, which Milhorn (in "Applications of control theory to
physiological systems', 1966) defines as follows.

"If a substance is present in a biological system in several
distinguishable forms or locations, and if it passes from one form or
location to another form or location (&t a measuresble rate) then each
form or location constitutes a separate compartment for the substance.”

In Lecture 2.3 on descay processes, if we regard the undecayed material
as forming one compartment the process could be schematically represented

thus

undecayed . infinite

. . decay c =
material in z :3‘ reservolir for
amount H dacay products

where the rate at which material is transferred from the compariment of
undecayed material to an infinite reservoir for decay products was taken
proportional to M. ‘Some authors take this infinite rsservoir to
constitute a second compartment, but many do not. Quita arbitrarily

we will side with the latter and so designate the above process &s & one

compartment model.

Dividing a complex biological process up into compartments with various
transfers hetween different compartments often assists us in devsloping a
system.of equations. which model the process.

Other examples, in this cese of two compartment models, wers provided
by the soil phosphorus model in the project to Lecture 5 and the soil aitrogen
system of exerciss 5.&. Many of the other situations so far considered could

also be interpreatad in terms of compariments (find s Few).

t
}]
)

& ruminan

~ u(t) ‘> v(t)
TUmMEN - abdomen duadenum

y

fasces, which &ppesr after
a time delay of 1 so
w(t) = v(t - ).

food —>

Some researchers have deaveloped more elzborate modsls involving nins znd
more COmMDErTments.

A simpler exzmple, which we will consider in detail 8
excretion of a drug. ror the saks of clarity we will taeke the cass of the
blood zleohol lavel resulting from a concenireted (&t least in tims) doss of

alcohol. & suitables compartmental model for

rt

his situation is
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dose 51 alcohol in diffusion | aleohol in
stomach blood

v

infinite reservoir, formed by
tissues, excreta, ete., the alcohol
level of which is assumed to stay
at a fizxed concentration €.

Let ¢3 be the excess concentration of alechol in the stomach at time t above
the constant external concentration €. Similavly let ¢p; be the excess blood
aleohol concentration above T. Initially cp(0) = 0 ané ¢3(0) is proportional
to the size of the alcchol dose, D, administered i.e. ¢;(0) = coD.

Since the transfer mechanisms are essentially diffusion processes we have,
from 3.2, that

dey . Jdifference in alcohol concentration between -the stomzch and
dt the blood

and so

where a > 0 is the proportionately constant and b > 0 allows for ¢, and cg

to be measured in different units. Also

deg - |rate at which alcchol _ Jrate at which alechol
dt enters the blood leaves the bhloed
and so
dep 1-den a s C P -
t - T ba " deg = 5 €1 - (g + d)cy where d@ > 0 is the cosTficient of

diffusion for aleohol lezving the blood strezm.

We are thus lad to thes linear system of sguations

dc
dt1 = -3&g) + &bes c1{0) = ap
dcs =3
— S - -($—:)c C G =0
dt B 1 2 2(0)
with a, b and d positive constants, which may be solved by the methods

discussed in the last lscture.

Thus if A1 znd A2 ers the two roots of

A% + (22 % d)\ + ad = 0, which are real (since

(22 + d)? - uzd = u2? + G2 > §) =nd both negative;
we have cy = ﬁellf + A'ekzt
ey = Ala; 2 Aellt . Rzab a A'Ekzt

Hot all comparimental modsls yield linear systems, viz the projsc

lecture 5, howzver with simple assumptions on the transfer ratss nanv do.
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So using cp(0} = 0 gives A' = - %é—%—g—A and then c;(0) = ¢l gives
- o
A= 1+ Ay + a D
As + a

So finally we can conclude

ﬂ(l1 + a)(%2_+ a)
gh(Ao - A7)

Alt Aot
1 a2

cg Dla -

a result best written as

ﬂ(ll + a)(Az + &)

= kpetttyy - (P2 - At
°y = kD t7ll - e ah(3y, — A7)

] where k =

and without loss of generality we may assume Az < Ay,

Drew, Cologuhoun and Long in “Aleohel and a skill resembling driving'
(H.4. Stationery Office, London, 1953) give a considerable amount of
empirically determined values of ¢; at various times and for various dose
sizes. TFitting their findings to a curve of the form obtazined sbove, by

the important procedure known as peeling yields

01t -0.0Lt
- e 3

eg(in mgms/100 mls of blood) EEODE—O' (1

" where D is measured in gms alcohel/Kgm of hody weight and t is in ninutes,

This curve and their original data, for the case of D = 0.5 gms/Xgm bedy weight,
is plotted in Figure 1 from which the close agreement between the experimentzl
results and the theoretically predicted curve should be noted.

As can be easily checked, the system

deyl - _g.092 -

- = ~0.02 {e1 - beyd
cy . 0.02 _ =
T T C1 0.05¢p

i
choics of v and b (g—% 108} has the =ztove emncirlcally

Howevar, eve
of & and & used

show. Thus from

|_l
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unique set of values to thez under
50 certainly cannov meke any adsquaisz predictions sbcuz the ve
rates etc. from z knowledge of the systems out-put {(c,) for various Inpucs (D).

This is an extramely important point, the conclusions from it heoldin

does not uniqualy detzrmine the intsrnal structurz of the system. 2 pasult
well documentad in snginssring works on control theory, particulsrly in the pats
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Flgure |. Dots represant average values as found by Drew =t 21,

The curve is cg = 2508“0-0|T{t_e-0.047).

{Here D = 0.5 gms/Kgm body weight.)

-{indeterminable) components, and shows that most svziens have 3
part. Thus the somewhat common practice of adjusting ths paremetsr vzalues

of a system till the known input - output response is obtained (often by

n uncbzarvahle

means of an analogue computer) and then interpreting those parametsr values as
though they reflacted the underlying physiceal situstion is at the vsry least

Comparimental Modsls are discuszad in sections 11.3(F) and 11.7(%) znd

e
analysis and so serves z2g & detailed gsneral refersnce:
H.A. Atkins, "Multicompartmentzl Modsls

1 .

Methuen, 19358,
Tor the work of Xalmen eited in the lecture, {th2 most imgorizoT Daper

. Kzlman "Mathem=tical Description of Linzzr Tvaznical Svstzms"
5
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1. Show thet the pezk (maximum) blood zleohol level occurs =fter = Tixsd

number of minutes, independent of the initizl doss sizs. Hancs conclud

==

fH
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Lecture 10 Non-Linear Systems - Lotka-Voltera Equations.
The particular non-linear system we will look at was first used by

D'Ancona et al to examine the shark versus herbivorous fish populations
of the Adriatic during the years 1910 to 1923. (When fishing resumed after
the fishing fields had been 'rested' during World War I, it was expected
that rich harvests would result. This did not turn owt to be the case and
explanations were sought by D'Anconaz and others.) The system is however
applicable to more general Predator-Prey and other situations, while the
techniques illustrated in the analysis of the system can be used on Zny
similar non-linear system of two equations.

If we assume that the enviromnment is static and any genetic adaptation
is slow enough as to be negligible (i.e. no externzl time-dependant

influences are present) then a predator-prey situation will be dascribed by

rate of change of| _ |[natural rate of | _ |[rate of destruction due
Drey inerease of prey to predaticz:

while

rate of change of| _ |rate of increase of|  |natural death rate
predators predator from of predators
devouring prey

Here we have further assumed that the predator's food supply is entirely
composed of the prey and that once established, an individual predstor always
finds enough food and so its death is due to natural causes, not starvation.
(Should any of these assumptions prove not to be the czse, an allowsnce could
be made, in some cases this would only lead to @ change in parametsr values,
for example if starvation were admitted as a cause of predator dsaths - why? -
for others a considerable .complexification of the model might result.)

Denoting by x the number of prey present and by y the number cf predators,

the simplest assumptions lead us to take
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is proportional to the likelihood of encounter betwesn cradator z2nd crsy and so

to both % and y. It is then equeslly plausible to tezke

rzta of ineresase of rate of destruction
pradztors from dsvouring of prey by vradators
oray

and therefors o V.

The presence of the cross-product terms "xy" introduc
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system which bacomes

b -
—— = ax - buy

cf

=8
4

cxy - dy whers 2, b, ¢, d > 0 ars constant.
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Single non-linear first order equations are often more difficult (if not
impossible) to solve than linear ones. This applies even mores so Te non-lineap
systems. Thus for the relatively simple case derived above, it proves impossible
to find a completely explicit solution. To find the expliecit form of the solutic:
in any particular case we would have to approximate it using numerical methods
(see Exercise 3 ) probably requiring the use of 2 computer. However, even
in the asbsence of an explicit solution, much insight into the form and behavicur
of solutions can be gained.

A non-linear system of the form

E’z f(x: Y)
g% = glx, y)

where the right-hsnd sides do not depend explicitly - on t is calleéd an autonomous
system, Tor example the system derived above is autonomous.

If x

Il

x(t), ¥y = y(t) is the solution of a given sutonomous system, which
satisfies the initial condition x(0) = xg, y(0) = yg, we can regaré it as the
parametric representation of a 'curve', C, in the x-y plane. In +this context
the x-y plane is known as the phase-plane of the systenm.

This ¢ = {{x,y): x = x(t), ¥y = y(t), t ¢ &} containing the point (=g, ¥o),

known as the trajectory of the sclution passing through (xg, vp), is the
natural projection (shadow) of the solution in (x, y, t)-space ouio The phase-
plane. Although a knowledgs of the trajectory passing through the point (xg, vg)
does not give complete knowledge of the solution satisfving the initial conditior
x(0) = xg, y(0) = yg it does howaver, as we shall see, vield much valuable
information about that solution. It is therefore important that ws te able to
construct trajectories passing through various initial points. Under = propriate

conditicns on £ and the general theory of autonomous systsms (zné In particular

m

the unigqueness of their scolution) yields the

If two itrajzetories have any poinis in common then h igsnty or
less precisely, distinet trazjsctories czannot cross.
0f particulzr importance ere those trajectoriss whick consist of & single

point (&, b) say,

necessary and suf

da -

d; =0 = f(a, b)
é%-n 0 = gla, b)
dt

i.e. that (&, b) e a solution of £(x, y) = 0 and glx, ¥y = 0.

Thus for our pradator-prey system we have

gl - by = 0= uw =0 opy = %
dl .
cxy - dy =0y = 0 orx= = 50 The
o . d =
critical points are (0, 2) znd (E“ EJ'
.. s e R . - of af sz it .
Sufficisznt conditions would be that T2 By 7s s 3= &nd 7= are avarywhere
e’ 9y’ om 3y -

continuous (sae



As a generzl rule, the other trajectories of a system either approach,
recede from, or encirele the critical points which physically correspond to
'equilibrium states' for thes system.*

It should be apparent that € is a trajectory for the system iF

solution curve of the fipst order equation

Gy [, dv fdxp _ glx,y)
dx dat/ dt F(x,y)

This provides one means of determining the system's trajectories.
So we seek trajectories for our predator-prey system as solutions of

dy _ cxy - dy
dx  ax - bxy

which may ba ssparated to give

v - = s
[ E‘.;DZ dy=f cx de

X
¥o 0

Y = =
or a &n - by - c{x - xp) d &n .
Yo (v - vo) 0 b))

Unfortunatlsy this implicit relationship cannot be solved to give vy in
terms of x. However for any fixed set of initial values (xg,yp) ané any

#-value we could first determine if the equation
2iny-by =calx ~xy) - byy -d In EU-+ a in yy

{where the right-hand side is now a known constant) has a solution in y and

if so find successive approximations to it by Newton's method of locatin

i

say. In this way z graph of y versus x could slowly bz built up znd so the’

Zeras,

trajectory through {(xg, vp) determined. From such a procscure (or dirsctly from

the implicit relztionship betwesn y and x) it would smsrge thet the Trajectoriss
form closed curves centred zbout the critical peint [%3 EJ at lzz=t Zor (g, ¥g)
sufficiently nesr to thiz point

A less strsnucus spproach is to construct & slope fizld for The squation

a

=

dy N . d
=== 0 on the lines y = 0 and x = = ;
an -
iv . a
T - S ot the lines w = 0 and y = — 3
- b
* The analysis of this sifuatisn is the subject of Stazility Theasory which wi

il
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dy

—4 =1 = -—.——L
ax _ +on the branches of the curve ¥y STy r—
dy . ~1 on the branches of the curve y = S T
dx {b-clx + d

These iscclines and the slopes along them are shown in figure 1 where a

number of typical trajectories have also been sketched.
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Figure |. Phass-plans of +he system ar Coax - bxy

i
(c > b)
R

We now illustrats how the "phase-portraii' develored in Ffigurs 1

provides informstion zbout the solution of the systam

3§-= ax - buy

C1T -

E%-= ery - dy with »(0) = =g, ¥(0) = y5 > 0,
W .
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As we have observed, points on the unique trajectory C passing through
(xp, yp) are specified parametrically by x = x(t), v = y(t) where x(t), y(t) is
the solution of the system. Since both x and v are continuous (in fact
differentiable) functions of t, as the parameter value t increases the point
(x(t), y(t)) will move "smoothly" along ¢ . For example, if (2g, vg) is such

. - d
that € is one of the closed curves 'centred' about §3 2l and Xgp < o> Yo * §3

b
. . . -d
then at (xg, yg) 2@ simple calculation shows %%-< 0 and E%-< 0 end so as t
[
increases the solution point moves anticlockwise around ¢ . Thus Sy  following

the progress of z point around  and reading offthe x and y values we can draw
graphs of » and y versus t (see figure 2). However, since from what has been
done so far, we have no indieation of the rate at which a solution Doint moves
along ¢ , the t-units of such a graph must bz completely arbitrary (we cannot
evern assert aguel lengths aleong the axis correspond to esgquzl increments

in t).

periocd of X and vy

I~

Figurs

Neverthelsss such 2 graph does cive us a2 reasconzhle amount o Information
- =

£
concerning the solution. Thus from figure 2 we ses that for our zarticular

n
. . = d . a . s . .
predator-prey model if xp = F &nd yp = + the two pepulations would ramain at
these equilibrium veluss for all time. However, if for zny veason sither of
the sizes was slightly differsnt from this value, +then the two peoulstiaon
sizes would oscillate pericdically about these valuss with v and x aut of phase

When x has its maximum (minimum) value, y has the intesrmadizre

similarly when y has its maximum, % has the intermediats valu

m
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From practical consideraztions this form of the solution is rezsonable,
When the number of prey increases, more food is available to the predator
speciéé and so after a time delay, its size will also increase., This gives
rise to an increased predatation rate znd so reduces the number of prey
available which will in turn lead to a reduction in the size of the predator
species., But then as a result of reduced predatation the prey species can
again increase and so the whole cycle repeats itself,

This particular predator-prey model is appropriate for a great variety
of situations besides animal versus aznimal or fish versus fish, One of the
other "classical' situations is competition betwsen grass types. For example
in Clover/Rye-grass competition, the presence of clover leads fo an increase
in the available soil nitrogen which in turn enhances the growth of rye-grass.
This latter grass type heing hardier than ciover then 'takes-over' +to the
detriment of the clover present. Thus supplementation of the soil nitrogen
(and so, after some delay, also the rye grass) is reduced, allowing the clovar

to build up again.

Collateral Reading:

A brief @ccount of non-~linear system of the type considered here is
given in )

5.1. Grossman & J. Turner "Mathematics for the Biological Sciencss".

A more detailed, though still brief, treatment may be found in

E. Batschelet "Imtroduction to Mathematics for Life Scientists'.

A proof of the existencs-uniqueness theorem for such systems is given in

D.A. Sinchez "Ordinary Differential Equations and Stability Theory'.

The more detailed wathematiczl treatment of such systemsis zlso contained
in this book as well as in many other books on differsntial equaticns, such as
Boyce and DiPrima "Elementary Differemtial Equatioms and Boundary Value Prohlams
vhere & discussion of the phase-piane and the concept of trajecrorizs is also to

be found.

EXERCISES:

1. Draw a phase planes for the systam of eguations

i
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T= = ¥ + Ry

=

and hence discuss the form of its solutions.

s . . - _d . . .
By pletting "isoclines" corresponding to E%—= 0, =, 1 and -1 dztzrmine

ha

N

the ''phase™ plane for the non-linear system

= w(l - x - y/2)

(Hint: ax? + by? ¢ huy + fx + gy + ¢ = 0 is a hyperbola if hZ - Lab » 0
¥ s gy T 3

a parabola if
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Using much the same reasoning as in the case of a singie first order
eguation, develop an extended Euler-tangent method suitable for

solving the first order system

* = f1(x, vy, )

1]

5’ fZ(x: Y- t)

Apply it to the system

]

= (x -yl - %)

¥ = ylx - y) with =x(0) = 0.1, v(0) = 0.0L

and h = 1. Also graph the solution and on the same graph plot

{y/x = 100) for 0 <t < 13,

(This system has been suggested as a crude model for the spread of
rust (y) in sunflowers, where x is the leaf ares at time t. Can you

see why such & model might work?)

Also analyse the system given in (b) by constructing & phase-portrait
for it. Compare the form of the numerical solution obtzined in (b)
with the conclusions you might draw from consideration of the phase-

portrait.

Find conditions under which the ratio y/x has a minimum value other

than at the initial point. (This should have been the czse with the

specific initial values suggested in (b).)

In the course of the lecture it was shown that for the predator-prey model,

y and x are related implicitly by

a fny - by = e(x - xg) - byg - d in §6-+ a nyg (xg and yp Fixed),

From this show that for each value of ® > 0 there corresponds &t most two-

values of y. Hence concluds that the trajectories must form clesed cupvas
¥ )

such as those illustrated in figure 1, rather than soirals, z eczse which

)

was not rulsd out by the isoclinss drawn in Figurs 1.
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“Lecture 11 Stability of almost Linear Systems

In this lecture the theory of phase-planes for autonomous systems is
developed further. In particular we will be interested in the nature of the
trajectories in a neighbourhood of a critical point. Since, as-already observed
& critical point corresponds to an 'equilibrium state' for the system, we can
from such a study defermine whether the equilibrium is "stable", i.e. whether
the system, when slightly disturbed from equilibrium, tends to settle back towar
equilibrium or not, and in general gain information about the behaviour of
solutions for large values of time {(i.e. about their asympiotiec beshavioup).

We begin by surveying the possible hehaviour of salutions in the neighbour

hood of a critical point for linear systems of the form

dx _
E_E-—ax—!-by
dy _
Ere cx + dy

and later extend our findings to certain non-linear systems.

We will further assume that (0,0) is the only critical point of the linear
system, i.e. ax + by = 0 and cx + dy = 0 together impiy x = y = 0. The general
form of the solution for such a linear éystem was found In lecturs 8 where it
was seen to depend on the type of roots the characteristic equaticn,

A2 - (a+ d)A + ad - be = 0, possessed. In fact the nature of the two roots
A1 and Ap characterises the behaviour of trajectories.

Thus,if Ay < Ay < 0 the solution is

2et1T 4 prghat

ES
4]

If we used this to plot z phass-portrait of the system, w2 would ohizin a

family of trajectorizs such as those iliustrated in figurs 1, in which Four

- |

rather distinguished trajsctories should be noted. The zoluticn s=tisfying an

n

initial condition of the form

=(0) = A, v(C) = ;_\_l_i__a_;\
is
x = Ae'lt .oy =hoa e

and so corraspends to the trajectory

5 € (% bstween A and a, v between-&L—:—i and 0)

- - . . Ay - o . . .
2 stralght iine segment with slope ——— . Similar situations

b

three other caseas:

equivalently det

’ = ai - bhec 7O

[aP e}



x(0) = A, y(0) = - 2228 4.

and x(0) = A' y(0) = - 222 4,

1

y

Figure |

Since, as t + =, x and v + 0 (as X1 < Ay < Uj We s22 that the peint (x,y)
in the phase-plans corresponding te the solution values x = x(x) ¥ = y(t)
€ time t, will move zlong its trajectory with increzsing values ¢ t in such
a way as to approzch (0,0). Hence the direction arrows on each oF =he
trajectories shown in Ffigure 1 indicate this fact.

Because of the way trajectoriss approach the critical point (0,0), it is
designated 'a nede'. Further, since all trajectories, ragardless of theip initi:

point, remein arbitrarily close to the critiecsal point (0,0) for 211 sufficientl:

L

large values of the parameter t, we say (0,0) is an asymptotically stable eritic:
point of the system and of course corresponds tao a 'stahls! é_uilibrium state.
2 the solutic:
v (0,0) in

which case it remzins so for all +. This is generally true, for, zs remarked

n

It is worth observing that the word asymptatic is appropriate
)
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vailable.

However for us the intuitive idea should suffice.
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in lecture 10, distinct trajectories cammot intersect and (0,0) is a trajectory
in its own right.

A similar analysis could be carried out for each of the other possible
forms of the two roots, A;, Az of the characteristic equation. The details of
such an analysis is left to the reader, the results of it are sumarised in
Table 1, where the nature of the critical point (0,0) and the type of its
"stability" is also given along with a typical phase-portrait for each of ths
cases. It is in terms of this phase-portrait that the various casas of
"stability" should be interpreted.

An inspection of Tsble 1 leads to the following result.

THEOREM: If (0,0) is the only eritical point of the linear sysiem

dx _
a:t--ax-i-by
dy _
E-cx+dy,

then it is asymptotically stable if and only if the real paris of the two
roots of the characterisiic equation A2 - {(a + d)A + ad - be = 0 ave both
strictly negaiive,

We now see how these results extend to & certain class of non-linear system:
where they are of considerably greater value, siﬁce explicit solutions for such
systems may well be not available,

DEFINITION: The autonomous non-linear system

dx _ -
3o - ax + by + £(x,y)
éy _
g C ox dy + g(x=,y)
is almost linear if
Limit ££§322-= Limit giﬁizl-= 0 where v = V%% + y2
0 - r ™0 n

The next result shows that many of the commonly occurring biovhysizcal systems
are almost linear, '

LEMMA: Any non-linear system of the form

d N m

e T

dt 521 pZg M

dy u T n _m-n

E¥'= Z E bmnX ¥ *
m=1 n=0

where the a__ and b
mn mn

are constanis, ie almost linear, i.e. any system for which the right-hand sides

are polynomizls in = and vy.

