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TABLE OF NOTATIONS

the set of natural numbers, {1, 2, 3, N D
the field of ratiomal numbers.

the ordered field of real numbers.

the field of complex numbers.

the Cartesian product of the two sets X and Y

i.e. the set {(x, y): x ¢ X, vy € Y} of all ordered
pairs with first element a member of X and second -
element a member of Y.
The Cartesian product of R (C) with itself n times.
R" regarded as a vector space, with addition and =calap
multiplication defined component wise.
an element of R* (C") or v
X = (X1, X2y v0uy %)
the complement of A in X i.e. the set
{x e X: x ¢ A},
the closed interval {x ¢ R: a <x <b}
(Note: it is implicit in the notation that a < b).
the open interval {x ¢ R: a < x < h}

(Note: it is implicit in the notation that a < b).

HalT open intervals in R.

the set of continuocus functions with domain the interval I.

special cases of C(I).
a mapping from the set ¥ into the set Y.

2 notation for the function f which maps x to £(x)
(2 e some implicit domain X).

the greatest integer function

(the largest integer not exceeding x in value).
the absolute value function x w Txiffxx;loo_

P implies g, or g if p.

D if and only if q, or {p = q) and (g = p).

if and only if.



iii.

n
R" given by d(x, y) =-Z |xi -~ Yi‘

d1 - @ metric on (including the case nlEll)
C(I) given by d(£, g) = J |f - g].
I 1
n .0 2 ;
dp - a metric on R* (C") given by d(x, y) =[ Z !Xi - y.|2] .
o \i=1 *
R" given by d(x, y) = Max [x, - .|
, ~7 2 4=1 9, . 1 7d
d_ - a metric on
C(I) given by d(f, g) = Max |f(x) - g(x)].
xeTl
n . n
ﬂp - the metric spaces (V , dp) where p = 1, 2, =,
E" -~ 2;, Euclidean n-space.
Br(x) ~ the open ball of radius r centre x.
Int(A) - the interior of the set A.
d{a) - the diameter of the set A, Sup d(x, y).
X,y € A
Al ~ the derived set of A.
A - the closure of A, A U A',
bdry A - the Boundary of A, A n (X\ &)
{Al: A e A} - an indexed family of sets.
£(A) - for £: X+ Y, A c X, the set {f(x): x ¢ A} c VY.
f_l(A) - for £: X + Y, AcY, the set {x ¢ X: £(x) « A}.

Common symbols not used in the notes, which may be useful in your working -
T - there exists.

¥ - for all.
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External Notes
ANALYSIS IN METRIC SPACES

PRELIMINARIES

Lecture 1 Definition and Evamples
In both mathematics and common language the notion of distance is often
used figuratively, for example:
'Orange is a colour nearer to red than violet.'
'When a massive particle moves in a gravitational field it
follows the path of shortest "distance' (geodesic) in
space-time.’

'"The larger the value of n ¢ N, the closer the poelynomial

n
p Gx) = § /m!
m=0
is to the function exp.’
We develop an extended "theory" of distance (encompassing many cases like those
above) which has proved to be fundamental for much modern mathematics. OQup
primitive concept will be of a set, for which each ordered pair of elements (x, y)
has associated with it a real number, d(x, y) - the "distance'" from x to y -
which sztisfies certain conditioms set owt below.
Except in specific examples, we will not be concerned with the nature of the

objects comprising our set,or with how the distances between them are "calculated",

DEFINITION: A metric space is a set X,.equipped with a metric d, i.e. a function
d:X x X + R which satisfies:

(M1) d(x, y) =0 all x, y € X

(M2) d(x, y)

(M3) d(x, y) = d(y, x) all x, y € X (symmetry)

1

0+ x =y

(M4) d(x, y) <d(x, 2) + d(z, y) allx, vy, z € X (triangle inequality).

H. Minkowski desecribed these four requiremnts on the function d as "properties
which any notion of distance ought to possess".

Thus (M3) stipulates that the "distance" from x to ¥y is the same as that Ffrom
y to x

—_— d(x,y) >

x ¢ vy

Ermee q(y,%)




i.e. d is symmetric in its two arguments, while (Mi) expresses the minimality
of "distance'": +the distance from x to y via any intermediate point z cannot be

"shorter" than the direct distance from X to y.

%
d{x,z)
d(z,y)
X S A ¥y
d(X,Y)
NOTATION: The metric space consisting of set X and metric 4 is denoted by

(X, 4).

EXAMPLES: (1) The set R with the usual metric

dy(z, y) = Ix - yl all x, vy e R

is a metric space.
EXERCISE: Check that this is indeed $0, by proving that the axioms (M1) to (Mu)
are satisfied by 4d;.

NOTE: The metric d; agrees with 'ordinary'! distance between points on a line.

(2) {(a) R?, whose elements,x = (x;, x5),are ordered pairs of real

numbers, together with the Euclidean metric

d2(x> ¥) = VG = 9107 ¥ (xp - 3207 all %, y e R?

forms a metric space.

(b) Similarly, C (the field of complex numbers) eguipped with
the (unitary) metric

da(z1s 22) = |21 - zp] = V(x] “ %302 ¢ (y1 - y2)7 all z1, 2z ¢ C
where z, = x. + iy. (j = 1, 2)
s S T
is alse a metric space.
NOTE: The elements of R? (or GC) can be identified with points in the plane (via
a set of rectangular Cartesian axes) and then dy gives the distance between points

in the sense of Euclidean gecmetry.

(3) Any set X can be rendered a metric space by using the discrete metric

defined by

0ifx =y
d(x, y) = { _
lifx #£y



Proof (that the discrete metric ié_a metric). Clearly (M1) and (M2) are
satisfied, while (M3) holds since = and ¥ are symmetric relations.
To establish (M4) for x, y, z € X we must consider the following cases

X=y#2,X=y=z2,xfy=2,2=x% Vo Xx £y # 2 # X

d(z, y) = 1 so
(0 =) d(x, y) <d(x, z) + d(z, y)(= 2).
The other cases may be handled similarly. &

In case 1, d(x, y) = 0 while d(x, z)

NOTE: While the discrete metric is certainly pathological it is of considerable

importance in the construction of counter-examples.

OBSERVATION: From these examples we see that the underiying set does not determine
a metric uniquely; many different metrics can be defined on the same set and so

Several distinct metriec spaces can share the same set.

EXAMPLES: (1) R can be equipped with the usual metric di(z, y) = |x - v| and the

discrete metric, d. Clearly these two metrics are not the same

di(2, 3.8) = 1.8

while d (2, 3.8)

1§

Frequently the appropriate metric to use is determined by the type of problem

under consideration, as the following example illustrates.

(2) In elementary plane geometry:the:most‘use&gmetfic on R? is

do{x, _Y) = V’(Xl - v1)2 + (2o - ¥g)2

However, for a law abiding motorist, the distance between site g and b on the
map below is 7,not
d2(§: P) =5

The appropriate metric for our motorist to use would be
y) = b - wl [ - ya|  Gimy?)
L | L

i

H1

_

E

e | — aoeto




Collateral Reading.
Giles "Analysis of Metric Spaces'!,
University of Newcastle, Lecture Notes in Mathematics, No. 1,
_ Ch. 0 and p.19.
A good informal introduction to the notion of a metric space may be found in

W.W. Sawyer "A Path to Modern Mathematics", Pelican, Ch. 10, pp.187-221.

PROBLEMS. _
1. Prove dy(x, y) = |x; - vi| + [xp - y2!| is a metric on RZ.

2. Prove d(x, y) = min{1, [x - v|} is a metric on R.
3. Let (X, d) be a metric space. Show that d* defined by

dx, y)

oY) T TR

is also a metric on X.

s, Let (X(l), d(l)), (XCQ), d(2)) be two metric spaces.
Show that each of the following define metrics on the Cartesian product
X(l) % X(Q) ={z = (%1, %) x; ¢ X(l), Xy € X(z)}

(i)  d(x, y) = Max a{d) (%,, v.)
= i=1,2 SR

2 .
(ii) d(x, y) = Z dcl) (., y.) - (Note: the metric in Prob. 1
~2 . i* 71 . . .
i=1 is a speclal case of +this.)
5. (very useful and important) In any metric space (X, d) prove the following
inequality
ld(x, z) - d(z, y)l < d(x, y) all x, vy, 2 € X

*%6. For any set X # O, show that da:X x X = R satisfying
(M1t} d(x, y) =0®x =y
and (M2") d(x, y) Sd(x, z) + d(y, z) for all X, ¥, 2 € X,
is a metric on X.
i.e. The four axioms M1 - M4 of a metric space could be replaced by these

two slightly more intricate ones.

NOTES on lecture 1.

1. Because the study of metric spaces is an abstract one,it is essential that you
become completely familiar with the definitions and notations as well as some
of the more basic examples.

2. Drawing diagrams which interpret the various definitions, constructions and
results in the familiar space (RZ2, dp) is a valuable aid to understanding,
and a practice which you should actively adopt.
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(HISTORICAL) The definition of a metric space was first given in 1906 by

M. Frechet (Paris) who for many years pioneered the study of such spaces

and their application to other areas of mathematics. In the same year (1906),

and perhaps independently, Herman Minkowski (1864-1909) gave a similar

definition in the course of his investigations into "the geometry of numbers'.

It was toward the end of last century that mathematicians (due to the work of

Klein, Hilbert and many others) began to appreciate the power of generalized

methods (such as those represented by the study of metric spaces) and so

initiated the study of abstract Systems - vector spaces, metric spaces,

normed spaces, topological Spaces, groups, rings, categories etc., - whiech have

proved central to much twentieth century mathematics. Because a prototype

for many of these structures is 'ordinary' 1, 2 or 3 dimensional space, they

are often referred to as spaces and their elements as points; hence metric

space {(metric, from the latin metor - measure). The study of such a structure

has proved valuable for several reasons, three of which are

(a) By retaining only essential features of a situation their consequences
can be studied more simply in a less cluttered enviromment; and

(b) any conclusions of such a study are immediately applicable to any
particular realisation of the structure. Thus a result can be
simultaneously established for a number of apparently distinct situations
and so hitherte unsuspected connections revedled.

(c) Once we recognize our object of study as a metric space we may in part
transfer to it our Yintuition" concerning familiar metric spaces such as
2
(R JdZJ -
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Lecture 2. Further Eramples - Normed Linear Spaces.
For many of the more important metric spaces the metric is constructed

irom additional structure carried by the underlying set.

EXAMPLE. Because R is a totally ordered field we are able to construct the

absolute value function x w» |x|, form x - v (for all x, y € R), and so

define the uniform metric by d;(x, y) = lx - y|. This example is generalized by
PROPOSITION: Let X be an abelian (commutative) group, with respect
to a binary operation denoted by +, on which an absolute sub-additive norm

(a.s.n.) 15 defined, i.e. a function
x e Izl e R (all x € ¥)
satisfying:

(n1) Izl 20 a1l x e x;
(n2) Ixll = 0+ x=0;
(asn3) [I-xll = llxll all x e X;
(n4) Iz + yll <zl + Iyl al1 %, y € X,

then
dlx, vy} =llx - yll (all =, yv & X)

ig a metrie on X (the metric induced by the a.s.n. ||-1).

[EXAMPLE. |IIxll = |x| (all x € R or C) defines an a.s.n. on R (or C) which
induces the usual (uniform) metric.

REMARK. Clearly an a.s.n., |||, generalizes the absolute value (modulus)

(hence the notation) and so Ilx may be thought of as the

function f—
"distance"of x from the origin (group idenmtity) 0.]
Proof. By (al) d(x, y) =llx - yll 20 (all x, y € X) so (M1).

Az, y) =0*|x -yl =0
“x -y=0, by (n2)
* x = y so (M2). 7
d(z, y) =llx - yll =ll- (¥ - x)l (group properties)
=lly - «l, by (a.s.n.3)
= d(y, %}, so {M3).
dx, y) = llx -yl =1l(x - 2) + (z - )

Sz -zl +llz - yll by (o)
= d(x, z) + d(z, y), so (Ms).

This result is useful, since it is frequently less tedious to establish {(nl)

to (n#) than to prove directly that d is a metpic.
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SPECIAL CASE: If X is a vector (or linear) space (i.e. admits scalar
multiplication) over R or C and (asn3) is replaced by the stronger

regulrement
(n3) Iazll = [Alllxll all %, v ¢ X and scalars A,

then -l is a norm on X and X a normed 1inear space.

Remember, every example of a normed linean space

(e.g. R2 with Ilxll = V212 ¥ %52, all X = (x5, %3) € R?)

is also an example of a metric space with diz, y) = llx - yll.
However, not every metric on a vector space is induced by a norm.

EXAMPLE. The discrete metric d on any non-trivial vector space X is not

induced by a norm.

Proof. Assume the contrary i.e.

dlx, y) = llx - yll for all x, ¥y € X and some norm, ]|, on X.

Then for x # y we have 4% # 4y and so

1

d(sx, lsy)

(-~ v)l
lx - vl
(x, y) =%

3|

a contradiction, so mo such norm can exist,

FUNCTTON SPACES. (Perhaps the most important examples of metric spaces,

and the ones to which our ensuing theory has the most immediate and important
applications.)

Much mathematical analysis comcerns the approximation of functions
(e.g. exp, &n, y such that 22y 4 oxy' o+ (%2 - v2)y = 0)
by other (usually more "tractable") functions.
E.g. Approximation by polynomials - Taylor's Theorem etc.

Approximation by trigonometric polynomials (or their equivalents) -

Fourier Series and Harmonic analysis.

To measure the "goodness" of these approximations, a notion of 'the distance
between functiong, is necessary. Consequently, we address ourselves to the
problem of defining suitable metrics on the set Cla, b] of all real valued
functions defined and contimious on the closed interval
la, b1 ={x e R: a<x éb}.*

% Recall, f:[a,b] + R is continuous, if for each e > 0 and x € [a,b], there
exists a § > 0 (& = §(e,x), although in fact § can be chosen independently of
¥ - Heine's Theorem) such that

[% - y| < 8 = |£(x) - £(y)| < & (where y € [a,b]l).



OBSERVATION: Cla, bl Zg a vector space over R with 'addition' and 'sealar

multiplication' defined point wise, i.e. given any £, g € Cla, b]

f=

T + g is defined by (f + g)(z) = £(x) + g(x), all x € Ta, b]
(f + g € Cla, b] since sums of continuous functions are continuous) and fop
A € R, Af is defined by (AF)(x) = Af(x) all x € [a, bl. (The proof is an

exercise in linear algebra. )} Hence, to construct a metric For Clfa, b] it

suffices to define a norm on Cla, b] measuring the proximity of any f to the

zero function 0(0(x) = 0 all % La, b1).

This may be done in many distinct
ways. '

. At any x ¢ [a, b], the function f e Cla, b] differs in value from the Zaro

functien, 0, by ff(x)l. It is reasonable to take the largest such difference

in value to be the "distance" between £ and 0.

Accordingly,define +he uniform norm on Cla, bl by

I£l, = Max _|£(x)]
x®ela,b]
T A

e

g =$(x)
§=O§=c1 e )

C

© a b
Clearly: £l > o, I£l =0+ [f(x)]| = 0 a1l x
< f=0,
lrfll =  Max [r£(x)] = Max el [£G) | = |x[llgl
®  xela,b] xela,b] =
HE + gl = xe%gfbj [£(x) + g{x)|

<
e gfb] (Ex)] + [gC) )

< Max lf(x)l + Max Ig(x)l
xgla,b] xel[a,b]

L]

= Il + gl

and so |-l is indeed a norm on Cla, bl, inducing the uniform metric

d (f, g) =l - gﬂm = Max If(X) - g(x)’.
A I xela ,b]
TP~ dleg)

g =$(=)

| Y& g(>)
E; —>




%3+ x + 1

E.g. If f(x)

and g(x) = x3 4+ %2 ¢ ¢ 4+ 1 ail = « [o, 1]
i a(f = M I~ %2
then in C[0, 17, d( . E) Oﬁiél ]ﬁx X [
= %- {check)

2. The "area" between f ¢ CLa, b] and the zero function, 0, on [a, b] definesg

an alternative norm to ”-”m, viz
b b
€1l =j | £(x) | ax [=[ ifl}
a a

which exists for all £ ¢ Cla, bl since !fl is continuous, hence integrable,

EXERCISE. Prove that l:ll; is a norm for Cla, b].

The metric induced by this norm,

b
di(f, g) = J |£ - g
&

is represented by the area of the shaded region in the following sketch

5&«

E.g. For f, g as above
1 1 1

%
d1(f, g) = I - x?|dx = f (s - x2)dx + J (%2 ~ lx)dx
0 0 i
- L
=2

HIGHER-DIMENSTONAL EUCLIDEAN SPACES

Let X = R” - +the set of ordered n-tuples of peal numbers. Then X is a vector

space (V ) with addition and scalar multiplication defined component wise,

FROPOSITION., Fop X = (%1, %9, vuu, xn) € X,
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ol + lxaf + oot Il

"15”1 =
”?}”2 = ‘/Klz + Xzz T ... t xn4
and Nzl = Max{[x1|, |xp|, «vvs |xg]2

define norms on X.

The proofs for ll:Il; and I+l  generalise problem (1.4) and may be proved by
induction from it. (Alternatively the norm axioms (N1) to (N4) can be

verified directly.)

EXERCISE. Prove that ||-ll; and ||l do define norms om X.

Clearly ll-lly satisfies (N1), (N2) and (N3), so it only remains to prove
(W4) i.e.

lx + glly <z, + lylly

or 1

E

s n 1 n S
- ”’j)z] g[z "'2] *‘[Z sz]
3=1 j=1

J

-

1
(MINKOWSKI'S Tnequality).

Squaring both sides preserves the inequality and so it suffices to Drove

n n n n 3 n

L (.2 4 2x.y. + y.2) < }ox.2 o+ 2[ D) y.2] + ) y.2
j=1 ] 177 3 j=1 ] j=1 ] j=1 ] 321 ]
or, cancelling terms,

XV, = [ X, V. ]
P R N I

e

(which implies

[I’l 2 n n

7 xjyj] < .Z x.2 _Z y.2

j=1 =1 1 §=1

- the inequality of Cauchy-Schwarz ~ Buniakovslki. )

Now, since a? - 2ab + b2 (= (a - b)2) 20 for all a, b € R we have
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Summing these inequalities over 7, gives

I
2 X X.V,
jop 373
- = 2
o n i
[L = 1oy
j=1 3=1
n n n *
or Voon.y. 45[ D) y.z}
3=1 17 3=1 ] j=1 ]
as required.
|
NOTE. The metric induced on X by -n_,
d (x, y) = Max [z, - vl

[+« B

~ j=1,2,..,n 1] ]
is known as the uniform (or  Supremum) metric for R-.

-5 induces the Fuclidean Metric
n %
do(x, y) = [ ¥ (xj - yj)z] s

which is a direct generalization of the ‘ordinary' distance between points

in 1, 2 or 3 dimensional space.

(Vn, d2) is frequently referred to as Euclidean n-space, denoted by E" op ZE .

Collateral Reading.
Giles, op cit Ch 1, sec 1, pp.19-25.
Simmons, G.F. "Introduction to Topology and Modern Analysis"

McGraw-Hill, Ch 2, sec 14 and 15, pp.80-90 - see also sec 9, PpP.51-58,

PROBLEMS.
1. Let X be a vector space and ||-|| a norm on it. Show that
d(x, y) = Min{1, lIx - yl}

defines a metric on X (see problem 1.2) which is not induced by any norm.