COROLLARY: Any quadratic sysitem (c.f. lecture 10) is almost linear.
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TABLE 1

Nature of

ﬁature of Form of Solution Sketch of Trajectories Critical Type'o?;-
1s Az Point Stabilit:
- Asymp-
A7 € Ag <D % glellt + gzelzt (lmﬁggge?) totically
STABLE
it Aot (impraper) -
Ap > A2 >0 | x=Ciet + Cpe’? %%J ’%ié - Nonm | UNSTABLE
o)’ )
Y
~
e <0 <A « = ceMT o gtet o5 SADDLE UNSTA
1€0<k | x=Ce Cze \-’\ /_}x POINT SLE
A A
AR
A
i e (proper or | Asymp-
Ay = dp <O x = C1e” + Cpte e improper) |toticall;
(o< 0) s > X NODE STABLE
h
1+ 1t ' {orocer or
A1 = A9 > O x = 12 + Cate improper) |[UNSTABLE
(A > 0) s N’ HOD=
Ay = oo+ iB ‘_ .
(B # 0) x = e (4 sin Bt . SPIRAL i
A =N + B cos Bt) POINT coaRiE
x <0 (e < 0) -
A
x = e (4 sin Bt ///"_“‘\\ SPTHAT
‘> 0 T - gt Na S . N A T =
o (u+>30§os Bt} //Ef§;> N POTHT UNSTABLZ
%”/
....9—-
A
. CENTRE
=0 i +
" z é ;"ZOS at s {periodiec |''STABLE"
b= sclutions)
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Proof. We will prove the lemmz for the case when the right hand sides are
quadratic i.e. when N = M = 2, The proof for right hand sides of higher degree
should then be obvious.

Hence, consider the system

% = a)1Xx + aypy + azzxz + apoy? + dp Xy
d
% = by1x + bygy + bpax? # bagy? + boyxy

and let r = vx2 + yz, then x and vy may be written as % = v cos B, v = r» sin 8

where @ is chosen so that
sin 8 = y/Y%2 + y2 and cos 6 = x/VxZ + y2
Substituting these for x and y gives

F(x,y) = 239%% + aspy? + apxy = r?(agsc0s28 + azg sin?e + dg; sin 8 cos @)

and so Limit fy) | Limit r{ags cos?d + aggp sinZe + g1 sin 8 cos 8) = 0
0 T ™0

similarly for g(x,y).

The importance of almost-linear systems is due to the following theorem,

& proof of which (although not difficult) will not be attempted.

THEOREM: Let (0,0) be a critical point of the almost-linear sysiem

§§-= ax + by + flx,y)
dy _
E‘_t— = ¢x + dy + g(x,y’)

and the only critieal point of the corresponding linear system

dx
== ax t+ b
at Y
dy .
= cx +d

ax ¥
then:
if (0,0) s an asympiotically stable eritical point of the Linear gystem, 1t 18
also an asymptotieally stable critical point of the almost-limzar sustem;

2
1f (0,0) is an unstable eritical point of the linear systam it 15 zlso an unstak:
eritical point of the almosi-linear system.
Further, if Xy, Ax are the two roots of the linear sustem's charcetzrisiic
equation, Then
Al ¥ Ap but both real, implizs (0,0) is an improper nodz for the ilinsar system
and alse for the almost-linear system;
A1 <0 < Ay implies (0,0) is a saddle point for both thz linear and =lmost-linsa:
system;
Av = e+ 1B with ¢, B real and oB 7 0 implies (0,0) 76 a spiral point of the
Linear system and also of the almost-linear system;
while, 1f X} = 15,(0,0) s a node of the linear system and either o neode or a

epiral point of the almost linear system.
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Roughly speaking this somewhat lengthy theorem states that except when (0,0)
is a centre for the linear system (@ case about which a&lmost nothing can be
said in gemeral) the trajectories near (0,0) for the almost-linear system are
a facsimile to those of the linear system.

A non-linear system can of course have eritical points other than (0,0L
say (rg, vg). To analyse the behaviour near (xg, yg) we simply change origin
to this point, through the transformation X = x - xg Y = y - yp, and then if

approprizte apply the gbove theorem to the system rewritten in terms of X and Y.
ILLUSTRATIVE EXAMPLE. Consider the system

dx
at

dy
-y x-y)

1]

x(l—x—-g-)

which has a critical point when dx . 4y . i.e. when x(1 - x - &) = 0 and
dt dt _— o 2

y(x - y) = 0. Thus the critical points are (0,0), (53%3 and (1,0).
We will examine the behaviour of the system nzar the critical point
(%3%]. To investigate the stability at this point we transfer the origin to

it, wviz, let ¥ = x - Y=y - %—then the system becomes

g:
ax Zyev oy 20X Ly o 2y Yy g2 XL
= - (X + 3)(1 X-3-3 3) g(x 2) (%% + 2)
ay _ 2 2 g
E—(&wg)(x-m -gtx-Y)+(XY~Y).

First note the system is quadratic and so almost linear.

Then the linearized system is

ax _ 2 1
ac - "3itgt
a2, 2

w33 ?

for which the characteristic equation is
12+1!'A+2-0
3 g -
the roots of which are

Tll _

both of which ars resl and negative. So (0,0) is an asymptotically stable nods

. 22y . . - - ; _—
of this system. Whence (§“§J 1s an asymptotically staple node for the original

system. Compare this with the phase~-plane you were zsked to prepare of this
system in Exercise 10.2.

Apart from the purely practical impartance in dstermining the - ahaviour of
non-linear systems, the theory developad here provides a sort of "metz-
mathematical justification for the suitability of differential sgqustions in
the modelling of physical situations. By assuring us that, in ths approoriate
cases, small changes in the initial conditions will produce .enly small (often

decreasing) differences in the solution, the necessary uncertainty in the precis
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initial wvalues {(due to inherent experimental errors etc.) does not prasent
a major difficulty. Without the assurance however, the association of a
differential equation's solution with the physical development of a system
would be risky indeed. OFf equal importance in this vein is the theorem
(see Sénchez) which states that,under mild restrictions,the solution to a
given system of equations varies continucusly with respect to the parameter
values of the system. So again a small amount of indeterminance in the

parameter values {which are often determined experimentally) is not sericus.

Collateral Reading:

Usually the mathematical discussion of systems is carried ocut in the
language of matrix systems (see appendix to lectura 8). This is the case in
the works cited belaow.

Along with many other valuable results a proof of the basic theorem on
almost-linsar systems may be found in D.A. Sanchez "Ordinary diffspentizl
equations and stebility theory", Freeman, San Franscisco, 1968,

A widely applicable {though frequently very difficult actually to apply)
method of determining the stability of non-linsar systems, based on
generalizations of the concept of 'energy', was developed by A.M. Lizpounov.
His method is described in

Boyce and DiPrima "Elementary Differential Equations and Boundzry Valua
Problems", where the results described in this lecture are derived as a special

case of Liapounov's method. A mure extensive treaitment is given in

H. Hochstadt "Differential Equations, a Modern Approach”.

EXERCISES:
1. Examine the other two critical points of the example considered in the
lecture.--From this attempt-to construct a-phase-portrait for the-system,

compare it with your answer to exercise 10.2.

" 2. Consider the non-homogenecus linear system

== = ax + by + £(t)

dY = cn + dy + g(t)
at
Let %1 = ®1(x), v1 = 71(2) and = = x5(%), v3 = yo(t) be two =olutions.

corresponding to distinct initial conditions.
Show that =1 - %2 2nd y) - y2 both tend te zero as t goes tc infinity if

(0,0) is an asymptotically stsble critical point of the linsar system

dx _
E—E‘.“(-f—by’
dv _ .

ar - ot dy
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*Lecture 12 Periodie Solutions

In lecture 8 we saw that linesr systems could heve periodic solutions
(the case when the two roots of the characteristic equation are purely imaginarv
while in the last lecture we noted that this corresponded to (0,0) being a centr
and the trajectories closed curves encireling it. Such a closed curve trajector
in the phase-plane of z system is termed a eyscle. As may be easily seen the
presence of a cycls is eguivalent to the existence of @ periodic solution for
an autonomous system.

In lecture 10 we saw that the non-linear Lotka-Volterra system admitted
cycles centred around the eritical point [%353 and there commentad on the
corresponding pericdic solutions. Our aim is to determine when a system has
-periodic solutions and how the corresponding cycles relate to other trajectories
of the system. Only partial answers are known to these questions, the proofzof
which require such a diversity of techniques that any attempt to give them would
lead us too far afield. In conseguence cnly a few of the more esasily stated
and useful results will be given but not proved. The first of thess concerns
the possible location of cycles.

(1) A cycle must surround at least one critical point of the system. (If it
surrounds just one, and the system is almost linear at that critical peoint, then
it camnot be & saddle-point - much more can be said about the possible
configurations of critical points within a cyele, particularly through the use
of & powerful concept known as the Poincaré index; ses Hochstadt for a discussio:
of same.)

Just as with eritical points, cycles may be classified according to the
behaviour of nearby trajectories. Without entering into elaborats and precise
definitions, <this is best done through a diagram; accordingly the readgr's

attention is drawn to figure 1.

nautrally unstabls semi-stable sTable 1imiz
stable cycls cycle cvele cvels

(smzll changss (stabls #From (orbitzl
remain small within in stabilizty)
but do not the case

dzcay to zero) filustratad)

Figure |
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We now complete this lecture by presenting, with attendant explanations and
examples, three general theorems regarding the possible existence of cycles

(and hence periodic solutions).

(2) (Bendixson) Let %%-= Flx,v)

dy .

ax = Gxay)
be a non-linear system with the partial derivatives %53 EE, 28 a¢

x’ 3y’ 8 3y

defined and continuous in somez simply commected region D {(i.e. D 18 a region
of the plane with no 'holes'), then 1f %§-+ %g-has the same sign throughout D
there is no ecycle Iying seniirely in D.
EXAMPLE:-  The Lotka-Volterra system

dx _

a'_t— = ax - bxy

dy _ -

At cxy - dy

oF aG . - ‘s -

has =T §§-= (2 - d) + ex - by which has a constant sign on each side of the
line

50 any cycle must cross this line. (Note (%3%3 lies on this line as expected.)

More general, though considershly mors difficult to apply is the following:
dx

(3) (Poincare-Bendixson) Let Fra Flx,v)
dy
35 = 6lx,y)

be as in (2) i.e. F and G have defined and continuous partial derivaiéives
throughout a simply comnected region D. Let R be a closed (i.e. includes its
'boundary'J.subregion of D which is not necessarily simply comnecizd (i.e. may
have 'holes') but which contains no critical poinis of the systen, then, if
there exists a trajectory starting in ® which stays within R for =il #, &
contains a cycla.

The difficulty with this theorsm is (a) to lccate z suitsble razsion &
and (b) to prove the existence of a suitable trzjeciory.

The following example is & standard one for illustrating thiz theorem.

N

EXAN i-
XAMPLE ~_-_,-jf—=:r:-i-y—x(:-:2+y2)
at
QY | L L (a2 2
el A y({x® + y*)
Change variables To ®x = » cos §, v = r sin 8 (where v = vx? + v% znd 8 is
suitably chesen) To aobtain
dl"‘_ 2
i r(l - r°)
éi:_'l_
at

If you are unfamiliar with the idea of partial differentiation, =zee

- T B §
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(This system can be integrated and v = 1, i.e. the unit circle %2 + y2 =1,

shown to be & cycle - however we will establish the existence of such a cycle

through the use of (3).)

Now, take fl = {(r,8): % <r <2} it is easily seen that this closed annular

region contains no critical points and is suitable fop an 2pplication of (3).

We will take for granted that the solution gtarting at 8 = 0, r = & exists,

hence we need to show that it remains within ®&. Assume it did not, then for

some value of

r(t)
dr
dt

r{t)

dr

ar

either

. . . d
% and r is decreasing i.e. L ¢ 0 but at r = i,

dt
1

%(1 - %) > 0 a contradiction,

T

P . . dr
2 and r is increasing i.e. — > 0, but at r = 2

dt

2(1 - 4) < 0 again a contradiction and so we conclude

that the trajectory of this solution cannot leave ®. So by (3) # contains a

cycle and the system has periodic solutions.

The rather recent origin of the next, and last result, indicates the

difficulty of research in this area.

(4) (Levinson-Smith, 1942) If Liénards System

is such that:

1]

¥

dx
at
L - gx) -
gr - "e{x) - f ®)y

{a) £ is an even function and g is an odd funetion

(i.e. f(-%) = £(x) and gl{-x) = —g(;) for all »);

(b) &(x=)

(e) F(x)

n

hd
£ g—)-masx—}-::;

xn
['!_"—I-u:asx—}-m;
0

{d) there exists xg > 0 such that F(x) < 0 for 0 < % < g aad

F(x) is positive and monotonically increasing for x = xg,

then it has & (unigue) cyele, which is a stable limit cycls

EXAMPLE:~ The Van der Pol system is

[a?
w

=y

-x - u(x? - L}y where y > C is = constant,

ale 2
13

3
_KH

and for which g(x) = x is odd and G(w) = 5 T = as x -+ e, while £(x) = u(z? - 1)

ig even, F{x) = u(fa-— x] + mas g+ w, for 0 < % < /§I=x0),F ®) < 0,=2nd for

% > V3, F(x) > 0 ,with F'(x) = f(x) > 0.

So the conditions of (4) are satisfied and we conclude the system has a

unique stable limit cycle and hence a unique periodic solution.
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The phase-plane of Van der Pol's system with
i e p =5 is illustrated in figure 2. {(Note Ffor
smaller values of y the system is more nearly
xg L gy . -% and the 1imit cycle more nearly

g Y’ dr
circular. Why might you expect this?)

o awin b mmepe—— ’1

Collateral Reading:

Much of the material presented here is discussed
in Beyce and diPrime "Elementary Differential
Equations and Boundary Vzlue Problems”.

A more complete discussion is o be found in

e . 5 = ‘ _ H. Hochstadt "Differential Equations, a Modern
. A Approach'.
R An excellent review of the known results for
quadratic systems is given in W.A. Coppel "A Survay
R of Quadratic Systems", J.D. Equations 2 (1356)
- pp. 283-30&. ’
.. An interesting application of results similar
T to those considered here to biological problems may
B De found in J. Schnute & P. Van den Drisssche,
e "Two Biological Applications of Dulac's Criterion",
Figure 2 Applies Mathematics NOTES, Vol. 1, No. 2, Sept.,
R - '15, pp. 75-Bi.
EXERCISES:

- 1. ©Show that s sufficient condition for the linesr autonomous system

dx

37 T oax T by
.%%-= cx + dy
not to have z pericdic solution other than x = 0, v = 0 is_thst z + d F 0,
2. Can the system
§%~= Xty o+ w3 - y2

have & periodic solution other than x = v = 07

3. Determine the location and nature of the criticzl points of Van der Pol's

system.

L. Show thz system

=¥

== -x +y - x - 2=ty

has & pericdic sclution.



SERIES III - Single Second Order Ordinary Differential Equations.

Lecture 13 The general equation and solution of the homogenesous case
With constant coefiicients.

We will be concerned with equations of the form
a2 y ,
ST tafrt by = £x).

The general form of such a linear second order non-homogeneous differential
equation has both a and b functions of x, however we will initially restriet
our attention to the case when a and b are constants. The general theory of
such equations requires that two initial conditions say yi{xg) = yg and
v'(xg} = y'p, be specified to determine a solution uniquely. We will assume,
at least implicitly, that this has been done.

To see how such an equation might in practice zrise, let us comsider
the following ecological problem.

A lake system is supplied, viz influent streams etc., with nutrient.

Let £(x) be the rate at which this nutrient is accumulzting within the
lake at any given moment t. Further let the lake support an aaquatic
population of size N(t) at time t. If we now assume this populatiion expends
nutrient at a rate proportional to its size and that the pate of change of
the population is proportionzl to the amount of excess nutrient orasent

{see section 3.1), then we have

dat nutrient initially present, £y accumulated over z period of
duration t

av {amount of excess} _ {amount of nutrient } . {amount of nutrient which has

amount expended by the population
during the peried of length t

- . ) . T
N amount of nutrient which has accumulated _ -
while . - . = F(x)dr
over & pericd of duration *+
amount exgended -y the populaticon x,
and . G A = N(T)dt.
during the periocd of length t )
¢
T t
au . N ; -
s0 — = kfg + % F(t)dt - b M(g)dz
dt
5} 0 Y. . .
whera k and b are thes zotropriats

(both positive). This integro-differentizl sguation

throughout with respect to i, convertsd toc tha second

order equation

which is of the form
introduced above. The solution of such an aquation will be taksn uz in some
dstail in subsequent lacturss. For the present howsver, we will simplify the

problem by postulsting a constant rate of accumulation of nutrien

el
%
14
rt
o
"l-
=]
rt
o
m

i

lake, and see whars this leads u
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Thus the differential equation now becomes

2
§E§-+ BN = p

where r is the appropriate rate constant.

This may be further simplified under the change of variable y = N -~ */b to

dz
a{%'+ by = 0.

We are therefore led to seek solutions of the second order linsar homogeneous

equation
a2y dy _
352 + a e + by = 0.

If for no better reason than it having worked in ths past, we will toy
for solutions of the form

y(t) = aet,

Substituting this into the equation we see that our reauirement is that

(A2 + 2} + D)Ae’f = 0 For all +.

A requirement which is met provided we choose X to be a root of the auxiliary
equation
A2 + ax + b = 0, i.e. provided
-azx 227 - ip

A= 3 .

Of course this leads to three possible cases.

Casz 1. The two roots A; and A; are rezl and unequal.

In this case two distinct solutions have been furnished

y = Aeklt and y = A'ekzt
where the constants A, &' (not necessarily equal) are zg yet artitrzry. Since
the sguation is iinezr znd homogenzous it is readily checked that <he sum of
these two sclutions iz Iz3slf a selution. Tt is in Ffee- TihE mMOosST gsnsral

solution, wviz

lit Azt

+ Ala

¥y = Aes

The values of & and A' can now be chosen to =atisSy +he nitizl conditions.

J-ts

Thus we may requirs that they be solutions of the two simultaneous squations
AT Aot
( 1 O)A'i' (e ELU)Ar

(llekltﬂ)A + (AzeaztU)A' = vy,

m

EXAMPLE. y" + 2y' - 3y = 0 has auxiliary equation A2 + 2% - 3 = G

]
B
[N
0
Q

-
W

3
So = — R
¥ L e

Fyio
o]
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This curve is plotted in figure 1 along with several other distinctive forms

for the solution curve where A1 and A; are real and unegual.

g .

Figure |

Case 8. The roots are comblex conjugates, ¢ + if and o - iB
(¢, B real and B # O)

By reasoning similar to that above we find that the general form of

the solution is
y(t) = ¥ (aatBT 4 araTiBEy

the Euler formula and taking the two cons

ey i A
CLENTE A, &

Making use of
complex conjugates we srrive at the most generzl form of rszl soluTicon
. ot . _
y(t) = e (A cos Bt + B sin Bi)
where A and B are arbitrary constants determined through the inizi
be checksd by dirsct

(That this is indeed 2 solution could profitably

substitution inte the =squation.)
Our ecoicgical problem produced the squation

d2
EE%—+ by = 0

sguation is

for which
0or A =% ivb (recall b > 0)

22 + b=

this case, having the general solution

an gxzmpls of
+

M(E) = §-+ vit) = %—+ Acos Vbt + 8 sin v t

and so is
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r

It is clear from this that N(t) = 5 is a constant solution for the problem,
b

all other solutions censisting of bounded, but undamped, periodic oscillations
about this 'equilibrium’ solution. A selution for which N(0) = %—and

. . -1
N(0) < 0 is illustrated in figure 2(2). Note that if we had |N(0)| = b 2

extinction of the population would occur after a finite time had elapsed.

Figure 2{(b} illustrates other possible forms of solution curves for

Case 2.

A
L
/1
{
) N
Vo .
] " N L x{o
O f 5 Y? \f-t
W
]
i
\
s
o >0
?
By +
(a) {b)
Figure 2 - .

Case 3. The two roots are squal (and hence of necessity a2 real numbar A

. s . A At ; _—
say}. Here our trial solution yislds only y = Az 7, a solution contazining

2

only onz arbitrary constant A ané sc unable in general to accommedzts a pair
of initial conditions. We might therefore be led tc expect the sxistence of
& second solution of a form other than exponential. This
situation, the gensral solution in this case is y(t) = (& + Bt)e"", A and B
arbitrary constants. Possible forms for such a solution ape illustrsted in

figure 3.



u
o + T B : _,‘__.--'—‘; >.t
¥
Figure 3.

EXAMPLE. y" + 2y' +y = 0 has X = -1 as the repeated root of its guxiliapy
equation, and so the general solution y(t) = (A + Et)e—t.
So if y(@) =1, y'(@ =0 we have
y(t) = (1 + t)e".

As we will soon see, an gbility to solve the homoganeous form of a
second order linear equation is of use in solving the more complicated non-

homogeneous case

2
g—t{r+a§?+ by = £(t).

Where, for reasons which should be apparent from the ecclogical exzmple
considered,the function £(t) is often referred to as the input, ths solution

y(t) then being regardsd as the corresponding output.

More general methods for solving the homossnecus case are known, and
(=] = =

Hi il!

r¥

alsc cover the ecase when 2 and b are Ffunctions of +.

-3

I'wo of theass worthy of
mention are 'reduction of order' whereby. a second solution may ks Tound if one
is known (cf. Czse 3, s2bove) and '{be method of series solutions' (including
that of Frobenius). Unfortunately any discussion of these would lead us too
far away from our basic goal, the roles of differentizl equations in biophysical
theory.

Collateral Recding.

Second order linssr equations are treated in most books conteir ning a

section on d
A gocd reference for much of the general theory is
Boyce and diPrima "Elementary Differential Equations and Bound dary Problems™.

aglthough proofs are oftsn omitted.
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J. Maynard-Smith in '"Mathematical Ideas in Biology" gives a good account
of such equations from a mechanics point of view. Applying them to the problem
of 1limb motion and ”deducing"ﬂthat some form of neural motor reaction, and
not just damping internal to the limb itself, is required to explain the rapid

arresting of motion which is seen to be possible.
EXERCI|SES:

i. GSolve the following second order D.E.'s:

(1) g%+5%+5y=o y(O):O,E—i(O)zl
(ii) %{?ﬁf”L 9y = 0 y{0) = 2’2—1(0) =0
{(iii) %;%—— 2 g§-+ 2y = 0 y(0) = o,%ﬁ-(o) =1
{iv) %—;{-+B%+ley=0 y(O)ZQ,%(D)=G

and sketch graphs of their solutiens,

2. In the lake ecology model considered in the lecture show that if,
due to fishing, the lake is depopulated at a rate proporticnal to the
population size, a term of the form ay' (2 > 0) must be included in the
left-hand side of the equation. In the case of a constant rate of
nutrient accumulatioﬁ, what effect does this additional term have on

‘the solution?

2
3. ©Shaw that the equation %E%-+ b g%—+ cy = 0 can be written 25 the system

of first order equations

g{ = Oy + lx (di.e. = =)

it]

- cy - bx

Thus second order eguations can be regardsd as specizl casas of systems

of equations. This explains the obvious similarity in the feorm of their
solutions, and zlso the statement that such equations requirs two initial
conditions if the solution is to be uniquely determined,

{Can every linesr system of two'equations be written as & sscondé-order

linear eguation?)

“%. Referring back to that part of the soil nitrogen system descrided in
problem 5.4, since the population of nitrifiens P is dependenc only on
the presence of NH, - ¥ both for its supply of nutriznt and ensrgy and
so has this as its only growth limiting factor, it is plausibis to take

dz

dg _ . . - . , -
vl b{¥ - cP), instead of 5T = biP &s in problem 5.L.
[
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(continued)

Since this ensures thare is always sufficient N present to accommodate
the needs of P it is also reasonable to replace the equation for
N v _ ~aNP, used in 5,4,by the more simple one a _ -aP, We are thus

> dv dt
led to an alternative model for the system, namely

dN

as -~ ap

dP

—_—_ = - P
e b(N - cP)

Show that these equ=ztions may be combined to give the single second ordepr

equation for N,

aZy dy _
-d_"t_z.+bcE+ahN_O..

By solving this, show that two possible cases can arise:

(i) if be? > u4a then both P and N ean gradually reduce for zm infinite

period of time without either becoming zero;

(ii) if be? < 4a then of necessity both N and P must be exhausted after
a finite time. (Find an expression for this time.)
Experimental results suggest values of 2 = 2.2, b = 0.03 and ¢ = 2.3.
Into which of the above two cases does this place the system? It is
&lso known that P{0)} = 1 {positive tubes) and N(0) = 100 (ppm).
Using these values obtain a solution to the model, and illustrate
the soluticn by plotting graphs of both N and P as functions of time.

2
For what values of A will g;%-+ Ay = 0 have a solution y such that

Ty(e) = y(1) = 07

In the lake scology problem of lectures, assume that the rats of nutrient

accumulation is

under an zpproprizte changs of variables this ls=fs to the scuz<ion

-
Hh
o

1]
|._l
413
o
(2N
"

m

£l

o
[#]
ugl
2
f
.
w
jm
1]
73]
[+1]
]
[a]
'_l
=
i
[a]
= ]
o

+h

f
0

1]

[}

u]

3

= C sin 27t + D cos 27t

Ls]

whare the parameters C znd D may be determined by substitution iato the
differential equation. (That this is @ reasonable guess to t—y follows

since the only functions which differentiate to give trigonomesiric

bt —
functions are trigonometric functions and the squation states that a
multiple of vy plus its second derivative equais a trigonometric function.)
This method of selving non-homogsneous equations, which is tantsmount to

making an intelligent guess, is known as 'the method of undetermined

cocefficients!.
SoErroRenTs
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6. {continued)

5

Show that a more general solution, sble to allow for varying

initial conditions is

— = + h
‘ where h is any solution of the corresponding homogeneous eguation
I d?y

aiz + by = 0.

] 7. If v = y1(x) and v = yo(x) are two solutions of the linear homogsneous
LS, differential equation, y" + alxl}y' + b{xl)y = 0, show that y = Ay;(x) + By,(x)

et ] . is also a soclution wherz A, B are constants.



Lecture 14 The non-homogeneous equation

Two approaches to the solution of the non-homogeneous eguatien

g g + a(x) + blx)y = £(x),

with appropriats initial conditions, will be considered:

(1) The use of Laplace Transforms, particularly when a and b are constants,
iz indicative of thé numerous and vowerful Transform methods avasilabls to the

applied mathematician. This approach forms the materizl of the lec ture;

(2) An analytic approach, known as the method of Variation of Parameters, is

detailed in an appendix %o the lecture. This method provides an 1'*1'I:=‘cr1"al

representation of the solution in terms of the general solution of th

fD

correspending homogeneous equation

a2 d
E§¥ + alx) a§-+ B(x)ly = 0.

14.1 The Laplace Trensform.

Since we are usually interested in the solution of the above second order
equation only for x = 0, we will restrict our attention to such x.

Thus, let f be & function defined Ffor {x: 0 < x < =} and such that Lhe-integral

f e > flx)ax
1]

™

exists, at least for all values of s greater than some Sp, we will simply refer

to any such £, sxtsndsd to be 0 for = < 0, as a suidtable function.

From any suitable Ffunction f we can form a new function F defined by

{s) = f e 5¥ F{x)dx

Strictly spssking, wz have defined a transformetion, the Laplzce trans-

formation £, which sssociztes with any suitable Function 7 its Lzplizes
Transform T, i.e, L{(5) = F. It is important to note that both F aaé T are

functions, £, by convention, a function of the varizble and T z Fenetion of

the independent varizble g,

& sufficisnt, though bv no means necsssary, conditlon for this te =z 3o is +hat
I8

f has at most & finite number of discontimities in zoy finive interval, i.e

be pilece-wisz coniinuous, and be of at most gxponenticl order, * T
A o

- e - - At
gx1sts constants ¥ and A such that [£(t)] € Me"" for 212

impraopar integrsl

flx)ax

————y
]
]
I
)

is convergent for all s > A,
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EXAMPLE: If £(x) = e

J o~5% ekx dx = J e-(s—k)x dx
1]

a

(k 2 constant) we consider

which for s < k is divergent, but for s > k is

_e—(s—k)x =

s - k %=0 s - k

So F(s) = £{e}(s) =

1
e— for s > k.

The graph of f and its Laplace *tramsform F are given below in Figure 1.

=

T4 L'H.: F(s) = 2(#)(s)

P e ettt bt btk et ol

Figurs |

-I - —_ - -
A5 a special caszz of this (k = 0) we have £(1) = gu & TEkls of iRk zplace

transforms of soms cf ths more common  funciions will be given

k.2 Properties of Laplace Transforms.
e J

We now develop thosz proparties of Laplace transforms which a»a
in our later work. Ths first two are direct consequences of linear!

the integral.

(1) For £ Liah

T a suitzbls Jfumetion, and k a consiant
L{x) = kL(F)
= 5%
. ~- ~ -3 ~
Proof. L{xs)(s) = J g kf{=)d=

0
= J e Fx)dx
0

1
Fann
+h
—t
P
in
—

\I
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(£1) For f and g suitable fhnctians
are definaed, L{(f + g) = F = L(F) + £L{g).
—sx

L(f + g)(s) (£(x) + g(x))dx

Proo¥,

[==]

+
L0
J * F(x)dx + J e % g{x)d=
D 0

s E(g)s).”

L(£)(s)

and s such that poth F(s) aid G(s)

The next string of results investigatesthe relationship between the operation

of taking Laplace transforms and that of differentiation and provides the key

for the use of Laplace transforms in solving differentizl squations.

(III) For £ differsniiable,with £' a suitable Functions

L{£')(s) = sL(£)(s) - £(0Q)

Observe that

-5t
[e

a necessary condition

Proof.

provided Limit e 5% £y =

t-r

o]
t=0

if £ i=s to be a suitable function.

Whence

-£(0) = [ ST s )Jdt  (provided £(0) =

B}
oY~ o'

[}SEHST F(t) + eHSt f'(ti}dt

[ e St Fleyar + J o 5t srioyac
0 0

-sL(£)(s) + L{£")(s)

a5

t 7t

43
D =

(IV) For £ twice ZZffsveniiable with " a suitable Funetion
L{z")(s) = s L(£)(s) - sF(0) - £'(0).
Proof L(2m¥(s)y = L{(£"')(s)
= sL{£')(s) - £'(0) by (ZIT
= s(sL(£)(s) - £(0)) - £'(0)

s2L(£)(s) - s£(0) - £'(0).

(I} and (II} tegsther assert that £ is a linear mzpoping
space of sultzbls Functions.
What we nave tacizly used here is the important int tzgrat

L b
[ fltig'(t)et = [?(t)g(ti] - J F{t)g(t)dt.

- =
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0Ff course wWe could continue to cbtain expressions for L{f™ ) atc., however

for our purposas it suffices to stop at the second derivative.

4.3 Application of transform methods td‘y" + ay' + by = £(%), where f is a
suitable function,a, b are constants and y{(0) = yg, v'(0) = yp°.

A Begin by taking Leplace transforms of both sides of the eguation and,
assuming the solution y is a suitable function with ¥ = L(y), use the properties
listed in 14.2 to simplify the L.H.S. as far as possible.

Thus
L{y" + ay' + by) = L(£) = T,

Liy™y + al{y') + BL(y) = F,
by (I) and (II). So, by {III) and (IV)

|
]

s2y - Syg - yé + as¥ - ayg + DY =

il
by

or (52 + as + B)Y - (s + alyg - vo'

We thus see that the differential eguation for vy is transformed into an
algebraic equation for Y, the Laplace transform of y, from which w2 may detsrmins
Y.

_ F(s) + syg + ayg + vg'
¥(s) = sZ + as + b

So, even though the solution y is still unknown, provided F = L(f) and the initiz
values yg and yg' are known, Y, the Laplace transform of y,is rezdily determined.
The problem is now one of inversion, for if from kmowing the Laplzce transform cof
a function we could determine the function, then knowing Y we would be able to

find y and hence the sought-after solution.
DXAMPLE. Let us apply the above techniagues to the eguation
y" + by =T,

already considersd in Lecture 13, where
T
b

Teking Lapl=ce transforms of both sides

v{3) = — and y'(0)} = 0O,

gives

.“
S

L") + Bl(y) = L{r) = nL(3)

S50
sr T, -
s27 - 2+ BY = = (from before) or
b s
r, o
=+ == .
v _ 8 b r (b + s2) Fq i
- sZ2 + b bs s2 + b h s
5o we &re led to ssek for the functlon ¥ with Lzplzcz transform =

In fact, for this case the information nesded to zccomplish

already at hand.

£ s e s - 1 - - gl rl
If £ is such thet L(F) = S then from (1) £(Ef] = 57> but as =lveady
1 by T R o - .
noted £(1) = TS0V = E-l or y = ¢ That this constant function is the solution
is easily verified upon direct substitution, indeed it was arrivad zt by other
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methods in Lecture 13,

14.4 Tnverse Transforms. In order that the method cutlined in 14.3 may be used
profitably to sol;e non-homogeneous second order differential equations, it is
necessary to develop techniques for inverting the Laplace Transform, i.e. of
being able to identify a funetion from a knowledge of 1ts Laplace transform.

One of the first questions which must be settled is whether z function is
uniquely identified by its Laplace transform, i.e. whether L(Ff;) = L(f;) implies
f1 = f»? Were this not the case, determining & y such that £(y) ecuals the
known ¥ would still leave us in doubt as to whether or not this y is the require
salution of our differential equation.

Fortunately for us the answar to this question is the right one, as shown

by the following corollary of Lerch's theorem (which we state without proof).

THEOREM. If y, and y, are continuous funetions (which in our centext they must
be, since, as solutions of a differential eguation they must = oriori be
differentiabie) and L(y1) = L{yp), then y; = ys.

Exact inversion formulas allowing the determination of £ from L(F)} are
avallable, however the sophistication of the mathematics involved place them
beyond the scope of these lectures.

A much used snd sometimes effective, though rather crude, methed of
determining £ from L£{f) is simply to use a table of Laplace transforms in
reverse. Such & table giving L(f) for some of the more common funciions f is
given below. Some of the transforms are rather easily established, others are

quite difficult (you should certainly trvy to prove & few of them.)
TABLE 1.

COMMON - LAPLACE - TRANSFORMS -

Function Transform
#(1) F(s) = L{5(t)}
i 1/s
a75F i/(s + &)
n -
t +1
;1 i/s"
sin <t 1/{s2 + 1)
cos * s/(s% + 1)
in ¢ (v + In 8})/=
where = Zuler's Constant = 0.57721%
Thus if £ is known to heve Laplace transform s/(s2 + 1) we sze from & consultiatic

If T = L(f) we will write £ = £-1(F). For sxampis

L-1{s/(s%2 + 1)} = cos.

B

Many authorities reverse the tahle given above, placing L{F) in the left-hand
column ané¢ f in the right one. It is also common practice to uss p instead of s

(as the argument of z functien's Laplzce transform).
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The power of such a tabie is greatly enhanced if the basic results of 14.2

on the propertiss of the laplace transform are borne in mind.

EXAMPLE: Find L1 {—gui——} .
5¢ - 1

Use partial fractions to write

1 _ 1 - i_( 1 _ 1 N
s2 -1 (s -1)s+ 1) 2 s -1 =+ 1/°
Now from the table
1 _ -at
m-— -E{e ]’(S),
S50
1. 1 t -t
"5'2—-"—1- = E‘ (-C{E }(5) - =E{e }(S)]
= -ﬁ{;:(F;t - e B by I and II oF 1L.2,

e therefore conclude that

t .
- 7).

-1 1 - L
L {EE“:'—:L}(TZ) =3 (e

The basic calculations of tThis example are a specific instance of =z general
theorem, which follows &s an immediate consequence of (I) and (II) of 14.2

together with the unigueness result stated in this section. Tt is

l) -E—l(klfl + szz) = k1£-1(fl) + k2 -E-l(fz).

given F into

o

The use of partial fractions in conjunction with this to expand =z
componants whoss inverses can be found from the table (2s in the =hove example )
is a powerful technique in the use of Laplace transforms.

In general the basic skill nseded for successful use of Laplace transform

methods (a2 ski

I_l
—
'
(6]
[
=l
i
1))
rt
[41]
0
s
[
].l
H
M
Fh

for yoursalf - largsly I suspecT through

P into alternative Forms, from which +the desired inverss is mors readlily
recognised, The givan sghove,
are extremely usa2ful-in this regard.
2) For £ a suiiable Ffuncition '
L{z(xt)Hs) = = F(S)
X Tk
where F = L(£). (The procf follows sasily from the definition of £(F) znd a simo.

1 11 1
How 5 = | = —
54+ b 212 [i)?_ 1
2 e
P , s = . - 1l _rs _ L
The Term in bracksts iz of the form E-:(EJ where F(s) = =2+ 1
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and from Table I we see that F = L(sin).
-1 1 o X
So L {m}(t) = 3 sin 2t.

3) For £ a suitable funmetion

t

L{e™® £#(£)1(s) = L(£)}(s + a)

Proof. L(£)(s + a)

n

J e (130T riyar

]
® st  -at .
= [ e [e f(t))ut
0

{7 £(1)1(s).

n

EXAMPLE:

1

-1 B
‘ {;ffrﬁarzfg}(f)

-2 .
fe 2t sin t.

i

4) Given a suitable function £ and a > 0 define £ by

-1 1 _ -2t p3
. {rz‘i“aii“:—i}<f) e S {sz e

.
v

)

0 for 0 <+t <a
£ (t) =
& f{t - a) for t & &,
y = f(t)
P
T -
~ s
\\‘mﬁ_.//
—_ 5 Y
>

<t

hen £ iz alsc a suitcble funetion and

(=4

e 2% L(F)(s).

L(F =
(-a)(s) .
- Proof. L(F (=) = L e_St £ (t)dt
a a
= J et £t - a)ar
changing wvarisblss to x = t - a gives
£(fa)(s) = E—s(x+a) F(x)d=

1
41} G_‘-é

m
-sa -5% .
J e Flx)dx

0
e 5% L(£)(s) .

0
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EXAMPLE: £71e7% 573y = £,(0)
where

T -

SIS

L£(£)¥(s) = %g-and so £{t) =

Therafore

-1y -3s -3 = Jofor 0=t <3
L~ 1{s s }(t)_{(t-—fﬂ)z/? for t = 3,

Another useful result which we will not prove, although the proof is not

difficult, is the convolution thecrem.

5) If £, g are suitable functions with F = L(f), @ = L(g) ihen

1
L-I(re)(t) = l F(x)glt - x)¥dx

EXAMPLE: Let £ = £71{F) then, since L% {%} =1,

we hava

7]

¥

s

t 't
L"l{'(S}}(t) - I £(x)-1 dx = J fix)dx

L(£)(s) _ F(s)

s 3

T
or eguivalently f{[ f(x)dx}(s) =
D .

To acquire suitable skill in the use of these techniques for the inversion
of Laplace transforms is nmot easy, reguiring a lot of practice and effort.
Therefore, unless you specifically need to use them, it is probably sufficient

that you develop an awareness of them and their potential use.
Collateral Reading.

For sz good account of the Laplace transform and its applicationg the reader
should consult the monograph by

Zarl D. Rzinvilles "The Laplace Transform, an introduction’, Mzcmillan, 1984,

Boyce and Difrima "Elsmentary Differential Equetions znd Beoundzry Value

rl
1
il
5]

i

1
m
14}
1]
H]

Problems" dsvotes = cheniar to the Laplzce Transform, which migh
= - > " &=

he Laplace fransform and its invsrsion ircm 2 theorestic:
view-point the rszader could refer to Chapter XI of

H.F. Weinberger "& First Course 'in Partizl Diffs

H
(T
b=
)
|+
]
!_l
Ll
f{al
=
fu
ek
)
0
=]
in

Quite extenzive tablas of

t
s o
1]
L—I
fi
'o
l_l
u
n
M
rt
]
4
=
in
E)fl
3
g
=t
{u
]
o
in
)
(o]
|t
s
[a
1o

‘1 many of the
Mathematical Handbocks. Tor exampls in

R.5. Buringron "Hand*oeck of Mathematical Tables znd Formulas", YoGraw-Eill,

EXERCISES:

1. Uss the methodé of Laplace transforms to solve

. d2y dy

.+ oy = 2 = 0 = 1
(i) 353 o, y(0) = 0, s (0) =1
(ii) %%'+ 2y = 0, v(0) = 1
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Using the information given in the tabls of common Laplace transforms,
show that:

i

(i) L{sin ntl = Py a3

5

(i1) £L{cos nt} o2 7 a2

css 1 . -at
{iii) Ts t )2 8 the Laplace transform of te .

Find £{e " sin 2t}.

Use Laplace transforms to soclve:

. a2y _ -t _ dy -
@ FE-vc-e v =21, o=
L. d?y _ _dy _
{(ii) FTty= ot v(Q) = E%—(O) =0
ca.y d2 . d
(iii) EE%-+ ¥y = sin 2t y(0) = 0, —%-(0) = 1.

(Hint: Use partial fractions to simplify the expression you get for

CL{y}.)

Graph the solutions to (ii) and (iii), that of (iii) might describe the
aquatic population of a lake into which nutrients are supplied at & rate
varying sinusoidally throughout the year in accord with the seasons (see

Exercise 13.)

See if you can find how the method of Laplace transforms might be applied

to the problem of solving a linear system of equations, such as

E§L = ax) + bxs x(0) = A
[

< N -

oo - ox1 + dxa ‘xg(o) = B

The application of Laplace transforms to such systems, and mors complicsated

non-homogenscus onas i.e

e axy + be T _l(L)

é: .

Eé“g'" = cxp * d}{z + Iz(t)
&

is of importences in systems analysis.
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o,

“APPENDIX to Lecture 1Y Variation of Parameters
Let y(x) ="Ay1(x) + Bys(x) be the general solution of the second-order
linear homogeneous equation
¥y + oalx)y' + blx)y =0

where y) and yp are themselves solutions and A, B are constants.

We seek for a solution of the non-homogeneocus problem
y" + alx)y' + bix)y = £(x)
of the form
y(x) = ulxly;(x) + v(x)ya(x)

where the coefficient functions v and v are to he determined.

To determine thass two functions u, v uniquely, ws rsquire t2=5 to satisfy

two conditions. One such condition comes from tha requirement thet y be a
solution of the non-homogenecus equatien. The other may be selected
arbitrarily. We will therefore choose it in such a way as to facilitate our
calculations.

Now, we have
yx) = [u'(x)y{x) + vi{R)ya(x)] + [u(x)y{(x) + v(x)yé(x)]

We will take as our first (arbitrary) relationship on u and v that the first

term of this expression for y' vanish, i.e. we will require that
u' (yr1 (=) + v' (2yalx) = 0
and so y' has the simpler form
yi(x) = u(x)y{(x) * v(x)yé(x), whence

y'(x) = ulxdyi(x) + v(x)yh(x) + u' (X)yg (=) + v (v (%)

Substituting these inte the non-homogenaous sguaticn

[Al}

ncé rearransinz
ulx) [y + ay] + oy, ] + v(x)lyy + ay) + by, ] +.u'(x)yi(x) + v (x)yi(x) = £(x)

How both the terms in Zrzckets are zero, since ¥1 8nd yy are sclutions of

y" + ay' + by = 0 2ad so as our second condition on u, v we have
u' ()y (=) + v (Ryix) = F(x).

Solving thess two conditions en u, v simultansously we obtain

) o Y GE)
R N S ey R e ey
and vr(:‘:) - ¥ (K)f(X)

yl(x)yé(x) - yi(x)yz(x)

Thus u and v are the solutions of the most trivizl form of first-order
equation {(where the derivatives are equal to known functions of x). From these,

u and v may be determined by integration ané so a soluticn y given by
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® =
- -y, (t}E(t) v (£)F(t)
) = yalx) J v, Iy (0) - yito)y, ey 9F * valx) ¥, Ey3 (6 - yi(dy, ) OF
o
provided the required integrals exist.
EXAMPLE. Solve y" + 2y!' + y = e . The homogeneous equation y* + 2y' + y=0

has solutions

yi{x) = & %, ¥a(x) = xe ©

(as may be shown by the methods of lecture 13},

So a solution of the non-homogeneous equation is

(%) = ¥ x (—te—t)e_t at + xe ¥ . (e—t)e_t at
yixJ = __—;ti%__‘_ -2t

0 0 -
since y (v (8) - yI(e)y, (t) = &7 2F,

So

x x
yix) = ™% J —t dt + xe © [‘ dt
0

0
-

e X [-x2] + xe

[x]

—x
= 3x%e ",

& result easily verified by direct substitution. It is just as essily verified
that

yix) = Bx2e ™ + ae ™™ 4 Bxe

is also a soiution For arbitrary values of A and B, whlcn may thersfora be

salected to satisfy initial conditions.

The method of variztion of parameters not only provides a technigue

I

whereby certain non—homogeneous equations may be solved, it is alss +the basis

he

method gives a solution of such equations in closed form it may ncw -e easy

7]

for much of the kmown gensral theory of such equaticns. OF courss while

o}

rt

(or indeed possible) to exprass tha PESUlLlng integrals in tzrms cr =lsmentary
functions. Navertheless, sven in such = Ease, this form of the solution allows
numerical solutions to be obtained from the use of methods such s Simpson's
to evaluate approximately the integrals which ocecur. Frequently iv is mors
accurate and advantageous to dstermine the salution numen: caLly in this way

s

rather than directly by z method like that outlined in lacture 7.

% b
f Fx)dx 2 iégg—fl-(fo FRE 25, # Ly v L+ U5, 4+ Fo)
£

where £0= f{a +m [b - a]

The size of the errcy decreasss with increasing n, provided f satis<ies certain

. v 1
smoothness conditions. (Tn facr the error is of ordar =)
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Lecture 15, Impulsive Inputs.

We examine the differential equation

2
%%%+ag%+ by = £(t)

where the input function £(t) represents an impulse (such as would result

from a sharp blow in the mechanical case), To a first approximation, such

an impulse, occurring at 'time' tp, could be represented hy

£(t) = kAE(t - tg)

where k is a constant and Asis the function defined by

0 for x < 0
AE(K) = 11/e for 0 S 3 < ¢
0 for x & £.