2. Let X be a normed linear space, norm ||*]l. Prove the inequality

il ~ iyl <llx - v, a11 X, V¥ € X.
(see problem 1.5).
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3. Using Taylor's Theorem with remainder, cbtain estimates for

d_(f, pﬂ) and d1(F, pn) in CLO, 1]

when n
(i) f = exp and p _(x) = ) X" /m!
n =0
5 m _ Zm+l
and (ii)} £ = sin and pn(x) = Z (-1)y" /(2m+1}!

m=0

4. For p =1, 2 and = graph the following set of points in RZ

{x = (x, y): ii}fllp = 1}.

ol

®5. ©Show that the set %5, whose elements

X = (%15 X945 «un, X s ce)

(=]

are infinite sequences of real numbers such that Z ®.2 < w, iz a
i=1

vector space over R with component wise definitions of addition and
scalar multiplication.

Further show that it is a normed linear space with norm given by

o 1,
lxll, = [z x.zJa

The space £2 with norm I|+l5, known as Hilbert('s) space, is of considerable

importance and represents an infinite dimensional version of 'ordinary

Euclidean space!.

NOTES on lecture 2.

For each real number p 2 1. i

Il - [jrgl ]xj]P]P

defines a norm on R" (or G%), of which F-l7 and I1-ll, are special cases.
Further for each %€ R™

Limit sl = Max [%.] = [l
v P 4=1,%.....0' 3 w

(hence ‘the notation).
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Similarly 1
)

ERE Ub #/7]

a
defines an infinite family of distinet norms on Cla, bJ.

The truth of these remarks follows from a generalized Cauchy-Schwartz

inequality, known as H8lder's inequality
1 1

b b P (b q
‘f fé‘ g;[J IflpJ [j fquJ (where g = - ? T if p > 1)

d a

from which an appropriate Minkowski inequality follows.
These norms play a domimant role in much modern mathematics and

Theoretical physics (particularly in Quantum Mechanics),
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Lecture 3 Convergence and Cauchy Sequences.

RECALL. A sequence (of elements)of the set ¥ is a function a : N - X, and

we usually write a for a(n) - the image of n e N under the function a.

NOTATION. The Sequence a : N + X of X is denoted by

[=a]

{ah}nzl =ay, as, az, ..., By e

(when the context makes it clear that we are dealing with a sequence and not

a set, we will sometimes write {a } instead of {a }m_ ).
sirictly increasing 0 n'n=1

[Let {nk}:=l be a sequence of natural numbers i.e.n t N+ N: ke n(k) = o, -

Then for any sequence {an} the composite asn is a subsequence of {an},

«a

{a_ lori{a 1} _.=a = -
P I R P e
DEFINITION. A Sequence {xn} of points of the metric space (X, d) is convergent
——
if there is 3 point x € X Ffor which, given any e > 0 there exists an N ¢ N

such that
n=N :’d(xn, X) < g,

In which case we say the sequence {xn} converges to (has limit) x and write

d(xn, X) + 0. Provided the metric space within which we ape working is clearly
understood we may write Léggt ¥, ¥ % or simply ¥, 7 ¥ to mean the sequence {xn}
converges to x. (Sometimes, to emphasize the metric w.v.t. which convergence

is taking place we may write X, 7 x.)

NOTE. This definition of convergence corresponds to the definition of convergence
in R with our general concept of distance replacing the usual one in R, i.e.

'Xn - x| becomes d(xn, %),

THEOREM 3.1: A convergent sequence {xn} of the metric space (X, A) has g unique
Limit.
Proof. Assume X, % and ¥, * ¥, then for any e > 0 there exist Ni, Np e N

such that
= = < £
n Ny d(xn, ®) 3
E
2

n = Ny ="’ci(:».:n, v) <

(x, xn) + d(xn, ¥)s by the triangle ineguality

and, since e is arbitrary, this implies d(x, y) = 0 or x = Ve
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DEFINITION. 1In the metric space (X, d) the diameter of A c X is

a(A) = sup  dlx, y)
X,y € A

ol
i.e. the supremum or least upper bound of the distances between pairs of poiats

in A (which may be finite or infinite. By convention, take d(¢)} = -=),

A is bounded if |d(a)]| < w.

THEOREM 3.2: In a metric space the points of a convergent sequence form a
bounded set.
Proof. Let X X in (X, d), then there exists ¥ e N such that d(xn, x) <1
all n > HN.
8o, let r = Max {d(xy, %), d(xp, %), ..., d(xN, %), 1} (<=, why?)
then d(xn, X) Srv for all n € N
whence d(xn, xm) éid(xn, x) + d(x, xm)
< 2r for all n, m ¢ N
and so d({xn: n=1, 2, ...} <op

i.e. the points of the sequence form a bounded set of diameter less than op

REMARK. The property of convergence is not inherent in a sequence but depends
on both ¥ and 4.

equal to 2r.

EXAMPLES. (1) Dependence on 4.

Take X = CL[0, 1] and for each n ¢ N define fn e X by
1 - nt forOQtQ%
fn(t) =
3::1&(&)
—_———y =y (t)
g-‘f;,(f-)
————=3=4 (%)
— > &
b 3
1
_ _ 1
Then an - oll; = | £ (t)dt = EE-+ 0

]
so f =0 in (C[o, 11, d).

. % We cannot use maximum as the diameter may not be attained. For example the
open interval (0, 1) has diameter 1 w.v.t. the usual metric on R but there is
no pair of points x, y € (0, 1) with Iz - y] = 1.
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However If - ol = Max _|£ (t)] =1
n ®  tef0,13 0D

so £ #0 in (CLO, 17, 4 ).
n

(2) Dependence on X.
For X = R and d; the usual metric on R,
1

X =—=+0 ¢ X.
1 n

However if we take X = (0, 1], ®x = %—does not converge, as the point
toward which the sequence is tending (0) is not a member of X. In a more
general situation it may be difficult to identify the "missing" Limit point
and so this can represent a real problem.

We investigate one property of convergent sequences which is independent

of ¥ (but not of d).

DEFINITION. A sequence {xn} of the metric space (X, d) is a Cauchy Sequence

if given € > 0 there exists an N e N such that
m, n>N=”d(xm, xn) < g,

i.e. points in the tail of the sequence become arbitrarily 'close' together.

EXAMPLE. For X = (0, 1] with the usual metric d;(x, y) = |x - y| the sequence
1, %3 %3 %3 . %3 -»+ 1s a Cauchy sequence (although from above it is not a
convergent sequence. Thus not every Cauchy sequence need be a convergent sequence.

© 1
To see that {%-}n"l i1s a Cauchy sequence, note that I%-— 51 < £ whenever

m, n > [%ﬂ.

THEOREM 3.3: Every convergent sequence of a metric space ig a Cauchy sequence.

Proof. Let X+ x in (¥, d), then given € > 0 there exists N ¢ N such that
E
= =
d(xn, x) < 5> all n =W
whence, for m, n & N we have
d(xn, xm) sid(xn, ) + d(x, xm) (triangle inequality)
E E _
< -2— + "é" - B
as reqguired. B
DEFINITION. The metric space (X, d) is complete if every Cauchy sequence is a
convergent sequence i.e. (d(xn, xm) + 0 as n, m + =) = (there exists x € X such
that x_ -+ x).
n
We will single out the class of complete metric spaces for a more intensive

study in later lectures. We now investigate some of our example spaces for

completeness.
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EXAMPLES.
(1) By assumption (or construction) (R, di) and (R, dy) are complete (as is
(C, dg)).

(2) (CEa, bl, d1) is not complete

Proof. The sequence defined by

+
0 for a < ¢ <2 5 a
_ a+b b +a h +a 1
fn(t) = n(t - 5 ) for =<t <—5—+=
1for 228 Ty <y
2 n
Y4 N
>n)
o e —— - 3 1t
is a Cauchy sequence, since form > n
di(f , £) = Ilfn - fm[E1
+
a.2 b + %
+ . +

= [ m(t - b 5 2) - nlt - b 5 Dat

a+ b

2
< 1
\-EE-+ 0 as m, n+ o,
s a<t <bta Note also, it is necessary
2 1
However £ =+ f where f(x) = to show £ -+ f where
1 b ; d ¢+ <p fn’ fEC[a,b]:fn(x)+f(x)V

xela,b], before the proof
b + ay given here is complete.
5 .

and £ £ Cla, b] (f is discontinuous at

(3) (cCla, b1, dm) is complete, hence the importance of the uniform metric

d(f, g) =llf - gl = Max _|F(x) - £(x)]
xela,b

To see this it suffices to know that & uniform limit of continuous functions

is continuous (see appendix to this lecture).
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(4) From the completeness of R follows the completeness of the spaces I
(p=1, 2, = and n € N). P
The completeness of 22 is a consequence of the following result.

A similar analysis establishes the other two cases,

PROPOSITION. The sequence of points
n
X = (Xkl’ Kips +ves an) € &3 (k=1,2, 3, ...)

18 a Cauchy sequence if and only if for each i ¢ {1, 2, ..., n} the sequence
of real numbers‘{xki};:l 18 convergent to some x, € R under the usual metric,
and then X >R = (%3, %25 «ue, xn) in‘ﬂg.

. SRS R . . .
(i.e. convergence in &5 is equivalent to compenent-wise convergence in (R, d1).)

Proof. (*) We in fact show that ¥ T %; as k+w({i=1,2,...,n) implies
¥ T B and so by Theorem 3.3'{§k} is certainly a Cauchy sequence.
Now, given £ > 0, for each i there exists Ni such that
> = - i
k =N, lxki xil < g/vn.
So taking ¥ = Max {Ny, N, ..., Nn} (Note: for N to exist we require n to be
finite) we have
kai - xil < g/Y¥n for all i whenever k >N
and so 1
n et
- - - — 2
da(x,5 %) Hgk =l [.Z (x4 xi) ]
i=1
1
o 2
< [ ) (E//E)Z] for k =N
i=1
1
g2

= [n——] =g for k = N.

and so xk + X 85 kK > o,

(=) If {x } is a Cauchy sequence, then

it

I
dp(x, §j) =l - §jﬁg = [izl(xki - xji)2 + 0

- 0 3 o
i %55l as J, J =+

i.e. for each i {in}zzl is a Cauchy sequence of real numbers and so, by +the

as j, k + ». Hence for each i ¢ {1, 2, ..., n} |»

completeness of R converges to some %, € R.