The approximation being better the smaller the value of £ tzken.

Y
[}

/_..___.....-a =A_ (=
: =4 ()
i
1
1
i
]

!

i
1
t
¢
!

{

(

r
e

L 1 }‘::c.
e €
A number of properties nossessed by the functicn A ars of importance

v
]

1. AE(t) = 0 for t

I3

2. f & () = f— atr = 1

0 g

m |-

3. For g any continuous function, we have from the intsgrzl mezn vzlue theorem

= 1 t0+E
J glt)a_(tx - tgldt = EJ ©e(t)dt
0 To

= JE— g(EXty + £ - tg)

Ia = g(&) for some €, tg < £ < tp + €.

? g = 3(=)

i

-~

L

ol s mre e m LD

o
+
o

-——

[e]
+
[
in
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We idealise these results in the Dirae delta 'funetion', &, which has the

properties:

1. s(t)y =0 t > 0y
2. J §(t)at = i,

0 [=-]
3, TFor any function g,[ glt) 8(t - tgldt = gltg),
0

So § embodiss the properties of AE which would be expected in the limit as
€ + 0, and so represents an idealised impulsive input.

Strictly, no function having the properties assigned to § can exist.
However, the conecept of the Dirac delta funetion is, as we shall see,
extremely useful and provided we regard 6§ and all operations parformed with

it as purely formal no contradictions will arise.

Directly from the definition of & we have

L{8(t - tg)}(s) = f e 5 §(¢ - to)dt = e °C0 |

0
So

d? d
§;§-+ a g%-+ by = 8(t - tp), y(0) = yp, v'(0) = Yo

can be solved using Laplace transform methods by the techniques outlined in
lecture 14,

0 -
EXAMPLE. Solve §%§.+ by = &(t - tg), y(0) = y'(0) = o.

Letting Y = £(y) and taking Laplace transforms of both sldes giwves
2 - o STp
s<Y(s) + b¥(s) = & or

v(s) = e 5'0/(s? + b)}

_1f1 T
o _E[_E —-:E—z_:_z.] = 'E{T/E'? sin vbrl(s)

B

Now

I
1=

by 2 of 1.4 and so by 4 of 14.4

y(t) = £71{e75%0 /(525 ) 101y

for t < 19

1 .

ES"_H Yb(t - tg) for 2 1y

Apart from their immediate practiecal importance impulsive inputs, =nd hence
the Dirac delta function, are of considerable theoretical importancs because

of the following result.

A justification of these Formal procedures is provided by the thesory of

distributions recently developed by L. Schwartz.
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THEOREM (Green's Convolution Theorem}
Let y = @(t) be a solution of

2

d%y dy -
az tagyt by = 8(t), {a, b constants)
. - a?y dy .
Then a solution of ez taget by = £(t) 13

¥y = p{t) = J f{x) 8t - =x)d= .
0

A given set of initial conditions can’thén'be met by taking v = ¥ + h where
h is an approoriately chosen solution of the corresponding homogen=ous
equation y" + ay' + by = 0.

Thus, provided the equation can be solved for an impulsive input at t = o,
the solution resulting from any other input can be expressed in the form of
the integral zbove. At worst this could be evaluated numericzally (ss= comments

on page 80) so yielding a numerical solution to our problem.

A rigorous proof of this result is beyend our scope; the TOllOWan 2rgument

is intended to demonstrate its plausibility.

Proof (of Green's Convolution Theorem}. We begin by mzking two cbservations.

1. If ¥y = w(t) is the solution of y" + ay' + by = z(t) then
y = w(t - x) iz the solution of y" +tay' + by = gt -~ x),

where » is any fixed constant. (Follows since 2, b are constants.)

2, If Vi is & solutien of y" + ay' + by = g5 {(i=1,2,...), theny = Iy
1 'I

is a solution of y" + av! + by = Lg,. (Follows from the linsezpity of
¥ ¥ ad i5 ¥

the equation.)

Now any reasonabls input function £ can be a poroximeted by = 'step function'

each step of which has width = (n some natural num: ar), <t

improving the lzrzer ths valus of n selected. TIFf this

=

in figupe

'Jaru

y =#(a+é)ﬁé(x'3-é)




—ay -

we have,
@ -l
) = s () < Kyp (e - m o K1
£(t) = Sn(u) = mEO kEO Ff(m + n)Al_(‘. m n) =
n
. : "k, 1 lform+£-‘§t<m+§-<£
since A}(t LI n
0 otherwise

=P

Let En(t) be a solution of

¥y" + ay' + by = Al(t),
n

then from observations 1. and 2. it follows that a sclution of
y' + ay' + by = sn(t) is

= n-1 % k
}"n(t) = mEO kEO f(m + ;)gn(L - m - E).

L
n

a
Now since s, £ and Al(t) + 8(t), as n =+ =, it is reascnable to sxpect

1

that ﬂn(t) + #(t) and yn(t) + y(t}, where y is a solution of

y' + ay' + by = £,

while the imner sum over k will convert +o an integral between m and m + 1,

S0
o A+l
y(t) =& J FxI8(t - x)dx
m=0
m
=
= l T(x)P(t - x)dx as reguirad
iy .
EXAMPLE. Salva ot by = (e.f. lectures 13 =zné 1)
)

From the sarlier example of this lacture we have

is a solution of y" + by =

3
S0 2 solution of the current problam is

11'("\:)

i
Qo —,
[
=
=
~
rt
t
"
L
A
"

o t
r J At~ wddx + » f glt - =)dx.
Q

t

In the First of thess two integrals x > t sot - x < 0 and @(t - x) = 0,

T
whils in the second 2(t - %) = j% sin vB(t - x).
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T .
o0 + 7 J sin VS'(t ~ x)dx
a -

Whence y(t)

x=t

= {%—cos vYb(t - x)]
x=0

cous Vbt

r_
b

=)

Collateral Reading:
A fuller zccount of impulsive inputs from a physical point of view,
together with further discussion and application of Green's Convolution

Theorem may be found in

F.H. Raven "Mathematics of Engineering Systems"
OR
Papoulis "The Fourier Transform and its Applications", McGraw-£ill,

1562.

EXERCISES:
1. Solve y" + y = 8(t - 1) if y(0) = y'(0) = 0.
2. Using Green's Convoiution Theorem find a solution of

y"* + v = sin Zt,

Hence find the solution satisfying ¥(0) = 0, y'(0) = 1.

3. .Bhow that it is reasonable to expsct that, for gny-Tunction £

-2

£{x) = J F(£)6({x - t)dt.
0
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"Lecture 16. Oscillatofy Solutions ~ Sturm's Theory

This lecture should be read in conjunction with lecture 12 in which the
question, "when does a given system have pericdie solutions?" was discussed.
It has been noted that the Lotka-Volterra system has periodic solutions as
did the lake ecology model introduced in lecture 13. However it was also
noted in lecture 13 that if the effect of 'fishing' was allowed for, an

equation of the form
y" 4+ ay' + by = p

might result (exercise 13.2).

The solution of this equation is of the form
y(t) = T+ 8™ sin(pr + ¢,

at least for small values of a > 0, and so is not pericdic even though it
continues to oscillate back and forward across the line y = %-(sae Figure
13.2 (b)).

Similarly if (0,0) is a spiral point of any system for x and ¥ we see
from the phase-portrait (Table 12.1) the values of x and y continuously
oscillate back and forth through x = 0. However neither x or y are periedic
since their amplitude is either decreasing (asymptotically stabla spiral point)
or increasing. (unstazble spiral point).

In many contexts the existence of such oscillatory solutions is just as
important as, and far mors c&mmon then that of periodic sclutions. Accordingly
we examine conditions for the existence of oscillatory solutions to eguations

of the form
y'r+ax)y' + bix)y = 0.

Before proceeding further it is necessary to state more precisely what we
shall mean by such &n sguation having an oscillatory solution.

The property of a Ffunction y = £(x) oscillating about the linz y = 0 is
characterised by its repsated crossing of the line y = 0. We thersfore offer

the following definitien.

DEFINITION. The functien 7 is oscillatory (about y = 0) if there sxists a

sequence of point

4]

1 S ®g € ¥3 < ... <x; < ..., with xy + = as n ~ @ such
L

ra

3

that f(xi) =0 i=

Since, whether or not y" + ay' + by = 0 has oscillatory solutions dapends
entirely on where tha zeros of each solution are located, we ecould replace this
equation by any more convenient one, provided its solution vanished =t n = g if
and only if the sclution of ¥"' + ay’ + by = 0 &lso hzd a2 zero &7 Hg.

Thus let y(x) = u(x)v(x)} where u is a function such that u(z) 7 0 for 211 =.
Then a is & zerc of v if and only if it is a zero of y, further v szatisfies
the differential eguation abtained by substituting uv in place of v in

¥' + ay' + by = @, viz

A (géi-+ a)v' + [E:-+ a Ei—+ b]v = G
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division by u being justified since u(x) # 0, for any x, by assumption.

It is particularly suitable to choose

x
_1
ulx) = e % g a(t)dt
' 1
for then u(x) # 0, any x, as required and EE__+ d = 0 so v satisfies the

simpler eguation
1 1
v' + (b~ E-az -Fav=o,

an equation of the form v" 4+ I(x)v = 0, known as the wnormal form of

y" + ay'+ by = 0.

EXAMPLE. The normal Form of ¥+ 2y -y =0 is v - 2y =,
From the remarks made above concerning the existence of oscillatory solutions,
it is sufficient to consider only the normal form of an equation. Henceforth,

therefore, we will restrict our attention to equations of the form
vt + T(x)v = 0.

THEOREM. (Comvexity) If I(x) <0 for a < x < B, then any non-trivial
solution of v" + I(x)v has at most ong zero bstuween o and 8.

Proof. Let v be a non-trivial solution and assume v has two consecutive
Zeros at x; and xp where @ < %; < xp < B. Then either v(x) > 0 for

Xp <% < xp or v{x) <0 for x; < x < Xp. (This follows since v is continuous
and v'(x;) # 0, otherwise the unique solution satisfying v(x1) = v'(x;) = 0
would be v g.)

Il

In case v(x) > 0 for %] < x < x, we have v''(x) = ~I(x)v(x} > 0 for every x
between x; and x; but, since v(x3) = v(x3) = 0 there must exist a point xg
between x; and x; at which.v attains a maximum so v'(xg) =0 ancd
-3)\ ) v (xg) =0 a contradicticn. We
' therefore conclude thzt in this case
5=‘4k9 there does not exist consscutive zeros

of v between © and B znd so- v has at

most one zero in the intervzl. A

} =bhae s + iez irm —4o
o = //xl £ =)o 7 similar argument applies in the case
- of v(x) < 0 for %3 < x < x,.

EXAMPLE. The aguation v" - x3v = @ satisfies the conditions of tha Theorem for
x| ¥ 3 .

all-x with £ ¢ ®x < = (wheres e is any strictly positive number). So, there is

T

fu

MOSt one Zero grester than e and we may conclude that this zguation zdmits no

oscillatory solutions.

THEOREM (Sturm's Thsorem). Let u and v be non-trivial soluiions of
Vi T(x)v = 0 end 'u" + J(x)u = 0 respectively wherz I(x) > d(x) For all = with
o < x < B, Ther V nas gt legst one zero between any two consecutive zeros of U
provided they are Zoih between o and B.
Proof. Let x; < ®p be consecutive zeraos of u, both lying betweesn o =znd B, and
assume v(x) # 0 for x; < » < x,.

Then both u and v have a constant sign throughout the interval Zrom X1 to w:

Without loss of generality we take both to he strictly positive i.e,
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u(x) > 0 and v(x) > 0 for all x with x; < % < X2

(possible, since -u and -v are also solutions satisfying the required
conditions). '
Now construct
wix) = v{x)u'(x) - ulx)v'(x), then
w(x)) 2 0 (since u(x;) = 0 and ulx) > 0 For ] € X < X3 and
so u'(x)) > 0) similarly
wixg) <0
So (by the Mean Value Theorem) there is z point xp between X1 and xo
for which w! (xg) <

But, wh(x) = v(x)u"(x) - ulx)v'(x)

fI{x) - J(x))vixdulx) > 0 by the assumptions on I, J, v

and u for x; < x < %y, & contradiction, so v must have a zero between x; and 5.
While this theorem (which remains true under the weaker assumption

I(x) 2J(x), IF J fora < x< B) is of importance in itself, of greater

importance to us is the following.

COROLLARY. If I 1§ such that I(x) >m > 0 for all x > « =0, then any

non-trivial solution of v" + I(x)v = 0 4ig oscillatory.

Proof. The eguation u" + mu = 0 has a non-trivial solution u(x) = sin Vo x
R 2 .
which has zeros at x = 0, "//m, "/, 3“/%5, ..., and so, since Sturm's
Theorem applies, there exists zeros %1, X2, %3, .... of any aon-trivizl
solution of v" + I{x)v = 0 with
' k+2
0<a <M <y < T T o

for some positive integer k.
EXAMPLE. The normal form of Hessel's equation, which arises in biophysical

3

medels of cell chemistry, is

- uy?
v [l + };;IEE“JV =0

vhere v is 'z consteant.

For this eguation we have

1 - b2 - . 1
TI{x) = (l + ——;i———J > 1 for all x if jv| <

and > %-for x> /E!:EZ—;- any other v,

So for any v any non-trivial solution of Bessel's sguation is oscillztory.

Sl

When an equation satisfies the conditions of the above corollary, and

s0 is known to have cscillatory solutions, more can be said zhout thaip
spacing. Ve closz by establishing one pesult in this dipection.

THEOREM (Spacing of Zeros)

Let T be such that ¢ <m < I{x) < H for w < x < B, where m, ¥ ars constants,

then if ) and %5 are two consecutive zeros of ¥ + I(w)v = 0, with

¢ < R} <%y < B, we have

T/ < Ky — %y < ")
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Proof. Consider the comparison equation u'" + Mu = 0 which has z non-~
trivial solution u(x) = sin /M(x - x;) with a zero at x; and the next zerc
at =y + T/VH. Now by Sturm's Theorem there is a zero of u between x; and x,

T
so we must have x; > x; +  /vH or

Tr/m< XZ - X3.
The upper bound is estzblished in the same manner.

EXAMPLE. For eamch xg > 0 it is easily seen that we can select numbers

m{xg) and M{xg) with

1 - Yu?
m{xgp) < |1 + — < M{xgy) for all x > xg

in such g way that m(xp) and M(xp) both tend to 1 as %g + =, Thus for large
values of x, the spacing between consecutive zeros of any non-trivizl solution

to Bessel's squation is very nearly 7.

Collateral Reading:
Einar Hille's "Lectures on Ordinary Differential Equations' {Addison-

Wesley, 1969} gives a full account of Sturm's Osciliaztion Theory.

EXERCISES:

1. A population grows according to the assumptions made in the lzke escology
model intreduced in lecture 1.3 with the rate of nutrient accumulation
varying sinusoidally according to a + b cos x where 0 < h < z.

If the per capita rate of expenditure of nutrient varies sympathetically
with the rate of nutrient input, i.e. is proportional to it (a reascnable
assumption since immediately after input the nutrient is in z readily
avallable suspended state), show that upon an aporupriate changs of

variable the resulting eguation becomes Mathisu's =quation,
vt + k{2 + b cos x)v = 0 (where k > 0).

Prove that Mathieu's eguation has oscillatory solutions, and z:ztimats
hounds for the spacing betwsen consecutive gzaros,

2. Show that if v is a non-trivial solution of v" + I(w)v'= 0 wizth T(x) > O
for o < x < B whare v'{e) = v'{B} = 0, then v has z zero hetwesn & znd B.

. . . 1 v2 . .
3. Prove the normal form of y" + = y' + (l - QEJY = 0 is that of Zessel's

“

equation as given in the lacture.

4. (The condition m > 0 cganot be dropped from the corollzry ta Sturm's

20 =

. e o . i- - .
Thearem.) Show that Eular's eguation y" + v =0 has soluticns of the
- .

i}

r . )
form v = Ax" 1 + By 2 whera ry; and ry are appropriately chosen ezl numbers

1l _
and So ha&s &t most one zero greater than 0, even though I(x) = i 2>0

for ali x > 0,
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SERIES IV - Partial Differential Equations
Lecture 17. Funmetions of more than one Variable, Partial Differentiation

We begin with a short 'review' of the concept of a function of two
real variables. The extension of most of this work ta functions of more than
two variables is mechanical and should be ebvious. For conveniencs wa will

denote the set of all ordered pairs of real numbers by &2,

DEFINITION. If f is a 'rule' which associates with each ordered pair of real
numbers belonging to D E_ﬂ2 & unique real number (which usually variss from
ordered pair to ordered pair), then we say £ is a real valued finetion of two
variables. The set D is called the domatn of definition, domain For shert,
of £. Frequently we denote by f(x,y) the unique number which £ associates
with (x,y) « D. -

Functions of two variables have impilicitly entered our work in many of
the previous lectures, For example in discussing the spread of = disease
through a community of size x we reasoned that the pate of sprezsd of the
disease might be r = ky(x-y) where y was the number of infected individuals and
k > 0 was a constant. .Here x and y could assume values subject to the constrain:
0 <y<x. Sor = f{x,y) where f is the function of two variables dsfined on

the domain D = {{x,y): x > 0 and y < x} by

Flx,y) = ky(z - y)

Thus £(5,2) Bk for example.

In general the right-hand sides of many of the first order eguations, and
most of the systems so far considered were functions of two varisgbliss.

It sometimes helps in visualising such functions if we pealise that
{(x,y,2): =z = £(x,y)}

is a surface in three dimensional cartasian space which interssects znv line

perpendicular to the x-v plane in at most one point; sse Figure 1
Z
i
h
—0 > Y
N P
T 7
RS .
/ \:\\ e
\ \_ 3=:C /,
o h h l\\ //
= \ N -,
Y /. X e
} . rd
x N
Fiaure |
The surfzce {(x,y,z): z = yix=y), 0 <y = %)
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For any function f of two variables,defined on domain I, it should be
clear that for any fixed value of vy, yg say
z = #(x)} = £(x,yp)
defines a function of one variable on
{x: ({x,vg) e D}.

For example if D = {(x,y): 0 <y Sx}, yg = 2 and #(x,y) = y(x-y) we would

have
z = P(x) = 2x - 4 for x & 2,
Now if @ is differentiable at % = ®g, i.e.

$'(xg) = Limit Blxgth) - #xg)
10 h

exists,

then @'(xp) measures the instantaneous rate of change of f with respect to x
at xg when y is held constant at vg.

We will call this the partial derivative of f with rgspect to x at

{xg,yg) and denote it by either %i—(xg,yg) or fx(xg,yg).

_ 3f = oraoie E{xpth,yg) - F(xp,vg)
Thus fx(XO,Yﬂ) = o (2p.yg) = Lﬁfét T

provided the limit exists.

For £ as in the above examples we would have

af
ax

I

(%g,2) = @'(xg) = 2 for all xg =

Now let D be the set of ordered pairs (xp,yp) € D at which the partial
devivative of f with vespect to x exists. Then we can construct a new Funetion
of two variables by associating with each (xg,y¥g) & D, the value of

of . - . . . . o = .
= (xp,yg). We call this new function the par#ial derivative of = with respect

ox a5
to ® and denots it simply by 5&3 f_ or better f; (the subscript 1 dsnoting dif-
“eventlation with respsct to the First variable which of course nas=f not be an ]

EXAMPLE: If for 2ll (x,y) g 02, f(x,y) = Yexy we have for any fims=d value

of y
Bx) = ye

and so F1(x) = yzexy

(y being regardad as a2 constant for the purpose of the differentiztion)

or %g_ - yzEKY for all (x,v) e 2

If DX = D, &s in the exampls, we say f is partislly differentiablz with raspect
to ®x on D. This will be the case for most functions encountered in the ensuing
lectures and in such cases we will usually suppress 21l mention of domains,
allowing the context to identify D implicitly

Of courss the whole of the previous discussion could be repezted with the
roles of x and y intsrchanged in which case we would arrive at ths partial

derivative of £ with respect to y defined as
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_ Af = g EOGYER) - Flx,y)
f&(x,y) T, (x,¥) = Léﬁét %

provided this limit exists,

ey is determined in precisely the same way as 2 X being regarded as =

3
dy ax
constant for the purpose of differentiation with respect to y.
£
EXAMPLE. Let fheas above, i.e. flx,y) = yexy, then %;-= e 4 xyexy
(using the product ruls to differentiate @(y) = yexy, x being regarded as g

constant }.
Having obtained from f the new functions %f-a d 3; we could now continue
the process to obtain second and higher order partial derivatives by

3%F _ . — 3 3f  alf = 9 (3F
axZ T Tzx Bx E§§J’ 8y~ fyy 3y (ByJ
2 2 £
-—--—3 — = F = a_ _a_f..) ) —__B £ = B— (’?--—-) ete.
duady ¥ o ¥x ‘3y dydx 3y ‘ox

The last two partial derivatives cited are termed "mixed" second-order

partial derivatives.

EXAMPFLE. For f(x,y) = yexy we have

a%f

axr = g (v2e™Yy = 33

82F _ 3 . wy Yy - moXY 2 %Y
373y - 3n (™7 + xye™) Zye™ + wyfe™ |

What are the others?

An.extensive-caleulus of partlal differentiation has been daveloped, from
which only the following results will be necessary for our purposs.
The first of these concerns the order in which mixed derivativas are

caleulated. While z proof of the result is not difficult it reguiras

machinery ocutside our immediate apea of interest and so will notr == given.
als . 82r

THEOREM. I7 both exist and are continmuous, then thzy oz equal.

e O
gxay Bjax
Hence under suitable conditions the order in which we psrform 2 mixad

differentiation is immaterizl, as the following exampls illyustrztas.

2z -
EXAMPLE. I f(x,vy) = ye'~ we urev1ously found & = 2y &7 & xy? &

dxRay -
n2.=o r\
8°T _ g rafy _ 8, = XY
MNow Syaw T 3y (ax) %y (y22™)
= xy2e™ 1oy
_ 9%
T odxady

Lest we become +oo casual in our use of this theorem, an sxsmple such as

2y - xy3

Ty for (x,y) # (0,0)

glx,y) =

0 for (x,y) = (0,0)
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for which £, (D 0) = -1 while & (O 0) = 1, should be borne in mind. It
frequently hapnens that both » and y are functions of a single variahle,

t say. i.e. x = x(t) and y = y(t). (This would have been the case when x
was population size and y the number of diseased individuals prﬂsent

t representing time.) Im such a case, if £ is & func ion of two variables,

then we can define a new function of one variable, £ by

f"(t) = F(x(t),y(t))

(Many bocks fail ta distinguish between the two functions £ and £ writing f

for both of them, this can however lead to confusion.)
For examnle if x{t) = e and y(t) = 1 - & while F(x,y) = y{x-y) we
should have F (t) = F(=x(t), v(t)) = at T T U 2. In such a situation

the following result is often useful.

THEOREM (The Chain Rule). If F has continuous first-order partial derivatives
in the domain D, and %, y are differentiable functions with (x(t), v(x)) e D
for all t, then, if £ (t) flx(t), y(£)),

df _ 3f dx . 3f dy
dt 3K ot gy dt

EXAMPLE. With £(x,y) = y(x - y), x(z) = et and y(t) = 1 - 7% we have

ale

L= N + alt) - 2506))(e"T)
= et - 1+1-2e g ¥ L T gt -2

A result easily checked from the expression for# Ct) determined zbaova,

The proof of this result, although more tedious, follows pracisaly the
seme lines as the proof of the chain rule for a function of one varigble and
g0 will not he given here.

Since partial differentiation amounts to ordinary differentiation with

one variable being regarded as 2 constant, the above theorem has the Tollowing

immediate corollary.

COROLLARY: Lot £ = £(x,7), % = u(u,v) and y

function of two varichi =g, £ by

vlu,v), then we eon define the

£ lu,v) = Flxlu,v), ylu,v))

jor which
£ 3% A e dy
su ex su 3y 3u
35" _ Bf 3x _ 3f 3y
ad v 3x av ¢ 3y av

provided the derivatives on the right-hand side exist and are coniirucus.
A particularly useful versicn af this corollary results when £ ig only z
function of the single variable x. In which case ws havs:

COROLLARY. IFf £ = £(%) and » = x(u,v), then we can defin f*(u,v) = F{xlu,v))

for which
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L

3

3£ _ df x
Ju dx 3u
3F _ af ax
and " ax 5F

provided ¥ is a differentiable function and x has contimuous

first order

partial derivatives. (Note: Since £ is a functiom of only one varizhle
. . . . af
there is no distinction between Ei-and %5 )

EXAMPLE: Let f be a differentiable function. We seek to find an expression

ata

for %;—(f(x =2 F

and *1=Ff'(t) = £'(x - y).

S0, for example

g;—(sin(x - ¥)) = cos(x -~ y)
similanly %;-(sin(x ~¥)) = —cos(x - y).

Collateral Reading:

There

Now if + = £(x,y) = x - y we have f"(x,y) = F(f) = £f(x - y)

is & great number of good books on 'advanced! calculus, almost an
gr g2 Yy

of which would provide an adequate reference for the material of this lecture.

Yor example:

Kaplan and Lewis "Calculus and Linear Algebra, Wiley.
Osserman "Two-Dimensional Calculus!.

Lang "Analysis I,

EXERCISES.
1. Find all the first znd second-order partial derivatives of tha Following
functions: .
(i} o{=,y) = Vv (i1)  £(x,y) = cos(ax + =v)
(iii) c=_>a:‘:’ﬁ‘7'\r {iv) & gsin(x + by)
(v) B(x,t) = e_(x+t)2 {(vi) g(x,t) = e_xzft
2. 1If f(uav) =u? + 2uv + v2 apnd u = ulx,y) = X =y, v = ovlx,y) = x+ vy,

form fx(x,y) = Flulx,y), v{x,y)) and find f;.

3. (&) Let qlx,v) = flx - v) where ¥ is any differentiable function, show that
g . 3g _
ax ay
) — . - . - - v ows.. OC dq
(b) Let ¢ ¥ a(x,y) be any function of twe varizblag such that — + P o,
Set = =%(u + v), vy =%(u - v), [i.e.u=x Y, v =R~ y]

and form q“(u,v) = q(x(u,v), y(u,v)). Show

n
o’
- =0

au
is & function of v alone and so alx,y) = a (vGe,y))
- . . e s 3
Hence the only functions satisfying 'g% + _BSGF = 0 are

in part (a).

and concluds g

qﬂ(x - vi.

f +he Form given
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Lecture 18 Partial Differential Equations - The diffusion equation

For the diffusion of a substance (or the conduction of heat) through
a body, experiments show that the rate of transfer across a surfzce (be it
& real surface, such as a porous membrane, or simply an imaginary surface

drawn through the body) is proportional to both the zrea of the suwface and

oo

L

the conceniration” gradient across it.

We now examine in detail the diffusion of a substance aleng a tube such

as that illustrated in figure 1.

S=x

. ——— A ———\
Ve /’ /
. // 7 /
i ! {
{ { 1
-—-—> vomm v T2 \
\ \ \
ALY
S AN N

1 'l i
¥ I g

o 2 321-6:‘

> O

uniform cross-sectionzl arsa A

Figure |

The -concentration; c, of the diffusing substance, at a point distancs ¥ zlong

the tube, at time t is = function of both these parameters i c =E e(x,t).

The rate at which substance is trensferved into the element o +ube
between x and = + dx zcross the left-hand face at time < is, from the above

remarks, proportionzl to both A znd the concentration gradient =t

]sd -
X, 5;—(x,t), and go zguals
ac )
- DA 5;‘(X,t),

higher concantration to thoss of lower concentration,

Similarly the rats atv which substance is lsaving the element Through

This conclusion iz a&lso confirmed by statisticzl mechanicsl srzoments

based on molzcular models of the phenomenon.



The difference between these two rates
ac e
DA (5;{- (}{ + 8x, t) - A (X,t))

is the rate at which substance is accumulating within the element and so
equals %%-where M is the amount of substance in the element at time t. Now,
provided 6x is small enough se that we may take the concentration throughout

the element to be approximately equal to c(x,t), ve have

M = c{x,t) % volume of element = c(x,t)Asx

and so
M ac
B_'t‘ = Afx E (X,‘t).
Therefore
ac : dc - gc N
DA[E (x+8u,t) - T (X,t)) = Abx Ty (x.t)
EE—(x+6x,t) - EE—(x,t)
or p{ 2% 9% = EE—( t)
5% 3t e

The approximation improving the smaller &x.
Taking the limit dx -+ 0, the quantity in brackets on the left will

. 3 3 ‘ P - .
be recognised as Fvy (é} (%,t), from the definition of %{- » and so we have

3
D azc = a_c."_
axZ at ’

An eguation of this form, expressing as it does a relationship between an
lunknown! function,- ¢, &nd some- of its partial derivatives, is a partigl
differential equation, in this case the diffusion (or hzat) equation.

Diffusion type processes occur in diverse areas of biology. As the heat
gguation it is of importance in physiclogy when ths thermodynzmics of organisms

is under considerstion.

process and s0 the diffusion eguation has application in cartain ecological
models. It has zlso besn used by W. Feller and othsrs in modelling population
genetics and evolution,

Later on in these lectures we will outiine a ganeral technigues for the

solution of egquations such as the diffusion squation.

we will contant outsslves by examining some proper

i
14
{13
in

be deduced directly from the partial differentiz}l equation itself and by

I
=)
n
jml
Iz}
o
-4

v
e
ju}

"
hll
Hy
4
1!
7]

pacial solutions.

For larger orgenisms, diffusion is too slow and inefficient to provide zn
adequate transport mechanism, hence the nead for circulatory systems. Indeed it
is the absence of such circulatory systems and the consequent resliznces on

diffusien which limits the size of organisms such zs the Flat worm.
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I. Steady State Solutions

For any partial differential equation imvolving time, a solution which
does not change with time is termed & steady state solution.

. - 38— 3%g
such solution, then by assumption e 0 and =o p Yoo

If ¢ is any

etc. are also all

identically zero.

Thus in the case of the diffusion equation ¢ is a steady state solution

I [ d d
if 2= 0 and so c is a function of x only in which case —= = —E-and similarl
y ¥

32a at d2c x dx
3n2 © GxZ Tthus the diffusion equation ‘'degeneratss' into the ordinary
differential equation

d%e -

dxZ

Any seclution of this is a steady state solution of the diffusion equation and
conversely any steady state solution of the diffusion equatlon must satisfy it.
s - d . .
Now the generzl solution of a§§-= 0 is easily seen to be c(x) =
50 we conclude that the concentration varies linearly along

gx + b
(a, b constants).

the tube when the system is in a steady state.

Consider the situation of a porous tube of length 2, the two 2nds of which

are connected fo reservoirs held at constant concentrations of cj and ca
respectively (see figure 2 (a)}. When such a system is in @ steady state, the

concentration, c(x)}, at a distance x, along the tube, from the end at
concentration ¢g will be cx)} =

Further c{0) =

ax + b.

cp while c(2) = ¢y and so we have

[ - C
elx) = = L%+ g
E - I ] C
N S0 [~ S~ ] = A
& ™ BOEE il > , .
e 8 @ @
*u -3 A
C FIY MDD DuEemyYy B3 3 B B 0 Co
L0 |
n 3 > = s
Dead oo
—_—> c +
c £ > X
(a) (b) Graph of c versus x when in
Sieady Stet
Figure 2
II. Approach io the Stzady State

The steady stats solutions of a partial

important as

same role a5 cri

every equilibrium state

sclutions of the dif

asymptotically stabls

potsntial eg

gl p

uilibrium states of

nts da for autonomous systems of eguations
is a steady state).
frusien equatlon found in I.

quilibrium states toward which a s

u
0
*_l
m
B
=
o

That the

linesar

do indeed represent
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as t + = 1s made plausible by the following considerations. For definitensss
consider the situation deseribed in I. where the two ends of the tube are .
maintained at constant concentrations, cg and cy and let s cs(x) = [Eligﬂ—x +
be the steady state solution. )
If ¢ = e(x,t} is any other solutions, for any value of time tg, let

X] < Xp be two consecutive points at which ¢ cuts the steady stats solutionm,,
é:_;-C(h RIE g (x ) (for i = 1,2), then either c(x,ty)> e, (%) or
clx,tg) < e (x) for all x between x; and %,. If elx,ty) < c_{x) then the curve
c = o(x to) is gonvex downward (see figure 2) therefore g;§-> 0, in which case

(x »tg) = D g;E-(x,tD) > 0 and,at t = t3, c(x,t) is increasing with time and
sg approaching the steady state solution. Similariy iFf cfx stgl > e, {x) we have

2x§ < 0 and at t = tu c{x,t) is d2cr5351ng with time toward the steady state

solution.

y = elx,tq)

steady state solution

W eemm e Y

v
8

Figura 3

1IT. Some simplz solutions of the diffusion equation.

Perhaps the simplest dynamic solution of the diffusion zouation

32¢c _dc . _ .. . ax+DaZt .
I%2 T 3¢ iS5 Of the form c(x,t) = cge wherse cg and a ars :r:ltr¢“j
L . .

constents. That this is indeed a solution is readily confirmed v Girsct

substitution, hence if

ax+Dai
celx,t) = cpe ¥ we have

3 ax+Dat .
= = Dazcue while
(-
53¢ _ 3 ax+Dalt 2 _ax+Da?t
. = :T'ECDE = a CUE
=2 ax

~ oc 3t .

and sa E =D 3_’-:2- 25 r-equ:.red.

Another solution (which, from Eulers formula, apises as 2 special czs

m

a = iB, B real, of the shove solution) is

~paz
e{x,t) = ¢pe D8t cos fx
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2
. : ~x< /4Dt
Yet another solution is c(x,t) = cyvt e / .
Graphs of c versus x at various values of t for these solutions ave given

in figure 4,

YA
— y = gex+t
! N i
. — — = y=c¢€ " cos Ty
+t=o 5
N\
g 2
\ -x=/4t
1+ \ — ey = R
.\-
N,
. ~
\\\ \
. N.t=3
N, ~
NE=2 \\\\
~., ~
., ~. ~.
\ '\.\ \_\ \_\
~ - N \ " '.zi "‘\,_“.. ’\.\
N . —— .
] ) <A S e L
; ¥ = ¥ -4 =3 =3 OC
© [ = 3 " 5 & 7

Collateral Reading.
A discussion of partial differential equations zt about thiz level, may

be found in

Batschelet "Introduction to Mathematics for Life Scientists”
and

J. Maynard-Smith "Mathematical Ideals in Biology".

Steady state solutions are discusszed in some detail in the sacond of
these two books.

For z more mathem

Boyce and Difrims

Problems".

EXERCISES.

L. If a nerrow straighi tubs of length 10 cms connecis two reservoirs
maintained at fixed concentrations of 100 gms suger/L and & gas sugzr/i
at

respectivaliy, wh

the tube?
i
- . . -DR%t 2z~ juns
2. Show that clx,t) = cge sin 8% and ci{x,t) = ¢ "= / gre solutions
a? o
o L - — . L. ag~C oC
of the diffusion squation D -l
- ax gt
3 For diffusicn radially outwards from the axis of a cylinder the éiffusion
. D EL ] . . . s
eguation is — — (o —EJ = 6 Wwhere ¢ is the concentration 2t tipe t a2
- r ar gr at
distance r radizlly out from the axis. However, for diffusion radially

£
t
kY
m
E}J
::P
0
=
rt
jay
[
0
0]
o
pat
3
1]

of & sphere the diffusion squation becomss
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{continued)
1 23 .2 3%y _3%
D 07 50 =5

(can you think why the squation would be different in these cases?).
Find the steady state solution in these cases. These could be used
to find the distribution of concentration inside a cylindrical or a

spherical cell at eguilibpium.

If a constant amount of heat is absorbed at the skin's surface per unit
time, then the temperature T at a distance x beneath the skin's surface
at time t is described by the partial differential equation

3T _ _, 3T 2 . N

e EEE-(where a” is a constant)
If,however heat is carried into the skin by penetrating radiztion in
such a way that the heat not absorbed at a depth x iz H = ng_rx darive
a partial differential equation to describe the variation of Temperaturea
T with % and t.
Note: For our purpose T = Heat/unit volume.
(Hint: The heat adsorbed in a layer of skin at depth % and of thickness

. . dH

6x will be &H = E;—Gx.)
Adapted from: Buettner, Konrad "Temperature changes of skin'.

J. of Applieé Physiology V3, No. 12, 1951, Dp. $891-702.
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Lecture 19 Propagation Equations
1. The Wave Equaiion

We investigate the propagation of a disturbance of constant 'spatial'’
profile, such as a sound wave travelling down the ear canal , a mechanical
vibration along the basilar membrane or the passage of an impulse along &
neural pathway.

Consider & 'wave' of constant profile, travelling from left to right
28 illustrated in figure 1, where the amplitude at time t a distsnce x from

0 is v = y(x,t).

A _,__EL_“4>-
y = yi{x,0) = f(x) Y = y(x,T7) = {(x-ct)
-~
// >
<t ’ N
L G \
s
- ' Time = t \
e ' .
=2 =~

Figure |

Let #{x) = y{(x,0) speéify the profile of the wave at time t = 0, then after a
time t has elapsed the wave will have travelled a distance ot to the right,
where c is the speed of propagation} So y(x,t) will be the same zs the
amplitude at time 0 for the point x - ct i.e. y(x,t) = f{x ~ ct). This is
the general form for a wave travelling from left to right. Similarly, a wave

travelling from right to left would have amplitude
y{x,t) = glx + et)

whare y = g(x) describes the profils of the wave at tTime 0.
The most gsnerzl form of z propagating wave, resulis from ths super-~
positioning of two such waves, ons travelling left to right and thes other

right to left, i.=z.
y(x,t) = £(x - ct) + glx + ct)

where £ and g are two arbitrary functions representing the initial orofile of
each of the component waves.

We sesk

f

pertizl differential equation which is satisfied bv such
functions of two varisbles.

Thus, let u = ® - ct v = % + ct, and
v {u,v) = Flu) + eglv),

then,by the Chain Rule given on page 93,

.,

3y _ 3y du dydv._ d4f, de

3t Ju 9t @ §v 8t du dv ?



5
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simllarly

32 _ 2 dzf dzg

__%,_ c

% du? dvZ

v _ By du By 3y _df  dg
But x  Bu3dx " 3v 3% ao | dv
and so DY o (Ayu b dvyTav dPr @’
ax du ‘3x’ 3x  dviax’ Ix du? T dv .

We see thersfore that

3%y _ d%f . d%g _ 1 3%y
axZ u2 | dvZ T eZ e

and we are led to the wave equation

a2y _ 1 3%
axé ~ cf BtZ

which is satisfied by any function of the form

yir,t) = £z - et) + glx + ot)

i.e. by any function representing the propagation of a wave. We now show
that this is the only form of function which satisfies the wave equation.

Y 2
Thus, let vy = y(x,t) satisfy E‘%‘ s

> =2 - EE'EEY'and as before set u = % + ;t,
v = x - ct then y"(u,v) ¥ y(x(u,v), tlu,v)) where x = &{u + v), t = EE—(V - u)
-3y 13y
T2 9 2e Bt
ay® _ 8 (v y_ @ Byd}éf_ 3 (By 3yt
Sa avou | av (Bu = (Bu =~ ' 3% Gu ) v
_ 1ol 3%y 1 8%y 1 32y i 3%y
- E'[z ax’ iEaxat) * EE'(atax T 2¢ Bt2
S i A L' A ¢ &y )
4 k2 c? 9t J U helgxat | Brax
=0

by assumption and the second by the
a &
tax

The  first term in bracksts being zero

2
theorem on page 92, provided both 2y an are continuous.

axot

: .3 cay® 8 : :
s Thus, sinesa %; [3%—-= 0 we see that %%—-15 2 function of u only i.e.
3 Y a . 5 -
L= £1(u) and so v" = y(u,v) must be of the form y" = £(u) + g(v) Zor some

functions f and g, whence y = £{x - ct) + g(x + ct) as raguired.

It is important to note that the speed, e, of propagation of the wavs appears
explicitly in the wave sguation.

For a uniform, tensioned string displaced slightly from its equilibrium
position, the sguations of classical mechanics lead +to the aquation of motion

2 2

93
i

T 2
)
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where y = y{x,t) is the transverse displacement of the point at position x
along the string at time t, p is the mass per unit length of the string and
T is the (longitudinal) tension in the string. (See appendix.)

From our arguments above we ave therefore able to cenclude that the
motion of such a string consists of wavestravelling up and down it. For this
reason the wave equation plays a basic role in the theory of musical
instruments and the physiology of hearing.

Various solutions to the wave equation are obtained by assigning f and

=1L

g to be particular functions. Perhaps the best known example is

f(x) = A sin (%) and g = 0 in which case
y(x,t) = A sin(x - ct) where A > 0 is the (maximum)

amplitude of the wave.

1

Other solutions are: y(x,t) = A sin(x - et) + B sin(x + et);

x ct
e e , e8tc.

]38

yi{x,t)

2. The Telegraph Equation. (So named because of its use to describe the
transmission of signals by electric telegraph.)

In a mechanical situation the term %E%-in the wave eguation represents
the acceleration of the point with amplitude y(x,t} and so equals the force
actiﬁg on a unit mass at that point and time. We see therefore that for such

a mechanical system,the force applied by the system to a unit mass at the

) .. o 3% : :
above point and time is c2 E;%—. Frequently however zn additional damping
force acts on each of the particles in motion. It is hydrodynamically

justifiable, and a;so usual, to take such & damping force proportional to
the particles velocity, 2%3 but oppositely directed. In such a czse we would
have

8%y

At {force acting on unit mass at (x,y{x,t))}

2
= c %;%—+ {damping foreel

-2 4

s

-k &Y

o

3u? at

where k > 0 is = proportionality constant, known as the coefficisnt o

iy
[a ¥
o]
=]
i)
=
o
10

We are thus lad to the.telegraph equation

3%y 1 8%y 3y
Tz o gt kg

Apart from describing the propagation of a mechanicezl disturbznce in the
Pressnce of damping, this equation has also been used to describe +the Flgw
of fluid along = tube when viscosity is taken into account and so could be
applied to arterial blood Flow.

In the case of electrical signals the 'damping' term allows For the
-resistance of the conducting medium. In this context the telegrapn esguation
played an important role in the Nobel prize winning theery of nsrve impulss

conduction along an axon, developed by Hodgkin and Huxley.
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Previously, decay pheﬁomena were found to take place according to a
rule of the form e—mt. Since the presence of damping would be expected to
lead to a decay in the amplitude of any disturbance propaéating according to
the telegraph eguation, we will investigate the possibility of sclutions with
the form' V 7

y(x,t) = e % £(x - ct).

Upon substitution into the equation we require

-at 32F _ 1 [3 -at -at 3F -at -at BF
= m— —_— s — + - —
e 3T~ of {Bt [ oo F+ e Bt] k( ne f+e T }
1 o ot ~at 3f -ot 32F -t -ot 3f
= e £ " kol — £ ax
= {u e £ Zoe T + e —7 - kone T + ke at}
1. —at . -t f ~ot 32F
= - - 2 —— —_—
EI—{(& ko)e f+ (k- 2e)e e atz} .

a reiationship which is certainly true if

32F _ 1 8%F 1 3f | 1 2 -
m-g@‘i‘g(k—?&)g‘i‘?(ﬂ - ko)t

Now from the form

0
+h
th
H

]

= f(x - ect), and part 1. of this lecture we have

32F _ 1 3%
52 ~ 2 3tZ

whence our reguirement is that

3 2 paye -
{(k - 2u) Tl (o ke)F = 0

where ¢ is as yet unspecified and so may be selected appropriately.

In genmeral this relationship cannot be satisfied, However,if we choose

k o ' A k2

o to be E-and assume the damping iz so small that the term el
then the relationship is satisfied approximately. So, provided ths coefficiant

I
:'T_]

of damping, k, is- small,

yi{x,T) = & (x - ct),

=

rt

for any bounded twice differentizhbls Ffunction £, i= an 'zpprowimats sclution of

the telegraph equaticn

3%y _ 1 [8%y . 3y
B 'E?{—?at PRaT

Thus one possible 'solution' would be

nf =

- T
v{x,t) = e sin{x -~ ct) .

To determine how y(x,t) varies with % at any fixed time t we may orocsed zas

follows, k
‘ 7
Let y(x,t) = & f(x - ct), then since f is an arbitrary Ffunction we

s
[

can write it as

g7 be neglacted,
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e—kz/2c

£(z) = glz)

where g is again an arbitrary function. Substituting this into the expression
for y{x,t) we then have

yi{x,t) = e g{x - ct)

a form for y identical to that previously given except that %—replaces t in tha
exponential 'damping' factor.
’ So at any instant of time the solution of
the telegraph equation is modulated by a factor decreasing exponentially with =x.
A more generally applicable method, whereby exact solutions to the

telegraph equation may be found,'is présanted in the next lecture.

Collateral Reading.