But, then, by the first part of the proof

ST B (%1, X9, v0u, xn) {(and so Qg is complete}.
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Collateral Reading.
Giles op cit Ch. 2 pp. 45 to 50 excluding Theorems 2 and 3.
Simmons op ettt Ch. 2, sec. 12, pp. 70-72.

PROBLEMS.
1. %mqﬂmtin(mm,l],QQ'mesmmameomedmwmhmmﬁas
pn(x) mmﬁo xm/m! is convergent to exp. Is the same true in

(cfo, 11, d4;)? (See problem 2.3.)

2., Let ®x % and ¥, * ¥ in the metric space (X, d).

Show that d(x_, v ) + d(x, y) in (R, d;).

*3. Show that in a metric space (X, d), where d is the discrete metric, a

convergent sequence {xn} has only a finite mmber of points in its range.
4. Show that (X, d), where d is the discrete metric, is a complete metrie space.

5. Using the discrete metric, give a further example to show that convergence

depends on the choice of metric.

*6. Show that a Cauchy sequence in any metric space (X, d) is convergent if and

only if it has a convergent subsequence. N

7. In some metric space (X, d) give a counter example to the proposition:

If the sequencesA{xn} and‘{yn} are such-that'{d(xn, yn)} is convergent

then {xn} and'{yn} are Cauchy sequences.

%8, Let (X(l), d(l)) and (X(Z), d(g)) be two complete metric spaces, show that

X(l) % X(Q) is 2 complete metric space under the two metrics of problem 1.4.

*3. Prove that Hilbert space, %5, (see problem 2.5) is complete.

NOTES on lecture 3,

1. The spaces &- (p 21, n e N) can all be shown to be complete.

2. None of the zpaces (Cla, b], dp) (1 €p < =) are complete. The problem of
"adding" in additional functions (and extending the definition of the metric
to cover these new functions) so as to "complete! these spaces is a major
motivation for Lebesgue's theory of integration and measure.

3. For any metric space (X, d) it is possible to find a minimal complete super-
space (é, é) known as the completion of (X, d). (i.e. X E_i and
a(x, y) = é(x, y) for all x, v ¢ X.)

One comstruction of (i, &) from (X, d), due to Cauchy, zllows, as a special
case, the real numbers R to be axiomatically derived from the rational numbers

Q.
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4, TFor a detailed discussion of the many different types of convergence

possible in function spaces the interested reader 1s referred to Korevaar,

"Mathematical Methods", Acad. Press, Part 2, section 1.1, p. 162.

APPENDIX to lecture 3.
UNIFORM CONVERGENCE in Cla, bl.

Let {fn};=l be a Cauchy sequence in (Cla, bl, d_).

i.e. Given £ > 0, there exists N € N such that

d(f,f£)=08 - £l = Max |f(x)-£(x)]<ce
® n° om n m=  xela,p] DT ks

whenever n, m 2 N.

Consequently, for each x « [a, b]
|£ (x) - £ (x)l < g for n, m =N,
n m

i.e. {fn(x)}:“l is a Cauchy sequence in the complete metric space (R, dj)
and so is convergent to some unique limit which we choose to denote by £(x).

Define a function f on [a, ] by z = £(x). Then, for every

di1
x ¢ [a, b] fn(X) + f(x) and we say £ is the point wise 1limit of the sequence

{fn}. (This type of convergence - point wise convergence - is important in real

analysis but peripheral to metric analysis, since it does not represent
convergence with respect to any of the metrics on Cla, bJ.)
[In general point wise convergent is 'weaker' than uniform convergence

(convergence with respect to the uniform metric dm) i.e.
(uniform convergence) = (point wise convergence)

howevey, it may happen that fn + f point wise but fn + £ uniformly. Give an
example i1llustrating this (Hint: see example 2, p. 17 of lecture 3).]
Because of the particular construction of f above,

(£f(x) = Limit £ (x) where {f } is a Cauchy sequence in (Cla, b1, d_)),
e m m o

we have, for n, m = N
[fn(x) - fm(x)i < g for all % € [a, b]
and so

Lmig“it|fn(x) - £ (x)] = l£ (=) - Limit £ (x)] = Ifn(x) - F)| < e

for all x ¢ [a, b] and n = N.

Whence Max |fn(x) - £(x)| < € whenever n > N, or f, converges uniformly to £

%e[a, bl

i.e. d (f - £) =+ 0.
i Tm TR



.

We now show £ € Cla, b] and so establish the completeness of (Cla, bl, d).
To do this we must show £ is continuous, i.e. given & » 0 and any xg € La, b]

we must find § > 0 such that
|x - xg| < 6 = |£(x) - Flxg)| < e (x e Ia, bl).
Now
|£(x) - £(xg)] = |f(x) - Fx) + £ (%) - £ (%) + £_(xp) - £(xp)]
< [£(x) - fn(x)| + |fn(x) - fn(XO)[ + |fn(xo) - Flxg)|

and since fﬁ -+ f there exists N ¢ N such that
£
nEN > [EG - £ 0], [£,0) - )| S (£, £) < £ .
So for any fixed n > ¥

|£(x) - £(xg)] ﬁ—gﬂl— |fu(x) - fn(X{})l +§~

but fn € Cla, b] so there exists 8§ > 0 such that
E
— = - —
| - xq| <8 |fn(x) fu(x0)| <3

and so for this & we have |x - xg| < & = |£(x) - £xg)| €§%-+ §-+

w|m
n
1
-
1)
V4]

required, to show f is contimuous.
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TOPOLOGY OF METRIC SPACES

Lecture 4 Open Sets

DEFINITION. For (X, d) a metric space, Xg € X and 0 < » € R,the set
BP(XU) = {x € X: d(xp, x) < »r}

is the open ball with centre xg and radius ».

NOTE. In some books (e.g. Simmons) open balls are termed open spheres, while

others {e.g. Giles) denote them by B(xg, »).

EXBMPLES. (1) In 23 = (RY, &),
B (x0) = {x e R¥: dp(zg, x) < v}
= 1(x15 %2, %307 (k3 - %0102 + (23 - %0202 + (x3 - %03)2 < r?}

accords precisely with our intuitive idea of such an object, being the set of

points enclosed within the spherical shell of radius r centred at
xo = {xp1, Xpp, x%3).
(2) In E% = (R?, dy) [or (C, dp)],
Bo(x0) = {(x1, %2): (a1 - %0102 + (xp - xg2)2 < 2}
is the circular disc (excluding the rim) of radius r and centre (%915 %g2)-

[This provides a convenient and serviceable

pictorial representation of a general open ball.]

Br(x[])

Hl
-
=
m
A

£l

I
o

[==]

A
2]
ot

It

~
i
o=

1
H
Ed

o
-+
3
—

(prove this)

NOTE. 1In any metric space (X, d) an open ball, BP(XU), is never empty, since
Xy € BP(XD). (Why?)

DEFINITION. For a metric space (X, d), any subset, A £ X is an open set if it is
e —————

a union of open balls,

i.e. A= U B (xl), for some sets of points {x.: A ¢ A} ¢ X and real numbers
Aeh Ty A

{rh: Me Al (M is  a suitable index set).
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OBSERVATION. An open ball is an open set, since

B (xg) = U[B_ (xp)}, where {BP(XO)}
is the singleton set whose only element is Br(xo).

EXAMPLE. For any set X, with the discrete metric d, every subset A < X is open,

since

A= U {al and {a} = {x ¢ X: d(a, x) < %} = B, (a).
agh "2

We develop some alternative characterizations of open sets, which will prove to

be of subseguent use.

DEFINITION. In the metric space (X, d) the point % € A ¢ X is an imterior point
of the set A if there exists an r > 0 such that Br (x) ¢ A, i.e. if there is an

open ball centred on x which is contained entirely * yithin A.

‘The set of all interior points of A is the interior of A, which we shall denote by
Int A.

A useful concept in metric analysis is given by -
DEFINITION. In the metric space (X, d) the set A ¢ X is a neighbourhood (n'hood)
of the point x € X if x e Int A.

Further, if A is an open set we say A is an open neighbourhood of x.

THEOREM L4.1: In any metric space (X, d) the following are equivalent statements
about the set A c X;

(i)  for every x ¢ A there exists r, >0 such that B, (x) =4,

(ii) every point of A is an interior point of A, ®
(iil) A Zs a neighbourhood of each of its points
(iv) Int A = A

(v) A is open.

Proof. It is immediate from the definitions that (i) « (ii) © (iii) “ (iv),
it is therefore sufficient to show (i) € (v).
(i) = (v): Form (i) for each x ¢ A we have x ¢ B, (x) € A, thus

A E‘x%h Br(x) £ A, so A is a union of open balls and thirefore open.
b

To prove (v) =* (i) we first establish,
LEMMA. If x ¢ Br(XO) ~ an open ball in the metric space (X, &) ~ , then

% e Int Br(xo) i.e. there exists r, >0 such that Brx E_Br(xo),
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which establishes the result for open balls.

Proof (of lemma). Since % « Br(XO), d(x, %g) < r get r,=r- d{x, x3) (> 0),
then for any v ¢ Br (%) dly, %g) <d(y, x) + d(x, xq)

* < v - d{x, xg) + d(x, xg)

= pr |, S0y € ET(XO), all y ¢ Br (%),
X

whence B_ (%) £ B_(xp) as required.
T T
x O
Returning to the proof of (v) = (i), since A is open A = l%h B, for some family

of open ballsﬁ{BA: A e Al and so if x € A, x ¢ BA for some A € A, Whence by the
lemma, there exists r, > 0 such that Br (%) E‘Bh £ A, as required to complete the
proof of the theorem. *
FUNDAMENTAL PROPERTIES OF OPEN SETS. -
THEOREM 4.2 (The 'algebra' of open sets):

Let (X, dj be a metric space, then

(1) ¢ and X are open sets

(i1) 4 union of open sets is an open set, and

(iii) the intersection of a finite number of open sets is an open set.