A more complete discussion of propagation phenomenz from the mathematical

point of view is to be found in the monograph

Coulson "Waves"

The application of the wave equation to the transmission of neural
impulses and the development from this of a theory of delayed reflexes may be
found in

Rashevsky "Mathematical Biophysics, Physico & Mathematical Foundations

of Biclogy".
EXERCISES:
1, If a wave travelling from left to right at 20 cms/sec has initial shape
v
vy = e *" find its shape after 10 secs.
2. Show that: (i) @ = A sin(x - ct) + B cos(x - ct)

and (ii) @

flx - ct) + gln + ct) (for any Z and g)

. _ . 3% _ 1 3%
are solutions of the wave equation §§2-= E;FEFSF'
[

3. The energy of & wave is proportional to its amplitude squared. For a wave
travelling zccording to the telegraph egquation,

3% _ 1 az¢+k§¢;
axZ2 o |2 at|

after what time will its energy have besen reduced by damping to & guarter

of its initizl valu=?

APPENDIR
Equation of Motion of a Vibrating String

Consider a horizentzl, taut, uniform string clamped at each =nd and

'plucked' to assume some initial shape before heing releasad., We seek to
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determine the eaquation gdverning its subsequent motion, under the assumption
that each point on the string moves only vertically up and down (i.e. the
string is péffectly elastic), if we let the vertical displacement at time t
of the point, whose horizontal distance from.ona end of the string is x,

be ${x,t), then the shape of the string at time t is y = ¢lx,t).

Differential equation of Vibration: (D'Alembert), neglecting gravity,

drag due to air rasistance,etc.
By assumption, each point on the string has no horizontal motion, so the

horizontal component H of the string's temsion T is the same for each point,
aH

i.e, 5 = 0 and so H = H(t).
Now, if p p{x,t) 1s the mass per unit length of string, Newton's second

' T+ AT

law implies:
VAV

3¢
Ax p T

AV

A{H tan 8)

HA(tan 8) H

but tan & = =lape of string = —

i
s0 )
|

a¢ 1 >

p CR = H = sgiand so taking the limit as Ax + 0 gives
B3t A x =

826 _ p 23%¢
%2  H 5te

- - . H
Further, for small displzcements, it can be proved that v E-= c, & constant

equal to the veleeity of propagation of z wave aleng the string. (sese Resnick

: 2
and Halleday p. 402. Check for yourself that dim [H/pl = g%—/ %—= (%J = [vel]?)
Therefore the =quation of moticn for the string is the wave equation
8% _ 1 3%
c? 3x?

w
"
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Lecture 20 A more general second order partial differential equation,

morphogenesis, separation of variables

We begin with a discussion of the so-called cabie equation®

aﬂ—g-?g 93%~k¢+ng¢
which represents a combination of all the processes discussed in the last two
lectures and some otﬁer effects as well.
The equation can best be interpreted as follows.
Consider a substance infusing through some material by a variety of simultaneous
processes. If ¢(x,t) denotes the concentration of the substance =zt position x
and time t, then the equation represents the variation of ¢ with respect to both

x and t due to & number of combined causes:

324

(i) . Diffusion, accounted for by the presencs of Egg-and

39,
Bk

{ii} The passage of compression waves through the substance and/or

surrounding material, allowad for by the terms ——%—and E—%

{iii) The decomposition of the substance into others through chemical
' reactions etc., this being assumed to take place at a rate

. . . - 3¢
proportional to the concentration and is represented by E%'and 9.

Should there be two or more mutually interacting chemical substances
present the above equation must be replaced by a system of two or more
simultaneous partial differential equations. We will not consider this case,
the interested reader being referred to the discussion in Maynard Smith's
Mathematical Ideas in Biology. A complete solution of the cable eguation
will obviousiy be difficult. Before discussing techniques by which such a
solution can be found, we will make Same simple obssrvations about the

nature of the solution in certain special cases.
I. In case 2 = 0 (i.e.({ii)above is absent) the equation becomes

%4 _ 3
Tav + ke = D t

=

If k = 0and b < 0,this is simply the diffusion equation., We will assume that

D<@, k>0, and consider the situation when y = ¢(x,0) has the fcrm indicated

c
in figure 1(a). For such a case g%f(g,o) has the form shown in Figure %(b)

3% . . . . . 3¢ _ Lrd3ce .
and so 5;:-(x,0) is as illustrated in figure 1{ec)}. But then Tl s km]

may appesr as in figure 1{d) whence ¢ is varving with t st the inst=nt ¢t = 0
in the way shown in figure 1(e) and so at & slightly later moment, =

y = ¢{x,t) will have zssumed the form illustrated in figure i(f). liow, this
same reasoning csn be applied at each of the ’humps'Ain figure 1(£) ta show

that after a further passage of time y = $(x,t) will have developed intc the

form sketched in figure i(g).

*
So named hecsusa of its oriainal use to deseribe the transmission of signals

via the first transatlantic cable, and its subseguent use in describing the

1}

operation of any co-axzial cable.
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.
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kL] : o{x,t1), T; > 0
ax
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(b) (£)
'Y A
52
BX% dl{x,t0), o > 1
> ) s
GO (g)
11\
£ Fiours |
~ "3(“_2'+ ké Developmant cof a solutizn fo the
cable eguetion
{d)

Thus we are lsd to expect that one possible form of solution {resulting
from the initizl concentration distribution given in Ffigure 1(a)) reprssents
a wave-like disturbance which gradually spreads outward from x = 0 in both

directions.

To see this more clearly let us examine the steady state solutrion.
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II. At the steady state %%-= 0 and so we have ¢ = §(x) where

d2
a-';g;-i-kth:O

which, provided k > 0, has the solution
${x) = A sin vk x + B cos vk x

and so one possible steady state solution is that illustrated in Figure 2.
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It is-both important and perhaps somewhat surprising, that tha eguation
considered in (I), which essentially represents a diffusion plus decay type
process (the wavs equation term %;%- being absent), should have wava-like
solutions of this type.

It is also worth noting that the steady state solutions of the cable

equation itsel? must satisfy

T, 2
[t . o<d . R

T ] = 3 = - __'h - - o
§§5-+ ko 0 (since Fra ke 0 at the steady state)

and so are the sams 2s thosz given zhove.

The existence of regularly varying(pericdic)stsady state solutions to the

cable ecuation, such as ¢(x) = A cos vk x, has been put forwsrd a&s 2 possible

mechanism for morphogernesis (the development of regular patterns, such as the
2o T g P

distribution of fsather papillae, hair follicles, stomata in planits =te.).

In this case the eguation is taken to describe the variztion in concentrati:

of some chemical across a strip of tissue. It being assumed that when the
concentration exceseds some minimum threshold level, b s2y, it has the effect

of inducing the cells to differentiate in soms appropriate way. When operating

in a steady state, this will presult in the development of a regulzrly

spacedstructure zs iliustrated by figure 2.
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With appropriate choices Ffor the constants a2, k and D the cable equatién
was basic in the modified theory of electrically active cells developed by the
late Prof. M. Lieberstein. This theory improves the original one of Hodgkin and
Huxley (see page 103) by allowing for self induction which has the effect of
'stabilizing the conduction of signals along the nerve axon.

Another particulzr form of the cable equation (a = 0; D = ik,an
imaginary constant) is the now famous Schr&dinger wave equation of modern

quantum phy51cs which is basic to much of moleculan biochemistry,

SEPARATION OF VARTABLES
4 General Method of solving some partial differential equations

The method hinges on the observation that if ¢(x, t} can be "factorised"
as ¢(x,t) = X(x)T(t) where X is a function of ® only and T is g function of

"t only, then

30 _ dT 3¢ _ _ dx 3%¢ _ _ 427
e - X g o= T &’ Fe - X ggw ete.
[For example ¢(x,t) = eax+bt equals X(x)T(t) where X(x) = &>~ znd T(t) = ebt.]

For elarity we illustrate the method by applying
it to the cable equatlon »(@lthough it is in fact applicable to all the other
partial differential equations we have considered, and also many others),

2 %;3-- §§§-= ké + D 32
We first attempt to find solutions to our partial differential equation which
can be factorised as X{x) T(t),

(i)  Assuming ¢(x,t) = X{x)T(t) and using the zbove observations, rewrite the
equation as

2 2
2, 47T . d%K _ dT
asx oy T _dx kXT + DX — ax

(ii) Wow attempt to "separate variables" by rearranging this so that the
right-hand side contains only terms involving X and ® and the lzft-hand
side only terms involving T &nd t. 1In the case undzr consideration this

is accomplished by dividing both sides by XT to obtain

2182 ilar 1 a%
T a2 T dt X dxZ

(111} For any fixed value of % the right-hand side is & constant A, to which

the left-hand sids is aquel for all values of t. We thus conclude. thar

the left-hand sids and hence also the right-hand side is identically equal

to this constant A, known as the separation constant., i.e.

d2r dr d2y
2 - —— =
T D Ere (A + K)T and 557 A%,

We are thus led to two ordinary second order linear homogeneous differentiz
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equations, which may be solved to give ¥(x) and T{(t) for any particular
value of A. The product of these two solutions is then a solution of
the original partial differential equationm.

More general solutions may then be obtained by adding together

solutions which arise from different values of the separation constant A.

For example, if in the cable equation a? = 0, D and k > 0 we have

ar 1 - %(v“k)t 2y
il B-(A + k)T and so T(t) = Ae ' while Fozr = AX and so,if we take
the separation constant to be negative, i.e. A = -p2 for some real number M,
X{x) = B sin u x.
Thus -
- %— {(k-p?)t
fl{x,t) = C e sin px (where C = AB is an arbitrary constant)

is a solution Ffor any valus of u.

A more gensral solution (obtained by adding together two solutions

corresponding to u = vk and U= g < Yk) is
p(2,t) = Csin Yk x + C' e sin Yug =

a form of solution which clearly indicates how $#{x,t) approaches the stéady
state solution, C sin vk %, as t + =.

The need to construct solutions by this process which satisfy certain
initial and boundary value conditions, such as, For example, z solution to the
cable equation which has ¢(x,0) a prescribed function, has in part led to the
development of the mathematical theory of boundary value problems znd Harmonic
Analysis (a particular case of which is Fourier Analysis). A stuéy of these
topics would takz us too far away from our orimary purpose. ﬁowsvar & reader
interested in partial differential equations and their use should certainly

1,

familiarise himszlf with +his materizal.

Collateral Reading.
For a discussion of Morphogenesis in two dimensions the rezdsr should ses
J. Maynard Smith "Mathematieal Ideas in Biology",
For the zppiicaticns of partial differentizl equations to glectrically
active cells and also to problems in blood Flow sa2s

H. Lieberstein "Mathematical Physiology, Blood Flow and Elsciriczlly

Activa Cells'.

Material on the technique of separation of Variable,boundary value problems

and Fourier Analysis is to be found in

Boyce and Di Prime "Elementary Differential Eguations and Boundary Value

Problemg".
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Weinbergen "Partigl Differentia]l Equationg",

EXERCISE:

L. Using the method of Separation of variables, find g solution (dependin:

lecturs 197

A PROJECT involving bartial diffarential Squations,

A DEMOGRAPHIC MODEL
= NODEL

Problam on Demise of an gge Structuregd opulatieon

1. In the absence of births
T—————=5 0% Dirths

Let p(x,y) dencte the.ppbbability density that ap individua3 is of aga y
&t time x, .i;i; The numbep of individyals of age hetween ¥ end y + Ay at tims
is p{x,y)Ay, fop Ay sufficiently small. Assume the 'specifie mortality pata!
for individuais of age y ig d(y) = ke (in dccordance with Gompertz! work}),

Observe fhat: Humber of individuals Oof age v + Ay at time x + Ax equals

the number of age y at time x minus the Number of dge v dying during-the time

Show that thig leads to tha "differencs equation'
plx + Ax, Yo+ ) = (1. dly)ax) pleyyy (1)

Upan ApDropriate Tearrangsment show that in the limit a3 Aw = @ This produces

the partia) differencizt equation

D 0 _
5‘?*3—; d(y)o v (2)
-[fae)ar
If ple,y) = alx,7)e show that g Satisfias the partizi iffapsntial
eguatipn
99, 21, e (3)
8 ' 3y
For any differentiable funetion T, show alx,y) = Tlx-y) is a solution ofF (3).

{This is ip fact the mest general solution Possible, Zas sxercisze 17,3,)

Hence deducs that if ve © ¥y =0
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Lk
o

then {(y - %) e v & x

plx,y) { =
o ¥ < X.

Use this to sketech the age profile of the population at times x = 1 and x = 2
if k = a = 0.1.

2. In the presence of births

Develop a model, similar to the above, which allows for the possibility of

a non-zero, age dependent specific birth rate.

Hint: Let b(y) be the specific birth rate of individuals aged vy and show that
the change in p{x,y) during an interval of length Ax due to bimths is
Ax J plx-y,tib(tidat.
0
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SERIES V - Delay Differential Equations.

Lecture 21 The Ezponential Solution of the Simple Population Growth
Equation with Time Delay

In Lecture 2 it is shown that a simple model of population growth

is given by the first order linear differential equation

an |
el BN SN

where N is the population number, B the constant birthrate per member of
the population, and § the constant mortality rate per member. The theory
to be given here will be based on the particular eguation

L= e,

which holds when thers is no mortality, or perhaps in the early stages
of some population histories, before members begin to dis in apprecizble
numbers. Some extensions to more general casss will be imdicated in the
Exercises, The solution to this simplified equation is

N = NpePt

where Ny is the population number at time t = 0.

The above equation will be valid only for certain primative organisms
which begin reproducing almost from the moment they enter the populstion.
However, if there is a significant time delay before a newly born member
begins to reproduce, the effect of this age structure must be tzken into

account.

Suppose & typical member begins reproducing only after reaching the
age of a time units. The number of members per unit time entering ths
adult (or reproducing) populatien is equal to the birthrate B multipliad
by the number in the zdult population at the time when thev wers born,

i.e. 2t a times a units praviouslvy. Hzree the adult population is given by

= BN(t - &)

where N(t) mesns the number at time t znd N(t - a) the number =t tinms

t - a. An eguation of this type is celled a delay dif

D
H
m
o]
rd
[
m
I_I
m
[}
=4
[3H]
et
1J
a3
jui)

£
or =n equatien with retarded argument or a differentiazl-difference sgustion.

Guided by the solution to the eguation without delay, we test whether
there 1s an exponentizl solution to this equation alsoc. Suppose ths

sclution is

() Nueut, B comstant.

Substituting this

b

into the equation gives

u{t-a)

M- aige

NQHE‘.

§]

or
~ug
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This is an equation giving the required .

In order to solve a transcendental equation of this type, approximation
methods must be uwsed, and it is necessary to have available tables of the
exponantial function, or a slide rule, or a calculator with an exponential
function key. Perhaps the simplest way of reaching a solution is by trial
and error, i.e., by guessing the value of | which makes the left hand side
agres with the right hand side. This is illustrated by the folleowing

example.

EXAMPLE. In a certzin insect population, members do not reproduce until
they reach the age of 20 days, and then produce on the average 1l offspring
per adult member per day. Find the adult population at any time, assuming

it to be exponential.

Here, a = 20 and § = 1, so that the equation to be solved is

-3
= e 20u
p (guessed) e 20 (calculated)
0.5 b5 x 1073
0.1 0.135
0.15 0.050
0,12 0,081
C.11 0.111
0.111 0.109

Hence, approximately, u = 0.110.

S0, the population of the adults is given by
M= Ny exp (0.110 t).
If all other conditions were the same, but with & = L0, tha regul: would |
be p = 0.067%. o
If time delay were neglscred, so that 2 = 0, then g = 8 = 1
Note the greaztr veduction in the rate of incresase when the tipz cdelav
is introduced, but tha ralatively smaller change when the deiay is doublag.
A proposed method for rsducing pepulation growth is +o increase the azs at
which members may reproduce. It can be ssen from this bresent sxemplz that
the reduction may not be as great as expactad.

EXERCISES:~

1. 1In the Exampls given zbove, check the result for a = 40, anéd find

2. In the above Example, Findg ths values of p for the given values of =

when the reprecduction rate is doubled, i.e,, when 8 = 2,
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A certain human adult population doubles in 30 years and the average
generation time is 25 years. Making any necessavy reasonable
assumptions, find how long the population would take to double if

the genmeration time were increased to 30 years, the reproduction
constant B being the same in each case.

In 2 certain population, all members reach maturity at gbout the age a
and reproduce at the rate B per member per unit time wntil they die

at the age b. Show that an approximate simple model for the adult
population is given by the equation

an{t)

Eremad BN(t - a) - BN(t - b).

Assuming that there is an exponential solution in the form

N = wpeMt

a3

finé an equation giving p.

In an insect population, members reach maturity at azge 20 days,
produce on the average 1 offspring per member per day, znd die =t
the age 30 days. Determine the population history, given thzt the
number increases exponentizlly.

By comparing the result here with the Example worked cut in the
Lecture, it will be seen that the apparently drastic mortality
produces an unexpscted small effect. Thus the equation without the
mortality term will work well enough in many cases.

In a certain population in which the age of maturing is a units, the
mortality of the adults is accidental and random so that a censtant
proportion § diss per unit time. Assuming that immature members

suffer no apprecizble loss, show that the adult population number is

given by the equatio

'.:1

= BN(t - a) - &N{t).

Gbtain the tramscendental squation giving the exponential ErowTh.

How 1s the squation modified if only a proportion k of i

Show that the sgust

|.|

ion guoted in Exerdize 5 can bs written in the form

dgét) = yi(t - a)
where
() = N(r)et
and
| = Baaé
Hence it cem be treated like the simplifiad equation deslt with in ths

Lecture.
For the case freztsd in the Lecturs, where the adult population is given
by the eguation

dtl(t)

et = 8i{t -~ a),
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{continued)

find the number I in the immature population by the method outlined
below.

By tsking the rate of increase of immatures to be egual to the
rate at which they are produced by adults less the rate at which

they are becoming adults, show that

dI(t) _ dn(t)
Era at
For a population increasing exponentially, show that the equation for
T is
al _ ut
Ere Npe (B u)

where Ny is the initial adult population, and u is given by

= Se_ua.

If initially I = 0, show that

cnfp o)
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Lectupe 22 Oscillatory Solutions of the Simple Population Growth
Equation with Time Delay

In Lecture 2?1 it was shown that a solution of the delav differential

equation

dN(t)
at

BN{t - a)

is
ut

N = Nge

where p, a solution of the tpanscendental equation
-pa
u=8eu,

is obtained by some numerical method.

The value of p mzy also be cbtained graphically, 2s shown im

Figure 1.

b

————®

Figure 1. Graphical illustration of the equation p = B2 ~ ,
L2
e K

=]

and of u = B cos va for positive and negative

values of cos va.

Draw the strzizht line y = u and the curve y = fa M2 in the ¥, u

23

plzne. Then the solution of the transcendental eguation is the values of
u where these linss intersect, given by the point P in the diagram. Call

this valus ug.
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We now look for other solutions of the equation, and try

wt

N = Npge™ sin {vt + e). "

If this is substituted in the delay differential equation, the left hand
side is A

gg%32-= Noeut (u sin (vt + g} + v cos {vi + e))
while the right hand side is

BN(t - a) = BNoeu(t = 2) gin (w{t - a) + €)

T -upar . .
= BNge" e * (sin(vt + ) cos va - cos{vt + £) sin va)

If the two sides ars to agrse zt all times, the coefficients of sin(vt + g)
on each side must be equal, and similarly for cos{vt + g). This will be
so iF

Ha
Be cos va

il

U

-ua

v = -fe sin va

These are two simultaneocus equations giving values of y and v, and hence
solutions of the diffepential egquation.
[The reader can check that these two equations can be obtzined also by

assuming & solution in the form
¥ = N expi{p + ivit}.

This is an obvious generzlisation of the trial solution used in the previous
chapter and simply assumes a complex exponsntial sclution instead of a real
one. It shows that thes trisl solution contalning the trigonometric function

is not just a lucky guess.]

Consider the equation

-ua

u = Be ces va
as an equation in p for &z constant value of v (# 0). From Figure I, we see
that two kinds of soclution may occur. If cos va iz positive, thers will be

a positive ¢ given by ths point Q. Since cos va < 1, this will ba less than
the pg occurring in the exponentizl solution

N o= NgeM0©.

Hence the present sclution

o
=
il

Mpe"© sin(vt + ¢)

will correspond to &n oscillation which increases in amplitude, but =t =&

slower rate than the sxponentizl solution.
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Toe obtain numerical solutions For p and v, even by trial and error, it
is convenient to eliminate one of them, say u, to give an equation in v only.
After finding v, u can be determined. It is also convenient to express the

v, v and B in terms of a as time unit, and so we write

s = yz
® = va
ac = Pa.

The equations then become
s
s =oe CosX

s .
X =-0C 2 S1n K.

i

. -5 . . .
The terms ¢ e can bz eliminated om these to giva

Subs‘ti‘tu‘ting fO’r‘ s from this in {he second equation gives =n = U.E.ti

on in x only,

Efﬁ_i' = —o exp ({EE__J' vaee. (A1)

The value of %, hence v, is given by solving (ii) numericalily. without
extra calculation, s, hence u, is given by (i).
When x = 0, the criginal twe egquations reduce to one,
-5
s=-oe .
This gives the first, the exponentizl solution
N = NpeHot.
The equation {ii) has an infinite sequence of
v = vy, Vs, V3, ..., 5av. Supbose the corresponding veluss of u, ziven by
equation (i), are uy, vz, M3, ..., pespactively. These solutions could be

called the fundamentzl modes. Since the ariginal dalay differentizl squation
contains only terms of the first degres in N, a more general solution is a

sum of these,

N = AgeMot
The constants &, and e, are determined by the initial condivions, arnd these
are usually specifisd by the population history inm an initial intsrval of
length a units of time, or the age distribution of the population at a given
instant. For ths population to persist N must net hescome negative, 2nd so

cannot consist of the trigonometric terms only. The exponential mode Age
must be present. This will eventuzlly dominate since yg is greater than any

other u.
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In the Appendix to this Lecture it is shown that oscillations with
increasing amplitude will occur only if a > gg-and that there will be only
a finite number of these. Hence, unless the product of the birthrate B
and time lag a is greater than 2%3 any oscillations will die away leaving

little except the exponential increase.

EXERCISES:

1. 1If the solutions of dN(t)/dt = BN(t - a) are written N = Ae"T sin{vt + g},
show by direct substitution or otherwise that, for the case a(= Ra) =‘l,
some of the values of x{= va) are

x =0, % (3 - 0.215), % (7 - 0.140), approximately.
(Note that x is in radians, and has values around (24 -
an integer.) Find the corresponding values of s(= uaj. Wprits down =
solution for N(t) depending on these three modes.

Find the next mods.

2. If @ = 12, show that some values of x are x = 0, % (3 + 0.118), %-(7 + 0.008)
%-(ll - 0.013), approximately. Find the corresponding velues of s and state
which modes zre osciliations with increasing amplitude.

Find the next mode,
3. Assuming that the equation

an(t)
dr

has solutions in the form

= BN(t - a) - BN(t -b), b > a,

N = Noept sin(vt + &),
find the ecuations which detarmine p and v.

Examine similarly the equation
SHE) - mi(t - a) - ow(t).
dt
4. For the squation

aN(t)
dt

= BN(t - &)

1 - . . s
show that if z(= 3z) = (2M - EJW Tor H an integer, oscillatioms o

constant amplitude can occur. Thet is, a solution ewxists For which

w(= s/a) = 0.

The smzllast value of ¢ for which this can happen is =&, the

borderiine valus of @ for which osciliations of increasin emplizuda

i}

2
can ccecur. {(Ses Apvendix to this Lzature.
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APPENDIX to Lecture 22 The Number of Modes with Increasing Amplitude

For oscillations with‘increasing amplitude, p must be positive. In
discussing u, the sign of x(= va) can be chosen as positive, since a change
in sign of x does not affect the egquations containing s (= pa). From
equation (i) then, tan x must be negative. From the equation x = —oe ¥ sin Xy

sin x alseo must be negative. Hence x must be of the form
x = 2M7 - ¢

where 0 < £ < %3 and M is an integer > 0. The eguation (ii) can then be

written
0 - L -y exp{-(2M7 - E)/tan E},
sin § N :
T
0 < g < '2— .

As £ + 0, L.H.85. - = znd R.H.8. = 0, asf + gy L.H.S. + (2K - %aw gnd R.H.5., -+ .
L.H.5. decreases as £ goes from 0 to %u R.H.8. increases as § goes from 0 to gn
Hence (see Figure 1), if o > {2M - %Jﬁ, there is a solution for £ in the required

range, 0 < £ < %u

- L (> 3F)

(zm-4370

I
I
I
!
1
i
!
!
]
| I

Y
]

0 Z

Figurs 1. Crachnicel solution of The equaiion
(2W7 - E}/sin £ = o expl-{2M7 - £)/tan &,

= m . .
for 0 < £ < 5. The vertical scale {s compressad.
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If a > (2M - —Jv, it is greater than (2[¥ - 1] - —Jw, and so on, down to ggu
Thus, if o > (2M - —Jﬂ but less than (I2M + 1] - —Jw, there will be just M

solutions for £ in the range 0 < £ < ;, and hence only M oscillatory modes
with increasing amplitude. Such modes will cccur only if o« (= aB) is greater

than,ggg corresponding to M = 1, the smallest value of H.

2MT

Since 0 < £ < L then (24 - %Jﬂ < x < 2M7 and so i{QM - %Jﬁ <y < -

2]
This gives the 1imits of v for the various modes.

The reader can check that the results of Exercises 1 and 2 ar= in

agreement with the results obtained in this Appendix.
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Lecture 23 Direct Methods of Solving the Delay Differential Equation

The method of solving the equation

an(e) _

Ere BN{t - a)

given in the previous chapter is useful for such general theoretical matters
as investigating the kinds of population growth that can ocecur. But because
of the difficulty of determining the constants from the initial conditions,
it is not easy to apply in practice to find out how & particular populatien

will develop after starting from given initial conditions. This can be done

. better by integrating the equation directly for successive stages of length a,

or by a numerical method similar to that described in Lecture 7.

1. Direct Integration

Integrate the differential eguation from a to t:
T t
di{t) _
[ ——d%_ dt = J' BN(t a)d’t

a a

t
H(t) = N(a) + I Mt -~ a)dt.

a

Now, the initial conditions give the function N(t) in the interval of range a,
0-<t < a, - Hence the right hand side can be evaluated for any times between a
and 2a. Hence N(t) is now known in the interval a = t < Za, which is the same
as N(t - a) in the interval 2a <t < 3a. Thus N(t) can be determined in the

intervai 2z <+t < 32, a2nd so on.

n
cl
ur
h
in
it
14
Fh
1
[g]
1=
]
8]
ri

This methed shows clsarly that the initial conditions mu
to 2llow the population to be snecifizd over an initial interval o7 langth &

before it can be detsrmined for all later times.

The method mzy be used for any =zguation, linesar or non-linszr, whers N{t)
can be expressed in terms which depend on values of N only up to time t - a,

provided the integrzls can be evaluated.

2. tumerical Method

If h is a (small) time increment, then we can taks + = nh, whers n is the

number of increments in time t. Then, as in Lecture 7, we writs ¥(t) = H

0
Suppose there are A increments of length h in ths tims 2, so0 that 2 = ih.
Then N(t - 2) = Nn .+ ence, the simple delay differentizl squation can be
written
N - N
n+l 0 s oay
h n-A



— i

o

N, SN +BN , h

The value of N at a given time now depends not only on the value one increment
of time previously, but also on the value A + 1 increments previously. As
indicated in Chapter 7, this method is a very flexible one, and can be used to
solve equations which are iniractable by other means. As indicated also, there
is the disadvantage of imaccuracies caused by the finite element size h. In
the present case such errors will cccur also if h is not small compared with

a, i.e., the number A must be reasconably large.

The numerical method, particularly if programmed for a computer, can be
used for much more complicated and life~like cases than those considered in the
text and exercises of Lectures 21 and 22. For example, mortality dus to both
éccident and natural death can be included in the programme. Systems of
equations and non-linear equations with time delay can be treated. Such
equations are of impertance, not only for describing populations of interacting
species in a restricted enviromment, but alse for dealing with metabolic processs
in an animal, where the transport of a substance from cone compariment to another

might take a finite time.

The methods described in this Lecture are useful mainly for dealing numerics
1y with the particular problem under consideration, and provide iittle theoretics

information on populations in general.

EXERCISES:

1. In laboratory experiments, populations are often started by choosing a
number -of newly metured adults. ~If there are no losses by accidents,

this adult population will remain constant until thei

H

offspring begin

to mature. Hence, an important case of the equation

an(t)
STl oot - =
at BIT( a)
is that in which (%) remains =t the constant valus
interval 0 <t < 2. By integrating the equation Zirs

population develezs over the next 3 time intervals.

The expresssions become tedicus to write down after a faw steps.

Some simplificstion may be made by writing f W(t - a)dt whers H(t - a)
2a
is given in the intsrval 2a St < 3a as ft-a ¥{t)dt where N(t) iz given in
a
the interval 2 ==t < Za. Similarly for ft N{t -~ z2)dt where N{z - g) is
3a

siven in the Intsrvzl 32 <t < 4z, and so on.

A method leading to a neater, explicit answer will he given in the

next Lecturs.
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Consider the example in Lecture 21, where 8 = 1 and a = 20 days.
The equation is

dN(t)
dt

= N(t - 20},

By tzking time increments of length 4 days, show that this can be

written approximately as

M =N + 4N
n n

n+l =3

Starting with the initial values N__ to N, equal to 1, 2, 3, &4, 6,

5

10,

respectively, determine the population growth for the first 60 days

after this, i.e., up ton = 15.

In Lecture 21 the exponential solution to the differentisl

equation was found. With the same initial walue Ng = 10 that has been

chosen here, the solution is

H(t) = 10 exn(0.110t).

All the initial values above for N__ to N, were chosen to agree

5
approximately with this in the range t = -20 to 0. Hence the
numerical solution should agree with the exponential solution Ffor
later times. Check this by drawing graphs for the numerical and

exponential solutions on the same diagram.

One method which has often been used is to expand ¥(t - z) as a
series in a:

dn(t) a2 d2N(t)

N(t—a)=N(t)—adt -Q"TEZ—‘— ......

and to express the time delayed equation as an ordinary differential

equation with constant coefficients.
This method cannct. be recommended. For even moderatsaly largs

many terms in the series would nzed to be tzken and sc the sguati

o
would be of a high order. There would be difficulty alsc ia msichi

initizl conditions for the dslayed equation to the different kiad of
o

initial conditions for the ordinary differential eguation.

Trv to solve The eguation

an(t) Gl
e = Wt - 1)
. . . . -,
by this methed, taking terms only up teo and including —=+ .
) a? gut) dt2

solution, evaluats the first neglacted term

31 @i’

the inciuded terms. Compare the result also with the exponentis

|-

of the delay differential equation. Discuss the spscification of

conditions for the two eguations.

and compars i

With this

.For further discussion, see A. Mazanov and ¥K.P. Togmetti: '"Taylor
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{continued)

Series Expansion of Delay Differential Equations - A Warning".

J. Theor. Biol. 46 (197y4), 271-282.

This is an exercise for the reader familiar with computer programming.

Devise a programme to solve the equation

D) < Anct - &) - (e - B) - aH(e)

for an adult population. The programme should store no mors information
than is reguired to perform later steps. With Drogrammes not much

more complicated than this, the computer could easily run out of storage

if too much information is kept.

As well as the adult population, arrange the programms to record the

number of immatures in the population.
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Lecture 24 The Method of Laplace Transforms

In this Lecture, the method of Laplace transforms described in

Lecture 14 is zpplied to the solution of the delay differential equation

an(t)

at = BN{t - al,

iven that the population is started with the number Ng at © = 0, and assumed

to be zero before that time.
The main results from Lecture 14 needed here are the following:

The Laplace transform of the function £(x) is defined to be

T(s) = J & 5% flx)ax.

4]
This is written briefly as
F(s) = L{£)(s)
or even F = L(F).

The .inverse of the transform is written
£ = L-1(T).

This means that £ is the funetion whose Laplace iransform is F(s).

The Laplace transform of the derivative is
L{£")(s) = sL(£)(s) - £(0).

For the time delaved function defined by

£(t - a) for t &
£ (%) = '
2
0 for 0 1 < 2,

the Laplace transform is

e S L(£)(s).

E(fa)(s)

This theory will now be appliasd to the populaticn equation, wnich can

be written

where the dot danozes differentiation with respect to time t, &nd the sub-

script a denotes & time lag of 2 in & function which is zerc befors the

e

initial time. L=t the Laplace transform of N(t) be written as ¥ . I.s.,

M) = £(N)(s) = J e 5% w(t)dx.

¢
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Then the Laplace transforms of the terms in.the population equation are
L) (s) = sN (s) - N

since Ng is the value of N{t) at t = 0, and
LOn)(s) = &5 LN(s) = & P W ().

Hence, we can take the Laplace transform of the population equation. In
order to perform the inverse transformation later, some Lzplace transforms
involving the Heaviside step funetion, H(t), will be needed.

Let H{t) be defined by

1 fort =0
H(t) = |
0 for £ < 0.
L
Then
- -5t ® st 1
L(H) = a H(£)dt = L e dt = =
i
Write
PH = (+ - na)® H(t - na)
Tna
That is
(t - na)” for t = na
ana =
¢ Ffor £t < na.
Then
L = -5t s
L") = e {t - na)” H(t - nalét
na ]
a
= e ¥ (¢ - na)? ax
na
= e—s(u+na) w" du where u = t - na
0

I_l
<
n
"l!
1
vl
i

The number n in the integral can be reduced by successis
by parts, lezding to the result n! for the integral when n i

s
[In general, the intsgral defines the gamma fumetion, T(m + 1).}
= =
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Hence
ﬁ{nH ] = ————mn! , 1 an integer.
With the convention that 0! = 1, this also includes the result for L{H).
Now, take the Laplace transform of the equation

N = gN
a

with the stated initial conditions. It is

n

SN (s) - Ny = Be 3 N (s).

Hencé
N (s) = ___gﬂ_:gg
5 - Be
-1
- .D.I..Q ['I_ - .g. e—sa]
s s
) gﬂ.; gl ~Sna
5 n=o g"
= 7 _-sna
B !
= ND z —
n=0 n! n+l
So
D et )
Lan(s) = oy § 2-2(% )(s)
_ a=p O na
Thus, the inverse transform is
= on
- B n
N =Ny ) S H s
n=0
or, in detsil,
s 8" n
N{t) =g } — (£ - na)" E(t - nz2)
n=0 °°

This method of solving az delay differential gquation is us=d in the
article by K.?. Tognetti and A. Mazanov: "A Two-Stage Population Model",

Mathematical Biosciences B (1970), 371-378.
EXERCISES:

ution in terms of the Heaviside step function as obtzined

1=

1. Show that the so

in this Lecturs gives N(t) = 0 for t < 0 and N(t) =

=

t = 0.

rt

sp a
Show that it gives N{t) = Ny in the interval 0 €<t < a. (This is
the initizl condition for Exercise 23.1L. Hence the solutien given in this

Lecture is the explicit form of the solution to Exercise 23.1.)
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(continued)

e

Write down in ordinary algebraic terms, the forms of N(t) in the
intervals a <t < 2z and 2a <t < 3a. Check these results with those

of Exercise 23.1.
Find, by the method of Laplace transforms, a solution to the equation

dN{t)
dt

= BN(t - a) - &N(+)

with suitably chosen simple initial conditicns.
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SERIES VI - Stochastic Models

Lecture 25 Yule's Pure Birth Process - I

Throughout this final series of lectures it will be assumed that the
reader has an understanding of the basic concepts of discrete probability
theory. BSuch material may be found in most of the introductory bocks on
either probability or statistics. By introducing probzbilistic ideas we will
show how to extend our models beyond the purely determinisiic ones censiderad
50 far to a class of probability based ones known as Stochastic models.

Our introduction to such models is neither comprehensive or zdeguate for
most practical purposes, rather it is intended to demonstrate the possibility
of such models and to place the conclusions drawn from our earlier detarministic
work imto better perspective. . _

We begin by locking at the simplest stochastic model for z growing
population, namely the pure birth process examined by Yule in 1910.

Consider a population of individuals for which the only mechznism of
change is through the birth of new individuals according to the following

assumptions.

(i) There is a finite, non-zero, ‘'conception/recovery' time for births
and multiple births do not occur. That is, there exists z period hy > O
such that during an interval of duration less than hp each individual
can give birth to at most one new individuszl.

(ii} The probability that any individual gives birth between £ znd t + h

(where t is an arbitrary time and 0 < h < hy) is ph where 0 < p < hjt

REMARK. Tt is implicit in (ii) that the likelihood of an individual giving

birth is independent of both the state of the remainder of the population and

of the individual's agz. In particular, immediately after birth z nsw

individual is capabiz of reproducing.
Clearly {hess zssumptions are only a crude approximation to the resl

ncad orgznisms

=8
it

situaticn for mors zdv

" More vealistica aily, this probsbility might be ph + pih? + ush® + ... s
wouid be the case, for sxample, if births were Poisson distributsé over time).
However as our later znalysis will show, we are only intspestsd in the ot ient
of this pPD”ub‘ v @with h in the limit as h tends to 0 and so only the first
order term, uh, w_ll Drove to be of importance. Herce the simplifizd version
given in (ii) leazds

to no raal loss of generality.

#% This modal i
specific birth
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A mach more complicated and finely structured model would be required to

gccurately portray such a population, however the assumptions are quite

appropriate for many simple bacterial populations, at least during the earliy
stages of their growth. (They may also be appropriate for the organised coleny
of cells forming a young plant.)

The first stagez in analysing the development of a population satisfying
the peostulztes of the pure bith process is the determination of Pn(t) the
probability that the population i8 of size nat time t. We will zssume that at

time t = 0 the population has the known initial size ng, thus

1if n = ng
P (0) =
0 if n # npg.

Further, since from the assumptions the populaticon size can only increase,

we have
Pn(t} =0 for ali + and 0 Sn < Ay

Thus it only remains to determine Pn(t) for t > 0 and n 2 ng; to achiave this
we proceed as follows.

From assumption (ii) it follows that the probability of a given individual
not giving birth between t and t + h is I - ph (provided of course ¢ < h < hyp,
henceforth we will always understand this to be the case). _

Now, the (eonditional) probability that the population will have size

n +mat time t + h given that it has size n at time t equals

The number of ways m Probability that each Prebability that none of

individuals can be % Jof them individuals .x the remaining n - m

selected from n gives birth between t individuals givas birth
and t + h between £t and t + h

and so recalling that the number of ways m individuals can be sslscted fro

=

ameong n is the binomizl coefficient

[:J - al _ n{n-1¥(n-2)...{n-m+1)
{n-m}im! m(m—l)...z.l_

we have for this prokability

() )™ (1 - ™™

Next ws observe that if the population has size n =2t time © + h tThsn one of the

following (independent) events must havs occurred.

he population was of sizs n

!

gt time t and no birth occcurred hetwszn t and T+h
The populztion was of size n-1 at time ¢ and 1 birth occurred hstwesn + znd t+h

The population was of size n-2 at time t and 2 births occurred between t znd t+h
" s = n+ o " - .
The population was of sizs = a2t time t and 5 births occurrsd betwean t and

t+h.
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Thus
_ J|Probability that population has size nat €t + h
Pn(t +mh) - {given it had size n at time t ) Pngt)
Probability that population has size n at t + h x P (t)
given it had size n-1 at time t n-1
Probability that population has size nmat t + h x P )
given it had size n-2 at time t 1-2
T orareanaasa
Probability that population has size nat t + h
. . R + . P
given it had size EEE' zt time t * '[é+ }(t)
2

but from above

rl

Probability that population has size n at t+hl _ [n—m}( ™ .)(n~2m)
iven it had size n-m at time t m JH —kn

and so
n
P (t +h) = (1 ~ ph) P ()
+ (- D@ - w2 e ()
-9 ..ol
+ (0L emia - mTT e )
S,
5] :
= 1 - Pama - un) P72 5y
n=0 * aoi
- .
How, since 0 < ph < 1, we may use tha Binomizl Thecrem to sxpand (1 - ph)" as

1 - kuh + (Z](ph}g - [?)(uh)a oo

in which case thz zbove expression for P (f + h) becomss
- i

Pn(t + h)

i
|
]

nuhl + [;](uh)2 ...] ? (%)

ia

+ (- 1)(uh - (n - 2)wh)2 +...0pP

?n(t) - nph Pn(t) + (n - 1) uh Pn“l(t) + terms inavolving h® h3 h%,
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Rearranging we obtain

P (t+h) - Pn(t)
h

= (a-1) uPn_l(t) - nuPn(t)

+ tevms involving h, hZ, B3, ...

Clearly the limit as h + 0 of the right-hand side exists and is

(r - 1w Pn_l(t) - nuPn(t)
P (x +h)- P (t) : d P (1)
whence Limit exists and is by definition ——— or P’ (1),
h+0 h at T

hence

Pé(t) = (n - l)y?n_l(t) - nuPn(ﬁ).

This is a pelatively simple differentizl eguation from which Pn{t) mzy be

determined provided we know inl(t)' Thus if wa first determine ?j (t) we may

Hg

then successively determine Pn0+l(t), P (t), +uus Png+m(t)’ Ceaa

ng+2

Now, since Png—l(t) = 0, the above differentizl becomes

B! (t)

ng unUyPnD(t),

and so
P (t) = ce "OME

Further since Pn (0) = 1 we see that C = 1 and

P (1) = o BoMt
Ip

showing that the probability of the population remzinine at its

=

place (se=z figure 1).

o

=
Having detsrmined P (t) we may now proceed to detarmine 7
41

., (T) which

9 =0
sztisfies
B! T} = mgus_ (t) - 4+ Liup t
ng+l(L) ngh HD( Y - {ng Ju ng+l(L)
_ ngut
= ngye - + B t
g {ng + L)u Hg+l(k)
Setting v = Pn0&1{t) and 2 = (ng + 1) +this becomes an =sgus<ion of ths
raorm
1 —ep = Ef— - - Xt
y' + av = £(%), where, in this case, £(t)} = ks iith & = agu

4 methed of solving such eguations was outlined in Exerciss 3 of lscturs 3

we have

which may be rewritizn as
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at

(e®y)m = e £()
Upon integration this gilves
. t
Sty = j Te(ryat + v(0)
Q
t .
or v = g B¢ J eatf(t)dt + y(O)e_at,
g

. . -~k -
and so, substituting ks * for £(t) we have

t -
v = ke 2t 1 laity, y(0)e "

X Xt
or v il - (=

_ E—af) + y(o)e—aL

whence replacing & and k by their origimal values and neting v{(0) = Pn0+1(0) = ¢

we have
P (t) = nge POMT(x L TV
Uﬂ+l
See figure 1 for a graph of this function.
The calculation of P ,(t) follows similarly, first we see that P oa®)
g+
satisfies
1 4 = - T
Pn0+2(") {ng + 1)p Pnu+l(t) (ng + 2)u Pﬂo £o(8)
-ngut -ut
= {np+-1ingre OHY (1 - e7HEy - fng + 2 P {(t)
np+2
which is again of the Form
v' + ay = £(t)
where - ¥ o= Png+2(t}, g = (ng + 2)p and
S(2) = be (L - &™) with b = (ng + 1)ng ané k = ngu.

So, using the 2hove sxpression for the solution of sueh azn aguaticn, we obtain

R —ut oyt
B0 = £Eﬂ—§*£lgﬂ-e R R P
..OT-— 4

= Ld - - - T -
The last term of +his iz of the form (1 - 2% + x2) with % = e M oane

; and so
- -y - (ng + 1)ng ngut -pt,2
10+2(h) 2 (1 )
We could now procssd similaply to obtain P +3(t), however it is not hard to
0
see that & likaly result might be
? , (_c) - (ﬂD + 2)(1'10 + l)ng "'n[)‘.-lt (l _ e-i—'“')"'
nig+3 3 = 2
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and that in general

= T +tm-1 -ngpt _ _Tut\m
Py gem () (F0) e (1 - e "5y
An application of the method of mathematical induction confirms that this is
indeed the case, and so we have that the probability of a population, which
satisfies the postulates of the pure birth preocess, having size ng + m at time
t is

0iFm<0

P t) =
ng+m [ng +m - lj E-ngut (1 - e—ut)m For m = 0.
m

Graphs of Pn0+m(t) versus t for m = 0,1,2 and 3 are illustrated in figurs 1,
from which we see that the probability of the population having size ng + m
first increases to a maximum at tm {except in the case of m = 0 where T T 0)

and then decreases as the likelihood of further births increases.

935
Y
S
\
\
- .
\m =0 Figure |
\ y =F U+m(t) with ng = 2 and A = 0.5

\ n

© 1 2 .3 b

Collateral Readirg.

An account of basic probability theory may be found in any of the
following works:

Alder and Rosssler "An Introduction to Probability and Statisziecs”,
Freeman, 18968.

Mosteller, Rourke, Thomas "Prcbability with Statistical Application®,
Addison-Wesley, 1973.

W. Feller "An Introduction to Probability Theory and its applications",
Volume I, Wiley.

Chapter X¥II of the last reference contains a good account of tThe Yule
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pure birth process, howesver the hasic assumptions and the derivation of the
recursive system of differential equations for Pn(t) differ from those given

here.

EXERCISES:

1. Complete the details of the caleulation of P ,(t) and procsed to &
L 03

determination of P (€},
ng+3
2. Using mathematical induction verify the form of P_ | (t) suggssted in
Ng+m e

the lecture.