Proof.
(i) Since ¢ contains no points, it is clear that every point of ¢
is the centre of an open ball contained in ¢.
While, for any x e X, Br(x) £ X for every » > 0, thus

= U j
X w2x B1(x) and so X is opes.

(ii) Let {GA: A € A} be a family of open sets of (X, d).

Then, since each GA is open we have

G B where BY is an open ball (all.y € PA)'

A T yer
YEKY
Thus, the union of open sets,

= U @ =
€= en &

U fu
aen Lyer, B))

is a union of open balls and consequently is itself open.

(iii) Let {Gk: k=1,2, ..., n} be a finite family of open sets,

X € G G®xeG (all k=1, 2, ... n) then » 5ince each

= . N
k=1,2,..,nk K

G is open, there exists r, > 0 such that B, x) =6 (k=1,2,...,n).
k

Let » = Min{ry, vy, ..., rn} (which exists and is strictly positive,

k k

since there are only a finite number of the rk), then clearly

X e Br(x) E.Brk(X) (all k) and so Br(x) c G = Q Gk'
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(iii) {continued)

But x was any point of G,so G is open.

The finiteness condition in (iii) above cannot be dropped.

EXAMPLE.

{Bl(o): n ¢ N} isan infinite family of open sets in (R, d7) such that

n

their intersection
nEN BEFO) = {0} (prove)
n

which is not an open set (prove).

The next theorem characterizes the interior of any set.

THEOREM L4.3: For A c X, (X, d) a metric space, the interior of A, Int A

is the 'largest' open set contained in A, i.e. if G is any open set contained
in A, then G € Int A,

Froof. We must first show that Int A is open for any set A c X.

Accordingly, ®x € Int A = there exists r_ > 0 such that Br(x)g G €A. Now B (%)

x
is an open set so for y ¢ Br {%x) there exists ry > 0 such that Br (v) S'Br {x)
X v %
which is contained in A. Thus each y ¢ B (x) is an interior point of A ov

X
Br (x) & Int A. Buf x was an arbitrary point of Int A so every point of Int A
X

is the centre of an open ball (Br (2)) contained in Int A which is thevefore open.
x
Now, let G = A be an open subset of A, then x € G = there exists r, > 0 such that

Br {(x) e BcA=xc¢e Int A soGc Int A, establishing the maximality of int A.
b4
Collateral Reading.
Giles op eit Ch. 1, sec. 1.3, pp. 32-39 (exclude Theorems 5 and 8).
(8ec. 1.2 may also prove interesting reading.)
Simmons op c¢it Ch 2, sec. 10, pp. 59-6h.
PROBLEMS.
L. Bketch the following open balls
(1) B1(0) in (R2, d;)
(i1) B3(Q) in (R?, 4 ).

2. (a) Show that the following is a metric on R2.
d: R? x R?Z + R defined by
Hxllo + Hyll, if x ¢

1%

d(x, y) =
- 4] if

M
1]
1<
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2. (a) (continued)

(Recall, for x = (%3, xp) € R?, [xl, = Y2 + x%.)
This metric is known as the POST OFFICE METRIC (can you see why?).

(b) For d as in part (a), sketch the open balls B1{0) and B%((l,l))
in (R%, 4).

3. Let A be a subset of the metric space (X, d) such that the diameter
of A, d (A), is less than r. If A n Br(x) # ¢ show A E,Bzr(x).

4. The 'algebra' of interiors

In a metric space (X, d) with A, B € X prove
(i) if A © B then Int A ¢ Int B,
(ii) Int (A n B) = (Int A) n (Int B);
(1ii) Int (A u B) 2 (Int A) v (Int B);
(iv) Construct a counter-example to show that the reverse inciusion

to that of part (iii} need not hold in general.

5. Prove that in any metric space the conplement of any singleton set is
open, and hence or otherwise show that the complement of any finite set

is open.

6. In a given metric space (X, d) prove that every subset of X is open if

and only if every singleton set is open.

#7. (a) Show that the singleton subsets of any non-trivial normed linear
space cannot be open sets with respect to the metric induced by
the norm.

(b) Show that except for {0} all other singleton sets of R2 ave open
with respect to the Post OFfice Metric of problem 2{a).
Hence, conclude that there iz no norm on R2 which Induces the
Post Office Metric.

*8. Two metrics d, d' on the set X are said to be eguivalent metrics if
they give rise to the same family of open sets.
Prove that for any metric space (X, d) d and 4 are equivalent metrics,

o
where é (x, y) = I—%ingXlgj-(see procblem 1.3).
3

NOTES on lecture i
1. It varies from author to author whether our definition op one of the eguivalent
statements (i) - (iv) of theorem 4.1 is used as the definition of open set.

Thus, Giles takes (i) to be his definition.
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9., Any family of subsets T of the set X which have the properties (i), (ii)
and (iii) of theorem 4.2,
(i.e. (i) 4": X € T;

{ii) tEJ T

ren Th g T whenever Th € T, all A € A;

(iii) AE% Tk e T whenever Th e T, all & ¢ F - a finite index set)
is termed a TOPOLOGY for ¥,and X equipped with T is called

a Topological space. Theorem 4.2 shows that the family of open subsets of

a metric space is a Topolegy for the space X.

In general, however, there are topologies which do mot coincide with the

family of open sets generated by any possible metric on X. Thus topological

spaces are more general than metric spaces and their study forms an important

branch of modern mathematics. The question of characterizing those topologies

which do arise from a metric is known as the metrization problem.

SUPPLEMENT to lecture Uu.
A CHARACTERIZATION OF OPEN SETSin (R, di)

THEOREM 4.4: In (R, di) every open set is the union of a countable family of
disjoint open intervals.
[Note. Since open intervals correspond to open balls, it 1s true by definition

that every open set 1s a union of open intervals.]

Proof. Take G an open subset of (R, &;) and x any point in G. Let I equal the

union of all open intervals (open balls) which contain x and are contained in G.

Then
(i) Ix £ ¢, since G is open and so there exists an r, > 0 such that
xeB (¥)e@,ie. (k-1 , 2+ }EI.
r, === ® x’ — "x

(ii) Clearly Ix is an open set (why?). In fact Ix is an open.interval;

To show this, it suffices to prove (z, b} c 1, vhenever a < b and

a, be Ix' Now, if a, b ¢« IX then, by the definition of Ix’ thera
exists open intervals (¢, d) and (e¢', d4') in Ix such that

x e (e, d) n (c', d') with a € (c, 4) and b € (e', d') hence

a,be (c,d)yu (c', d") E_IX but (c, d) u (e', d') is an open interval

and so (a, b) £ I .
X
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(iii) If y e I, thenIy = L,» for I is an open interval (by (ii)) containing

(iv)

v and contained in G, =0 by definition of Iys Ix E.Iy and similarly

Iy E_Ix.

For x, y € G, either Iley oy IX n I = ¢,

J
Assume z ¢ I n I then = ¢ I_ so by (iii) I_ = I  similarly z e I
X v x ® z

S0 Iy = Iz’ whence IX = Iy' We have therefore proved that the family

of sets {Ix: %X € G} is a family of disjoint open intervals and clearly
G = x%h Ix (as x ¢ I, c G for all x € G)

it therefore only remains to prove that there are only a countable

number of distinct IX'S.

Let QG = Q 0 G (the countable set of rational numbers in G), define

£ QG + {IX: x € G} by £(q) = Iq (which is unique by (iv)), then

clearly f is onto, since each IX, being an interval, contains a

H

countable. .

. . onto
See Giles, p. 37 for an alternative f: Q —+ {IX: ® e G},

rational point a4, and so I_ = qu = f(qx) whence {IX: x € G} is

and Ch. 0, pp. 12-14 for work on countable (denumerable) sets.
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Lecture 5. Cluster points and Closed Sets.

DEFINITION. In a metric space (X, d) with A ¢ X, x € ¥ is a cluster point

of A if each open ball centred on x contains a point of A distinct from x,

i.e. if (Br(x)\{x}) nA#d for all » > 0.

NOTES. (1). It is not necessary that x e A, for example, in (R, d7), 0
is a cluster point of {%ﬂ n € N} (prove), alternatively every
real number is a cluster point of Q.
(2). Cluster points are sometimes termed Limit points (ELEL_Simmons)

or points of accumulation.

DEFINITICN. TFor A © X, (X, d) a metric space, the derived set of A, denoted
by A' is the set of all cluster points of A.

a ¢ A\A' is termed an isolated point of A.

Clearly a ¢ A is an isolated point of A (i.e. not a cluster point) iff there

exists some R > 0 such that BR(a) na={a}

e *, BR(a) .t-
. -t o
- ] ’ e
e 91 R e * _
:n"" g\y e v v ¢ ®(dots represent points of A)
] ® &
‘~'~n—{,.' ‘ @
P v @ »

THEOREM 5.1: If x € A' for some set A < X, (X, d) a metric space, then for

any v > 0, Br(x) contains an infinite number of (distinct) points of A.
Proof. Assume there is some R > 0 such that BR(X) n A contains only a finite
number of points aj;, dz, ++.> an and possibly x, take

o= Min {d(a,, %)} t+hen
i=1,2,...,n0 1

d]s @25 saay Eln qlf BI‘(X) n AEBR(X) n AE.{E[]_, dg s seay an, x}
S0 (Br(x)\{x}) nA=4¢ and x is not a cluster point of A, contradicting our

hypothesis, so no such R can exist. ug

COROLLARY. Any finite subset of a metric space has no cluster points and so

consists solely of isolated points.

There is an intimate connection between the notion of a cluster point and the

idea of convergent sequence. Roughly (a € A') = (there exists a sequence {an} of A
with a + a). The unqualified converse of this is not true, for example, let A

be the singieton set {1} then in (R, d;) the sequence 1, 1, 1, ..., 1, ...

converges to 1 but 1 is not a cluster point of A (why?).
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The situation is made precise by

THEOREM 5.2: Let A ¢ X and (X, d) be a metric space, then x € A' if and only
if ghere exists a sequence {an}, with a e A\N{x} Ffor all n e N, such that

a * x.