3. For a fixed m show that Pn *m(t) has a unique maximum &t t = T
g~
Show that €1 < ©t3 € ... < T, < ... oas axpacted (7).
13 .
Estimats P . (% ).
npsm om

cance or such a

H

Draw a graph of ng + m veprsus T What is ths signif

graph?
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Lecture 26 Yule's Pure Birth Process - IT

In the previous lecture we established that for a population satisfying

the postulates of the Pure Birth Process the preobability of it having siza

ng + m at time t is

3 e i

0ifm=<20

. P (‘t} - . _ ng e
e e ngt+h [n0+n l) (e ut] [l—e uL} for m = 0,1,2

grmatge e
1

where ng is the initial size of the population. Throughout that lecture we

N concentrated on this probahility regarded as & function of time ané ia the
——— - exercises an investigation of this aspect was suggested.
Under some circumstznce=z it is more naturzl to consider ) *u(t) as a
o=
- function of m for a fixed value of time. For this purpose let
-yt
-— q:eu

where t is the arbitrary but for the moment fixed value of time under

consideration znd write

- _ (ngtm-1 ' g, _.3y@ _ 1
1= ,Png+m(t) [ o ) g Y(l-gq) , form= 0,1,2,...

That is P is the probability that at time t the population has sizs ng +m

and so

represents the probability that the population is of siza ng or ag + 1 or ng +

- or ... which should of course equal ona. Thus, independently esta>liishing

(=]

Z D= i,
“m
m=0

will provide & check on the conclusions of ths last lscTura.

- = e T oim-L o ] - -

LEMIs Ifs = ) ( ) g {1 - c) then 8§ = 1L Zgro,o > 0 222 2 < g < 1
L - = = H El =

Proof. 8§ = g9 ¥ (n0+m“l)(l - q)m

Now recaliing the Sincmizl theorem Tor negative axponants:

(=
e
—
-
+
-
o
-
-
W
l
B
I
| -
—
<
]
t

(r- x)k

provided -1 < ® < 1, we can rscogniss that
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s0 ) p_ = no/qnﬂ =1 as required.
m=0

Thus the p,, do indeed define a discrete probability distribution since,
qQ = e_p?xso 0 < g < 1. This same distribtuion arises in other centexts
as well and, for reasons which should be chviocus, is referred to as the
negative binomial distribution.

In order to cbtain more tractable and convenient information from

that already determined we proceed to calculate the mean population size

M= ) (ng + m)p_ = ng + T m P, . since )

p_ = 1.

m=0 m=0 m=g

Now - -
_ +m-1y Tg m
Ymp = ] m(* ) et
m=0 m=1

ng+m~-1y _ _(pgtm-1)(ng+m-2)...{np+1l)ng

where m( m ) - m(mgl)...Z.l

(n0+m—l)(ng¥m—2)...(ng+l)
(m-1)(m-2}...2.1 no

= [““;TilJnu

and so mp ng oim-1 q"¢(1-g)"
mgl m mz_l (n w1 )

1

vwhich we choose to write as

no El [((n +%;i§?—l)—l} qn0+l(l_q)m—i} q—l(luq)
m=

=l o F f(agtl)+(m-1)-1] ng+l m-1
= ngg ~{1l-q) mgl( (1) J qa ° "(1-q)

Now the sum is of precisely the form shown to add tc one in ths =-ove lamm
whence
Z mop_ = ngg (l-a) = ngg ~ - Hg
P 1
m=0
end so
-1 =
M= ngg .

Hence our stochastic medel of population growth under the purs birth
assumptions predicts & mean population size at time t of

_1 + -
ML) = ngg — = ngeUL {g =8 HEy.

# A generally more applicable and less tedious way to derive this resuit

will be presentsd in the next lecture.
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In other words the 'expected' population size increases exponentially.
Furthermare its mean growfh curve is precisely that predicted by the simple
deterministic model of a population with constant snec1f1c birth rate u
(zero specific death rate) starting from the same initial size (see p.132
and Lecture 2)}. Thus our deterministic model can now be seen to rapresent
the mean behaviour of a stochastically prescribed situatien - a conclusion
which is generally valid.

To determine how good z predictor this mean growth is (and hence the
deterministic model), we might look at the variance of the population size
about the mean and so gain some measure of the likely departures from the
mean in our stochastic model.

The variance at time t is

-]

v(t) = mgo (mtag)® B () - ug e

2ut

and a similar, though slightly more tedious calculation, than that used +o
find M{t)} shows that

v({t) = nueut (ept ~ 1)

a rapidly increasing function of t. In fact we see that
v{t) = M(t)%/ng - M(t)

and so for large values of t the variance will increase like the square of
the mean. Thus the standard deviation will be roughly proportional to the
mean {see figure 1)}. Hence a particular population developing according to
this, or similar models, is likely to deviate markedly from the expectad
population size. Thus any prediction of the size of a particular population,
whether made from the stochastic model, or the corresponding deterministic
model, is likely to be quite poor. However, for a large collection of
populatiens satisfying the underlying assumptions the distributiocn of sizas
at any time is reliably specified by the above stochastic selutions.

Thus, you might say, that 4f nothing more is knowm about a particulan
population's dynanics than its satisfying the asswmpiions of the zure birth

process, then no usejul long term model is possible.

A
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Figure 2
Predicted distribution of population sizes at various ~imes.
' (A =0.5)

Collateral Realing.
Same as for the last lecture, particularly Feller.
EXERCISES:

L. Foru=~0C.lanédn =1 plot graphs of b, versus m for t = 0,1

3I—3

indicating the mean and standarg deviation zbout the mean.

2. Derive the supression Som w(+) ofwam v b e

2,3 and
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Lecturs 27. A Birth and Death Procszss.

In this lecture we refine the previous pure birth model by allowing

for the occurrence of dsaths.

The assumptions under which births take place will be the same as

those previously used, namely:

There exists a period hg > 0, such that for 0 < h < hp the probability of
any individuzl giving birth to one off-spring during an interval t to t+th
is un (where 0 < yp < hp!) and any one individual camnot give birth to more

than one individual during such an interval.

We will further assume that, independent of other factors, any
individual is likely to die between t and t+h with probazbility Ak, where

without loss of generality 0 < h < hg and 0 < A < hal.ﬁ

Let Pn(t) denote the probability of the population having size n & 0
at time t and assume
1 if n = ng

Pn(D) = L,
0 if n # ng

that is the population is known to have initial size ng.

By similar reasoning to that used previously we have that

Pn(t+h) =-A(n-1,2)P () +-A(n~-2,23P5 (£)-+ 4(n-3,3)830(t)- +

n-1
= z A(m,nnm)Pn_m(t)
m:—m

where Alm,n-m) denotes the probability that the population size hzsz chan
by an amount m during the interval t to t+h given thet it had sizs n-m =2
time .
- Such a change will oecur- if m+k births and k deatns occur Zetween t and
t+h where
max {0,-m} €k < min {n-m, n-2m}

{(for values of k outside the rangz =ither the reguired number of Hirths o

3
rt
jug
in

recuired number of dezths is Impeossible).

Thus

probebility of mtk births . |probabi
Alm,n-m) = ¥ . = . = ® 4
o lout of population of size n-m popul

ity of k ds=ths out of}

" As in the previous model (p.132) we could, without effecting our Finzl
conclusions, weplzece ph by ph + u1h2 + u2h3 + ..., and Ah by
Ah o+ AMhZ o+ Aph? o+ L
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(Note: Here we have assumed that any individual can both give birth and
then die during the interval t to t+h with probability pAh?, Thowevar-
since the probability of such occurrences is proportional to h? thein
presence will not effect our final conclusions and so we could equally
well have assumed births and deaths to be mutually ’

exclusive events for any individual during an interval of duraticn h.)

Hence, by similar &rguments to those used for the pure birth model,

we have

Amynem) = ] (07) (up)™ (1unyPERK [n}_cm](lh)kclﬂxh)““m“k
k

From this we see that except form = -1,0 or 1, Am,n~m) comtains a Factor
of h% where a & 2 and so for the purpose of our analysis it nead not be

explicitly determinad.

Furthep
A(~1,n+1) = (n+1)Ah + terms invelving h2, h3 etc.
ACO,m) = I-n(p+A)dh + terms involving h2, h? etc.
(1,p-1) = (n-1)vh + terms involving h2, h3 ete.

(unless n = 0 in which case it does not exist).
Substituting these into the above expression for'Pn(t+h) vields

P (t+h) = (n+l)ih Plap () + PLE) - n{uth)dh P_(t) + (n-Lhh Py ()

+ terms involving h?, hI etc.

and so

P_(t+h) - P_(t)
h

= (n+l)a Poe) - n(u+l)Pn(t) + (n—l)uPn_?(t)

+ terms invoiving h, h? etc.

Thus we may taks the limit as h +~ O %o obtain the system of diffzrential
eqguations

H - . .
Pn(t) =-(n+l)A?n+l(t) + (n—l)u?n_l(t) ~'n(u+K)Pn(t)

(Note: In the case of n = 0 tha Pﬁ—l(t) term is missing.)

This is not & simple recursive System of eguations such as those produced

by the pure birth model. To determine Pn(t) it is necesssary not only tc know
its predscessor E‘_l ; (¥} but also its successor P ¢1(t)' Naturzlly to dstermine
1™l n,__ -

the solution te = system such as this ig an extremely difficult tzsk - one
which is far beyond the scope of thase lectures. Nonetheless, solutions have

been found. For sxamole in the cass ng = 1 it can be shown that
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(-1t
1l -e
o = el
A - petHAIE .
Pt = 1 - Eegeo)inn - Po(£)HE po(£)I™™ (n 21

(see exarcise 1).

Instead of persisting in the quest for explicit solutions we will, in the
next lecture, turn directly to the differential egquations for information

about the behaviowr of Pn(t).

EXERCI!SE:

1. Show that the Torm of P (t) given in the lecture is indeed = solution of
the B_rth/ sath process in case PJ(G) =
Hint: Either substitute directly or assume P (t) has the form

P (2) = £(x) g "(t) and try to determlne f and g.
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Lecture 28. Analysis of the Birth Deagth Model.

Here we are interested in analysing the development of a population

for which the probability of it having size n at time t is Pn(t} wherea
1 = 3 - - .
P ) (n+1AP . (£) + (o LB, (1) n(u+A)P (t)

As in the case of the pure birth model, a very useful start would be

the determination of the mean {expected) population size at time t,

(=]

M(t) = § nP_(t).
n=0 o

Let us accept that M(t) will be a differentiable function and further that

MI(t) = } P '(t).
n=0

Then using the differential equation to replace Pn'(t) we obtain
[+

Mi(t) = nﬁm&ﬂ%ﬁﬂt)+(m&hﬁpﬂt)—nh&ﬂ%ﬁtﬂ

!
n=0

which may be pewritten as

=

Mt{t) = nzo[}n+l)2APn+l(t) - (n+l)APn+l(t) + (q—l)zuPn_l(t) -+ (n—l)yPn

(0

- nzuPn(t) - nEAPn(ti]

Splitting this inte individual sums and changing the variable of summation

where appropriate, we obtain

M'Y(t) = A ) nan(t) - X ] 0P (t) + p ] n%P _(t) +u Y mp_(t) -y ! n2P (1)
n=0 o n=0 n n=0 o n=0 o o=l n
-2 ] 02 (%)
n=0 T
The terms involving ) nan(t) cancel and so we are laft with
n=0 '

H'(t) = (u - 2) } n? (%)
n=g °
= {p - ).
Thus
M(t) = CE(U_}L)JI:
= npge VT e o) - I nP_(0)
n=0

Hp,
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Again we see that the predicted mean growth corresponds to the selution of
the”corresponding deterministic model, in this case a population of initial
size ng growing with specific birth rate u and specific death rate A (see
lecture 2).

A similar argument allows us to determine that the variance

v(t) = ] %P (1) - ¥2(x)

n=0

_ eg(u—x)t{l . e_(bu)t}-_lil_
H=A

We must distinguish between two cases -

{1) w > A, hers the mean is an exponentially increasing function of time,

while for lapge times the variance

v(t) - R galumdlt
E-A

u 4+ A

=M A 2
n%(u_l) M<(t}.

Thus the standard deviation is proportional to the mean and so agzin
we must conclude that in the absence of any further informztion no

reliable predictive model for such a population. is possibla.

{2) A > p, here the mean population size decays exponentially with time
and the variance for large times is

) . Eﬂ e(u_x)t

vt u ]

E o+ A

= W M{t).

Thus the standard deviation decreases with time like the sguare root of

the mean sizs. (See figure 1.)

+SD(p>A}
= - Mezan
(u>X)
T e == 50 (u<))
ity
~—
T e e —Mezn(u<d)

| ) I i 1 | ' I S
o 5 1o >t
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At first this might appear a more healthy situation, however although in
absolute terms the standard deviation does decrease the likely percentage
error is proportional to

standard deviation
mean

_1
@ M) 2
and so increases with increasing time. An even werse situation than in
case (1) where

standard deviation
mean

+ constant

and so the percentage error is likely not to vary too greatly.

Ultimate Extinction

From the governing differential eguations for the birth/dszth process,

WE have
Pa(t) = AP () >0

and so Pg(t) is an increasing function, which may be interpreted as the
probability that the population is extinct by time t. It is therefore

natural to take
Po = Limit Pp(t)
T
as the probability of ultimate extinction.

In the case of initial size Np = 1 we have the explicit solutien

(u-a)t
<)
Po(t) = A{m————-m}
- ue(u—k)‘t

If p < A, we hav e(u_A)t +~ 0 as t + = and so

i g X
2g = Limit Ppl(x) = = = 1,

That is, ultimate extinction occurs with probability one,

Alternatively, when v > A we have
- A
Dg = Limit Py(t) = = (< 1),
T u

28 may be seen by writing

A-u)t
?O(T) = A{E‘E(—A‘%H—:—l—}
le RIT "
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For ng > 1, call the descendants of any one of the initial ng individuals

an ancestral line. It has just been shown that

Prob (an ancestral line dies out) =

and from the basic assumptions of the model it Ffollows that this probability
is independent of the fate of the other lines. Hence the probability that
all ancestral lines dis out is [Prob (an ancestral line dies out)]nu,

B0 ir x <y

i.e. Prob (ultimate extinction of the population) = { V

1 if A > op.
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Asymptotie behaviour

Here we investigate

p. = Limit P (t) (n=1,2,3,...)
n THe o om

which may be interpreted as the likelihood of finding the populztion having

size n for large values of t.

It can be shown, and is certainly plausible, that
Limit P (t) = 0 for all n,
tH= N

and so from the differential eguations for the_?n(t) we have
= . . '1 N = - -
0 L%Eit Pn(t) uln l)pn_l + A(n+l)pn+l n(A+ﬂ)Pn

1

or Py = TE:ETK'[n(A+u)pn - u(n—l)Pn_l]-

Thus p; = 0 (the case when n = 0, since P = 0) and it then follows that
bz =0, p3'= 0, ...

We can interpret these conclusions as follows.

With probability pp (see previous section) the population reaches
extinetion, or else the population size increases beyond all hounds and this
happens with probability 1 - Pp- Hencae

ultimately the population must either die out or reach arbitrarily large sizes.

The style of analysis, and the type of conclusions rszached, in this sectier
may be carried through for a great many stochastic models besidas the one
considered here and so serves as an introduction to the general tools svailabls

for use by those working with stochastic models,
Collateral reading:

Apart from Fellsr (alrsady referred to in pravious lecturss) there avs a
great many good books on stochastic Drocesses and their applicziions, one such
work is ' '

Emanual Parzen, "Stochastic Processes!

Holden-Day, San Francisco; 1982,
EXERCISES:
1. For the birth/death model, show
5=} P (1)
n=0 "

is a constant.

Hence conclude that for each value of t the distribution of vooulation

sizes iz proper, that is

ZP(t)=l.
n=0 B
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2. Derive the expression for the variance, of the birth/death process,

given in the lecture.

3. Using the methods of this lecture re-establish the formulae for the

mean and variance of the pure birth process {see Lecturs 26).

4. In the case of ng = 1 graph the explicit form of Pn(t) given in lectures
if ¢ = 0,3 and A = 0.2;
(a) regarding the Pn(t) as functions of t for n = 2,3,4.

1,2,3,4.

(b) regarding the Pn(t) as functions of n for t

5. Show that a population of initial size 11 growing according to the
assumptions of the birth and death process, with y = 0.3 and A = 0.2,

has about one chance in one-hundred of becoming extinect.

6. Tacitly we assumed in the course of this lecture that all solutions of
the difference squation p{n) = p pla+l) + g pln-1) are of the form

p(n} = A + BQ?I{ Prove this assumption.

PROJECT : Simulation of the Birth/Death Process

If you are familiar with a computer language, such as F@ERTRAN, you should
try the following exercise. (It would also be preferable if you had access to z

computer, and so were able to obtain some actual results.)

Consider an "imaginary' population, initially of size Hp (for definiteness,
take Ng = 100) such that during a unit interval of time the probability of any
individual

(a) giving birth to one new member iz |

(b) dying is '

(¢) not giving birth or dying is 1 - (u + A).

Thus, these are the only three possibilitiss.

By using 2 random number generator your task is to develop & ccomputer program

which will simulaiz the development of such a population for spgcified values

Usually the scientific subroutines library contains z randem number
generator. In ths case of FPRTRAN sach execution of the following s=uauence
of instructions produces the number X which, while it may not be verfectly
randomly distributed is quite adequate for our needs.

=5+ X

R A I L PR
T TR T TR TR TR
H» D <33

=R -X
0f course you must aveid altering the values of any of thess variables
elsewhere in the program, and must initially assign 'random values" (8 digit

numbers between 0 and 1) to each of S, T, U, V, W and X.
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.!J.

of A and u. i

One way of doing this is to repeat the following trial as many times as

there are individuals in the current populatien.

Generate X, 2 rectangularly distributed random number between 0 and 1.
If D €X €y then a birth has occurred, if y <X < A4y then a death has
occurred, while, if A+p € X <1 there has been neither a birth nor a death.
If at each trial the effect on the population's size of these births and
deaths is recorded, then upon the conclusion of the trials we will have the
population size one unit of time later. By repeatimg this whole procedure
over and over again you can determine the population's size at the end of

each successive time unit.

Using values of A = 0.15 and p = 0.2 when running the program you

develop, determine the population size at the end of 1,2,3,...,20 time
units.
Note:- By running the program a large number of times you can build up a

frequency tabie of population sizes for different times.

(k runs out of % gave a population size between 110 and 120 at time 6 units.)
Such a frequency tzble should to some extent mirror the Pn(t) versus
n curves for the birth/death model considered in the lecture and so provides

one way of obtaining numerical information about the model's solution.

ats

%% In this we have assumed that the age of an individuzl is unimportant, if
this were not the case we would meed to add in an age structure, assigning
different probabilities of giving birth and death according to the individual's
age. Thus rather than "pooling"” all the individuals into one population we
would have to rscord separately the evolution of each age group. You might
try to elaborate on your program to include something like this.
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*APPENDIX TO LECTURE 28 - Stochastic Differential Equations

Over the last two decades a powerful new approach to Stochastic Modelling
has been developed. This is the theory of Stochastic Differential Equations
which is generally based on Ito's calculus of stochastic differentials. The
naewvness of this approach has to some extent prevented its use widely in the
bicological area. However it is almost certain that its use will become
more common in the future. Unfortunately, an appreciation of the theory and
techniques of stochastic differential equations requires a sound understanding
of Probability theory, in particular the concept of stochastic integrals. Any
attempt to develop this background would take'ﬁs far beyond the scope of these
lectures and so we must content curselves with a brief examination of a discrete
medel which may nonetheless serve to indicate the flavour of stochastic
differential eguations. {(The continuous stochastic differential equaticn
analogue of this madel requireé the extremely intricate theory of Feynman Paths
and the existence of 'appropriate probability' measures on certain function

spaces. )

Firstly consider the deterministic model of a population growing with
constant specific birth rate u (and zero death rate}. If N(t) denotes the
size of the population at time t then

NT(t) = uN(t).
We may replace this by the discrete approximation

N(t+h) - N(&)
h

uN(t) (where h > Q)

To find N{t) aporoximately using this we could divide the interval 0 to t into

. T . . .
n equal pieces, set h = E-and rewrite the sbove difference equation as

. t S
Ny = Ny N, — where N, = N(=]) i=0,1,...,n.

n
or u-a-
I HE
Ny = Ni—l(l T )

From this it is c¢lear that

§o= (L + E)™ 5 =0,1,...,n where Ny = N(0)

m n
whence

N(x) =N =wp(1 + %}“

. - b : t
As is well kmown Limit {1 + EJH = ¢, and so the 'exact' result ¥(t) = Nget*
n+=

1
follows upon taking the limit as n + =.

=1

If in this model u were not a constant but varied with time, then ths
appropriate difference equation would be

a.t

= N, [l + -%—J where a; =

Ni i-1

u[(i—l)t)‘

n
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which is easily seem to have the solution

’ a t
K 1ol + B 29 2

n ast
Ngigl(l + T) .

We now consider the analogous stochastie situation where the
"instantaneous" specific birth rates a,, g5 o En* are independent
random variabies. For simplicity, we will assume that the a.'s are
identically distributed, with mean u and variance o2 (Note: it is not
unreasonable to suppose that ¢? is a function of En). This corresponds to

the deterministic case with all the a, equal.

By exactly the same reasoning as before we find that

is a random varizble, =qual to the population size at time t.
By a well known result in probability theory the mean of such a product is

the product of the means of the factors and so we have

n a;t
Mean (N(t)) = Hy 1 Mean (l + ‘_“J
— i=1 n
n
ut
=Ny E (1 + XX
0 i:l[ n
= _ut n
Mo {1+ 25

Again we see that the mean behaviour of our process is that of ths corresponding

deterministic model.

The variance of & preduct of independent randem varizbles can zlso be calculatad

and in this case shown to be

2 e 2T
+ (g2 + pu2) Ezﬂn -1+ 1

et

Var (N(t)) = Ng[ll + 2u

One is tempted to %iva meaning to these results in ths limit as n =+ =, 5ust
istic case, howsver this step can only he taken with grazt

caution. The mean behaves as we would ‘expect', approzsching Ngeu , on the

other hand, unless g2 - [Ea_l the variance approaches 0 - a result which one

would not accept s reasonahls (7).

- . e M e W o - - N
1t is to tThe limiting case of wmcdels such as this that the thsory of

stochastic differential ecuations can apply.

Random varisbles will be indicated by underlining.
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Collateral reading.
Over the last few years a great many books on stochastic differential

equations have appeared. Some of these are listed helow:

Armold, Ludwig " Stochastic Differential Equations, theory and
applications" Wiley, N.Y., 197%4.

Gihman and Skorohed "Stochastic Differential Equations",
Springer Verlag, 1972, Band 72.

Hersh, R. "Random Evolutions: A Survey of Resulis and Problems",
Rocky Mountain J. of Maths, Vol. 4, No. 3, 1974, pp. H39-L76.

McShane, E. "Stochastic Calculus and Stochastic Models™
Academic Press, 1874.

Srinivasan and Basudevan "Introduction to Random Differential

Equations and Their Applications'", Elsevier, N.Y., 1971.