Proof. (%) Given any v > 0 there exists W ¢ N such that d(an, X) < v for all

n 2 N (definition of convergence) so a € Br(x)\{x} for all n 2N

i.e. (Br(x)\{x}) NAZ4¢ andsox g AT,

(®) We construct the sequence {an} inductively as follows.

Since x € A", (By(x)\Mx}) n A # ¢ so we may choose an a; € (B (x)Mx}) n a.
Now, assume there exist 81, 89, ...y & € A such that

n
) 1 .
d(aj, a) < Mln{d(aj_l, al), E& i=1,2, ..., n

. . 1
then, setting r = Mln{d(an, %), E:I} we have ay, ap, ..., a & Br(x) so, as x € A',
there exists an a ., ¢ (Br(x)\{x}) naAa

. . 1
i.e. d(an+l, a) <o < Mln{d(an, a), 5;1&

by choice, and so we have inductively constructed a sequence {an} with a € A all n,

1 .
é(an, a) < o> i.e.a +a, and further d(an+l, a) < d(an, a) so a .

n, i.e. zll the a are distinct and so at most one of them could equal =x.

1 7 a for any

Should this be the case that one term of the sequence could be deleted from it
without effecting the convergence. Hence, in either case, the desired seguence

has been constructed.

CL.OSED SETS

DEFINITION. For the metric space (X, d) and & c X, A is a closed set if A' c A
i.e. A is a closed set if it contains all its cluster points.

The next theorem gives a powerful characterization of closed sets, as well
as indicating the close connection between the open and closed sets in a metric

space.

THEOREM 5.3: In the metriec space (X, d) the subset A = X is closed <if and only if

its complement X\A is open.

Proof. (=) x ¢ ¥™\A = x { A" (as A is closed, =o A' £ A) = there exists an
r >0 s.t.
X

Br (x} n A = ¢, whence Br (x) = ¥\A and so, since x is an arbitrary point
x® X
of X\A the set is open (by Theorem 4.1 (i)).
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(¥) if % ¢ X\A which is open, then there exists an rx > 0 such that

B (x) =X\Aso B, (x) n A = ¢ whence x AT,
X x

Thus A" n (X\A) = ¢ or A' € A, and so A is closed.

REMARKS. 1. For practical purposes the style of argument used in the

above proof is almost as important as the result itself,
2. In the more general context of topological spaces {see notes

to lecture 4) and even in some works on metric spaces the result
of the above theorem is taken as a definition for closed sets,
i.e. a set is closed, by definition, if its complement is open,
in which case the above theorem becomes a structure theorem for
closed sets in terms of cluster points and would read'a set is

closed iff it contains all its cluster points". -

OBSERVATION (very important). While the above theopem establishes an intimate
relationship between open and closed sets the two concepts are not mutually
exclusive.

i.e. Any of the following can happen.

(i) A is open but not closed (e.g. (a, b) in (R, d1));

(ii) A is closed but not open (e.g. [a, bl in (R, d1));

(iii) A is neither open or closed (e.g. Ta, b) in (R, d;));

(iv) A is both open and closed (e.g. every subset of any set equipped with the

discrete metric is both open and closed - prove).

Thus, in general, from a knowledge that A is open (closed) nothing can be inferred

as_to whether op not it is closed (open).

THECREM 5.4: (The 'algebra' of closed sets).

Let (X, d) be a metric space, then

(i) ¢ and X are closed;

(ii) An intersection of closed sets is a closed set;

{iii) The union of z finite number of closed sets is a closed set.

Proof. Throughout we use the characterization of closed sets given by Theorem 5.3
in conjunction with Theorem 4.2, of which this theorem is the analogue for closed
sets.
(i} X\ ¢ = X is open, so 9 is closed
similarly X\X = ¢ is open, so X is closed.
(ii) Let {Fa: wedl be a family of closed sets, then

= N = ] !
F AN Fa XA\ uEA(X/Pa) (deMorgan's Theorem)
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(i1} But, X\Fa is open, and so u%h (X \ Fa) is open, whence F is the

complement of an open set and so F is closed.

(iii) Let {Fy, Fy, ..., Fn} be a finite family of closed sets, then

n n

F= UF =x\N G\F) (de Morgan)
m=l \m=l \ m g

and so, since finite intersections of open szets are open

n
N (X\F_} is open, whence F is closed.
m=1 m

NOTE. As with finite intersections of open sets, the finiteness condition in

(iii) cannot be dropped.

EXAMPLE. In (R, dj)

ngb[%3 1- %J = {0, 1) (prove)

which is not closed (prove).

THE CLOSURE OPERATION.
HOTATION. For any A ¢ X, (¥, é) a metric space, let & = A U A' i.e. the points

of A are the points of A together with the cluster points of A. Intuitively A
consists of the points of A together with all the points arbitrarily close to A.

THEOREM 5.5: For any metric space (X, d) and A c X, A is the smallest closed
set containing A.

Proof. We first show A is closed. Thus, suppose x ¢ (A)}' (we need to show
%X € A), then for anyr >0 I y ¢ (Br(X)\{X}) n A so, as y € &, either
yehoryedAl.

If v € A, then (Br(x)\{x}) na#éo.

If v € A', there exists z € (BR(y)\{y}) n A E_(Br(x)\{x}) n A

where R = Min{r - d (x, y), d(x, y)}.

So in either case (Br(X)\{x}) n A # ¢ wvhence x ¢ A' £ A as required.

Now assume F is a closed set containing A, consider x ¢ X\F an open set, so there
exists r > 0 such that Br(x) S X\F, but X\F ¢ ¥\A, (A © F), =0 Br(x) < X\A or
Er(x) N A = ¢ whence x % A, Thus

(XNF) n A = ¢ (as x was any element of X\F)

and so A c F, establishing the minimality of A.
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Because A is the smallest closed set containing A we offer
DEFINITION. For any metric space (X, d) and A ¢ X, the closure of A

is A = A U AY.

EXAMPLES. 1In (R, d4;) (a, b} = [a, b] (prove), and Q = R.

The following concept, together with those of open set and interior, plays an

important role in advanced caleulus.

DEFINITION. - For (X, d) a metric space and A < X, the boundary of A, denoted
by bdry A is given by

bdry A = & n (X\A).

Thus bdry A consists of all those points which are arbitrarily close to both

A and its complement X\A.

EXAMPLES. In (R, d;) the boundary of an open interval (a, b) is what we might

expect, viz

bdry (a, b)

(

{a, b}

(a2, B) o (R\(a, b))

il

[El, bl n [—m, al u [bﬂ m]
as R\(a, b) = (-=, a] u [b, =)
is the complement of an open set and so is closed.)

However this is not always the case, e.g.

bdry Q

I
O]
o
~
|
-
D
p—

while, for A € X, X any set and d the disecrete metric

bdry A = & n (X5A) = & n (X\A) = ¢.

Despite these observations the boundary of a set does behave in an imtuitively
pleasing way. TFor example in one of the problems you ave asked to show that

Int A U bdry A = A and Int A n bdry A = ¢ for any A c X, (X, d) any metric space.

Collateral Reading.
Giles op cit Ch. 2, sec. 2, p. 56 up to p. 64.

Simmons op eit

PROBLEMS.
l. Closed Balls

In view of the definition of an cpen ball, Br(x), it seems natural to define

a 'elosed! ball as the set
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(continued)
B [xo] = {x € X: d(x, xg) <n}
for any metric space (X, d).

(i) Show that BP[xg] is indeed a closed subset of (X, d);

(ii) Give a counter-example to the "likely" proposition:

BP(XO) - Br[xgj.

('Algebra' of closures)
Show that, for A, B ¢ X and (X, d) a metric space,
(i) AcB=AEcB

uB

=]

(ii) A UuB =

(iii) An B c A n B, what can you say about the reverse inclusion?

For (X, d) a metric space and A £ X, show
(i) (Int A) n (bdry A) = ¢, and

(ii) A=(Int A) u (bdry A).

DEFINITION, A < ¥ is a dense subset in the metric space (X, d) if 4 = ¥,
(E.g. Q is dense in R.)

Prove that the following statements are equivalent in (X, d)

(i) A = X is dense;

(ii) <the only closed superset of A is X,

(iii) the only open set disjoint from A is d3

(iv) A has a non-trivial intersection with every non-empty open set of

(X, 4.

Using the result of the supplement to lecture 4, characterize the closed

subsets of (R, dj).

For a normed linear space, show that the oniy sets which are both open and
clozed, with respect to the metric induced by the norm, are the whole space

and the empty set.

Let A be a closed subset in the complete metric space (X, é)}. Show that any

Cauchy sequence‘{an} with a €A, for all n € N, converges to a point of A.
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MAFPPINGS

Lecture 6. Mappings between Metric Spaces, Continuity

DEFINITION. A mapping (funetion) From the metric space (X, d) into the metrpic
space (Y, d') associates with each point x € X a unigue point y € Y which is
often denoted by f(x}.
It will be convenient to use the following suggestive
NOTATIONS: (1) f: X+ Y, f: x » £(x) or even £f: X + Y : x » £(x), indicate
the mapping £ from X into Y 'carrying' x to f(x).
(2) For A c X
£(4) = {y € ¥: there exists x ¢ A with v = f(x)}.
(3) For B Y
f"l(B) = {x e X: £(x) e B}, this is not to be confused with

the inverse of f which may or may not exist.

DEFINITION. For metric spaces (X, d) and (¥,d") f:X +~ Y is continuous
at xp € X if, given € > 0, there exists § > 0 such that
dlx, x0) < 8 = d'(Ff{x), £flxp)) < e,
or equivalently
® € Bolxg) = £(x) « B_(£(xg))
or f(Bﬁ(XU)) E_BE(f(Xo))-

NOTE. This definition extends the familiar definition of local continuity for
a f: R+ R which is the special case (X, d) = (¥, d') = (R, d;).
Local continuity in metric spaces can be characterized in terms of sequences,

as the mnext theorem shows.

THEOREM 6.1 (SEQUENTIAL CONTINUITY): Let (X, a), (¥, d') be metric spaces, then
f: X » Y 15 continuous at xy € X if and only if for every sequence {Xn} with
X, 7 %ps f(xn) + Fxgp).
Proof. (=) Since f is continuous at Xp, for any € > 0 there is a 6§ > 0 with
f(Ba(Xn)) E.Bg(f(xo))

Now if X 7+ %g, there exists N € N such that

d(x_» %¢) < & for all n 2 ¥ and so

flx ) e BE(f(xo)) for all n 2N

or f(xn) + f(xp).



- 36 ~

(<) Assume F(x ) + £(xq) whenever ¥, > ®g, but f is not continuous at xg
i.e. there exists an e > 0 such that f(Br(Xg)) £ B_(£(xp)) all r > 0. Thus
in particular for each n e N, there exists an X € Bl(xo) such that

n

f(x ) % B (f(Xg)).

The seguence {x } so constructed is such that d(x s Xp) < %“l e. % = %, but
d(f(x ), f(xo)) > g all n so f(x ) # f(xg) a cantradlctlon to our assumption.
DEFINITION: For metric spaces (X, d), (Y, d'), f: X + Y is continuous if £ is
continuous &t each x e X.

(This is sometimes refeyred to as f being globally continuous.)

COROLLARY (to Theorem 5.1): If (X, d) and (Y, d') are metric spaces, then
f: X+ ¥ iz continuous if and only if f preserves convergent sequences i.e. for any

sequence {xn} convergent to X we have f(xn) - F(x),

NOTE. (1) It is not true, that for continuous f: X =+ Y if f(x Y = £(x) then
x +x. (E.g. in (R, d;) for £: x+ x2 and x = (-1)", f(xn) = l + £(1) but
~1, 1, -1, 1, =1, eeu., #1.)

(2) This corollary provides the simplest way of proving a mapping is
discontinuous at %, viz,

by selecting a sequence x  + % for which f(xn) # £(x).

The next theorem provides a very general, and powerful characterization of continucus
mappings which is often used as a definition of continuity, particularly in the

setting of topological spaces (see Notes to Lecture 'S

THEOREM 6.2: Let (X, d) and (Y, d') be metric spaces, then £: X -+ Y is eontinuous
if and only if for any open set G c Y, £ (G) {x e X: £(x) € G} 2¢ an open set of
X. _

i.e. the inverse image of open sets is open or the pull back of an open set under £

is open.
(NOTE. This does not assert that £ maps open sets to open sets - see Problem 5.)

Proof. (®) Let G be an open subset in Y, then fop 2Ny X € f—l(G), f(x) € G which
is open and so there exists r >0 with B (£(x)) = G.
Now, by the definition of continuity, there exists a 6 > 0 with

f(B (x)) e B (f(x)) c @&
X rX

so }Z&(5 (%) g.f—l(G) and so
b
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f_l(G) = U B, {x) is open.
xef~ (@) 6x

(<) Since, f_l(G) is open whenever G is, for any x € X and e > 0, we have
f_l(BE(f(x)) is an open set containing x and so there exists § > 0 such that

BS(X) E_f“l(BE(f(x)) or f(BG(X)) E_BE(f(x)) and £ is continucus.
EXAMPLES.
Let £: X + Y, where (X, d) and (Y, d') are metric spaces, be such that

d'(£(x), £(y)) < Mad(x, y) for all %, y € X and some M > O,

(Such an £ is said to satisfy a Lipschitz condition), +then £ is continuous, for
clearly given ¢ > 0
f(BE(X)) E.BE(f(x)) for all x e X.
M
[Remark: The mean value theorem for derivatives asserts that every differentiable
functions on (a, b) satisfies a Lipschitz condition with (X, d) = ((a, b), d;)
and (Y, d') = (R, d;).]

Of special importance later, will be the case when M < 1, X = Y and d = d', in

which case £ is called a (striet) eontraction on (X, d).

Another particular case of special interest, occurs when d'(f(x), f(y)) = alx, v)

for all x, v € X. Such an £ is called an isometry from (X, d) into (Y, d').

Note: An isometry is necessarily 1 to 1, i.e. f(x) = f(ly) ® =% =y or

f_l({x}) is singleton (prove).

If £ is an isometry of (X, d) into (Y, d') we can readily see that (£(X),d")
is essentially the same as (X, d) and we speak of Y containing a (isomorphic) copy
of ¥, viz f(X).
Note further, that if f is also onto, i.e. £(X) = Y, then the inverse map
£ ¥+ X exists and d(F (), £ () = a'(E(E L)), £(EL(y))
= d"(x, v) |

so is an isometry (and so continuous) from Y onto X.

More generally, if £f: X + Y is 1 to 1 (so the inverse f_l: £(X) + ¥ exists) and

both £ and £ ° are continuous, then f is termed a homeomorphism of X into Y and

X, £(X) are homeomorphic or topologically equivalent. The latter is an appropriate

name since the open sets of £(X) are precisely the images under £ of open sets in X

and vice versa.)
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REMARK. A property P is a topological invariant for metvic spacesif, whenever
X, ¥ are homeomcrphic under £ and A € X has P then f(A) also has P.

EXAMPLES., It is easily seen that the property of "being open" is a topological

invariant (prove), as also is "being closed".

CONTINUITY IN NORMED LINEAR SPACES.

Let X be a normed linear space, with norm |+l , and
Y be a normed linear space with norm I -] *.
We aim to characterize continuity for the important class of linear mappings

T: ¥ = Y.

RECALL., T: X =+ Y is linear if
T(x + Ay) = T(x) + AT(y) for all x, v ¢ X and scalars X.
(In this context the term mapping (or function) is sometimes replaced by

transformation or operator.)

DEFINITION. A linear mapping T: X + Y between normed linear spaces iz bounded
if for all x ¢ X [IT(x)l" < Ml=ll for some ¥ > 0.

THEOREM 6.3: A Ilinear mapping between normed linear Spaces 1§ continuous if and
only if it 1s bounded.
(Here 'continucus' means continuous w.r.t. the metrics induced by the respective

NOTrRSs. )

Proof. (¥) Given € > 0 and any x € X, if y € B (x) i.e. llx - yll < 53 then

M
HT(x) - T = (= - Il (by linearity)
< Mix - yll (by boundedness)
and so T(y) € BE(T(x)), whence T iz continuous.

(=) Since T is continuous, it is in particular continuous at 0 i.e. given

£ > 0 there exists § > 0 such that

d(x, 0) <8 =d'(T(x), T(0)) < &
or ixll <8 =TGN < € (as T(0) = 0, by linearity).

Now for any x ¢ X,
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6 _ 6 .
”'2'"-;"")(“ = ml[x” < & (by pul (lll))
5 ype . b , L
S0 HT(EWEWx]H = EWEH_”T(X)“ (by linearity of T and n (iii))
< E
or el < 22 1l
. . ~ 2E
whence T is bounded with M'/-Tf'

COROLLARY. A linear mapping between normed linear spaces is continuous iff it is

continuous at 0 (prove).

Coliateral Reading:
Giles, op e¢it, Ch. 3, p. 76-93.
The work on pages 88-90 is relevant to the lecture supplement dealing with

uniform continuity.

Simmons op cit.

PROBLEMS.
1. Let (X, d) be a metric space and xg a fixed element of X. Show that the mapping
f: X+ R: x» dlx, xg)

is continuous.

2. Show that the evaluation functional
F: Cla, b] + R: £+ £(xp) (xp a fized point of [a, bl),

is a continuous mapping from (Cfz, b], d ) into (R, d;). TIs this still true

if Cla, bl is considered with the metric dj.

3. Let (X, d), (Y, d'), (Z, d") be metric spaces and f: X+ Y, g: Y + Z be
continuous mappings.

Show the composite gef: ¥ + % 1s continuous.

4, Theorem 6. asserts that convergent sequences are preserved under continuous
mappings. Show that this is not necessarily true for Cauchy sequences, i.e.
it may happen that {xn} is a cauchysequence in (X, d), f: X + ¥ is continuous
and {f(xn)}is not a Cauchy sequence in (¥, d').

(Hint: Consider £: (0, =) + (0, ®): x b 1/x.)
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5. A mapping f: X + Y between the two metric spaces (X, d), (¥, d') is open if
f(A) is an open subset of Y whenever A is an open subset of X (i.e. f carries
open sets to open sets).

Show that not every continuous mapping need be open.

(Hint: Consider f: R+ R: x » c, a constant.)

6. Prove that the metric spaces [(— 53 gﬂ, dl] and (R, d;) are homeomorphic,

ey
~]
.

If £ is a homeomorphism of (X, d) onto (Y, d') show that
d"(x, y) = d(f—l(x), f_l(y)) (for all %, y € ¥)

is an equivalent metric (see Problem 4.8) to d' on Y.

8. If T is a linear transformation from Vn to v then

n n

n
thlixi’ I

T, s Xyp sewg X ) =
25 3
! n i=1 i=1

1
for some m x n matrix [tji} (refer linear algebra).
Show that T defines a bounded (hence continuous) linear mapping from ﬁ? to QT .

%9, Prove that Ker(T) = T—l({O}) is a closed subset if T is a continuous linear

mapping between normed linear spaces.

*10. Let X and Y be normed linear spaces with norms -l and I|-|' respectively.
Show that the linear mapping T: X + Y is a homeomorphism if and only if there

exists m, M > 0 such that

mlxll <UTGON <Ml for 21l x ¢ X.

#11. Let M denote the family of all metric spaces. Show that "(X, d) is homeomorphic
to (Y, d')" defines an equivalence relationship on M (and so metric spaces may

be partitioned into classes of homeomorphic spaces).

X
#¥12, Prove that T: C[0, 1] = C[0, 13 defined by T(f){(x) = J F(t, £(t))dt is continuous
with respect to the metric d, if F: R? + R is 0

continuous.
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Notes on lecture 6

The algebralc structure of any vector space X corresponds to a number of
'natural' mappings. From the additive structure we derive the translations
ty: X+X:zxwx+y (=y +x), for each y ¢ X.
Similarly, scalar multiplication preduces
dA: X + ¥X: x# Ax, for each scalar 2,
and fx: R+ X: A+ Ax, for each x e X.
These last two mappings are readily seen to be linear.
Further, for R with the metric d; and [l‘ll any norm on X, the continuity of ty
follows easily while that of dA and fx is equivalent to n{iii), which asserts
boundedness for these mappings. A metric (or topology) on X is said to be
compatible with the algebraie structure of X if the above mappings are
continuous with respect to it.
Thus any norm induced metric is compatible with the algebraic structure.
(EXERCISE. Show the mapping x + ||xll is continuous from (X, d) to (R, dj)
where 4 is the metric induced by the norm |-l.)
Let X be any vector space of finite dimension n over the field R, Il a norm
on X and {b1, ba, «+»» @n} a basis for X.

It may be shown (see Giles, Theorem 1, p. 132) that the 'matural' isomorphism

3}
¢ X+ V (7\1]31 + Agbhy + ...+ ln}-?n) B (A1, Aoy ones )Ln)

is a homeomorphism between X and 22 = (Vn, ds ).

Thus X and 22 are topologically equivalent. In particular then the
family of spaces (L < p <=, n fixed) are topologically equivalent.
Further, since § cgn be taken to be the identity map, each of the metrics d
(1 < p € =) give prise to the same open sets (although of course the open
balls differ from metric to metric).

Consequently there is only one norm topology poséible for V" (Although

there are many different norms they 211 induce equivalent metrics.)

In faet, it can be shown that there is only one topology for v compatible
with the algebraic structure.

With respect to this unique topology any linear transformation (mapping)

T: V" + V" is continuous (see problem 8)? This explains the relative
unimportance of metric, or continuity, arguments in finite dimensional linear
algebra.

(Precisely the same remarks apply to finite vector spaces over the complex

field C.)

“Note: By the earlier remarks, this implies the continuity of any linear
transformation between finite dimensional vector spaces over R (or C).
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SUPPLEMENT to Lecture 6.
UNIFORM CONTINUITY in METRIC SPACES

DEFINITION. For (X, d), (¥, d') metric spaces, f: X + ¥ is uniformly continuous

on X if given € > 0 there exists 6 > 0 such that
f(Bﬁ(X)) E'Ba(f(X)) for all x € X.

REMARK. The definition of global continuity given earlier may be stated as:
""Given € > 0, for each x € X there exists a 6 > 0 such that f(Bs(x)) E_BE(f(x))",
and we see that there the value of & may depend on the particular x under
investigation, § = §(x). In uniform continuity there exists a universal 8§
applicable for all x € X. Equivalent to this is the requirement that for &(x)

as above,

(¢ =) infimum 6(x} > 0.
xeX

It is thus clear that uniform continuity is stronger than continuity
i.e. (f uniformly continucus) = (f continuous).

The converse of this is false.

For example. In ((0, 1), dj), f: x & i-is continuous (as it is differentiable
at all x € (0, 1)) however it is not uniformly comtimicus. To see this, assume

it were uniformly contimuous, then for each £ > 0 there exists § > 0O such that

|x - y| <8 ﬂ'l%-~ %4 <e (for all x, y € X)

but for 0 < x < Min{26, %&, y = %—X.
% -yl < 8 while |E - 317[ = 2] > 2,

a contradiction, so f is not uniformly continuous.

THEOREM 6. : Let (X, d), (Y, d') be metric spaces £: X + Y a uniformly continuous
mapping and {xn} a Cauchy sequence in (X, d), then {f(xn)};=l 18 a Cauchy sequence
in (Y, d").

i.e. Cauchy sequences are preserved under uniformly continucus mappings. (A Cauchy
sequence is not necessarily preserved under continuous mappings - see Problem 4,
although convergent seguences are.)

Proof. Given & > 0 there exists § > 0 such that d'(Ff(x), £(y)) < e whenever

d{x, yv) < & (uniform continuity of f), further there exists ¥ e N such that

d(xn, xm) < § for all n, m & N (definition of Cauchy sequence) hence, for

n, m & N we have d‘(f(xn), f(xm)) < g and so {f(xn)} is Cauchy.
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THEOREM 6. (EXTENSION THEOREM): Let (X, d) be a metric space, (Y, d') be a
complete metric space, A a dense subset of X, and f: ¥+ Y aq uniformly continuous
mapping on (A, d)}. Then there exists a unique uniformly ,contimious mapping

1 X > Y with £(x) = £(x) for all x € A.

i.e. £ has a unique uniformly continuous extension to X.
RECALL. A is a dense subset of X if A = X.

Proof. If A = X there is nothing to prove, so assume X\A + B

Now if ®x e X\A, x is a cluster point of A (A = AuA' = X) and so, there exists a
sequence {xn} with X, €A (all n) such that X, h X,

By theorem 6. {f(xn)} is a Cauchy sequence in (Y, d')} which is complete and so

Limit #(x ) exists in Y.
n+e I

Hence define f by
X ifx e A
f: xm

Limit f(x ) if x € X\A, where x_ + x and x ¢ A
v n 3! n

We must show:

£ is well defined; - thus let {xn} and {Yn} be two sequences converging to xeX\A,

then
d’(f(xn), f(yn)) sZd‘(f(xn), f(®)) + d'(Ff(x), f(yn))

+ 0

So Limit £(x_) = Limit £(y_) and f is well defined at x.
fagas] n T+ n

f is uniformly continuous; - since £(= fIA) is uniformly continuous on A we have:

Given € > 0 there exists § > 0 such +that f(Bé(x) nA) g.BE(f(x)) For all % e A.

3

Now, let d(x, y) < g—(x, y € X} then there exists d1, @z € A such that d(a;, x) and
d(ap, y) are less than g—(density of A) and d'(f(a;), %(x)) and d'(£(as), f(y))
are less than g-(definition of %).

Whence, for any x, y ¢ X with d(x, v) < g-we have
d'(£(x), £(y)) <d'(£f{x), fla;)) + d'(£(ay), £(ay)) + d'(£(az), £(y))
< E E E.:
\.3+3+3 £

and so f is uniformly continuous.

f is unique; - assume g: X + ¥ is uniformly continuous and g(x) = f(x) all x € A,
Then g(x) = £f(x) for all x € A. Now for x ¢ X\A, let x + % where X €A (all n),
then
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aT(E(x), g(x)) AT(EG), £x D) + d'(E(x ), glx))
= dUER), £(x)) +d'(glx), gx))
+ 0 (by the definition of % and the uniform continuity of g.

Hence £(x) = g(x) all x € X and so £ is unique.

REMARK. It is often natural to construct a uniformly continuous function on (Q, &)

this theorem allows us to extend such a Ffunetion to R.

Example. Using the laws of indices we can define the function
x b 2" (for Fixed a ¢ (0, »)) and all x € Q, an application of the theorem allows
us to extend the domain of definition to R. In this way the function exp may be

obtained (a = e).

EXERCISE. (a) Show that any bounded linear transformation from a normed linear
- space into a complete normed linear space (Banach space) is
uniformly continuocus.
(*b) In (R, d;) show that there is a unique continuous function
f: R+ R satisfying the functional equation
F(x +y) = £(x) + £(y), with £(1) = 1.
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COMPLETE METRIC SPACES

Lecture 7. Fixed Point Theorems.
DEFINITION. =xg €X is a fized point of the mapping £: X - X if flxg) = xp.

REMARK. Many problems of mathematics and its applications can be formulated as
'does f have a fixed point' for some appropriate £7?

Also a great number of the procedures in 'numericagl' analysis and approximation
theory amount to obtaining successive approximations to the fixed points of

appropriate mappings (e.g. Newton's method of locating =zeros).

The sole purpose of this lecture is to establish a powerful fixed point
theorem for contraction mappings on a complete metric space. Some applications

of the result are examined in the appendices.,

RECALL. For any metric space (X, d), f: X + X is a (strict) contraction if there
exists k ¢ (0, 1) such that
d(f(x), £(y)) < kd(x, y) for all x, v e X.

THEOREM 7.1 (Banach's Fixed Point Theorem): Let f£: X + X be g contraction on the
complete metric space (X, d), then f hae a unique fixzed point.

Proof. Take any point %; ¢X and inductively construct the sequence of points

Xg = f(Xl)

x3 = £(xy) = fp‘(Xl)
Xy = f(X3) = fa(xl)
X 4 T f(xn) = fn(xl)

LY

We first show that {Xn}:=¢ is a Cauchy sequence in (X, d).

Thus, without loss of generality take m < n (m, n e N), then
-1 -1
Atk s %) = ale" (x1), £ (%))
k("2 (x1), £ 2%y ))
-3 -3
A "(x1), £ (xq))

N

W Laxg, £ M)

(as f is a comtraction)

AN AN

<" acxy, £x)) + AFGx1), £20x1)) + oo+ aE ™ Hxy), £ Mxg)))
(by extended application of the triangle inequality)
Ska—l{d(xl, F(xp) + kd(x, , Fley)) + kzd(xl, f(xl)) + ...+

T a0y, £ )3

(again, since f is a contraction)



- 4gF -

< km-ld(xl, F(x1)) (L +k+ k2 + ...+ ™
Now, as 0 < k < 1,
Tk k24, BT 7ol = 2
: . 1-k
1=0
(sum of an infinite geometric progression), whence
km-—l
d(xm, Xn) gmd(xl, f(xl))

+ 0 as m (and hence n) -+ =,

Thus {xn}:=l is a Cauchy sequence, and 80, by the completeness of (X, dl,
there exists xy € X with X Xp.

We now show xg is a fixed point of F.

Now d(xg, £{xp)) < d(xg, xn) + d(xn, £(xg))

=< d(xp, xn) + kd(xn_l, xg) (as X = f(xn - 1).)

+ 0 as e
whence d{xg, f(xg)) = 0 and so
f(XO) = Xﬂ‘

That xp is the unique fixed point of f follows, for if f(y) = vy, then
d(xg,y) = dlE(xy) »E(v)) < Xd(xp,y)

which is Iimpossible unless v = %xgfas 0 < k < 1).

NOTE. Almost as important as the vesult itself is the 'comstructive' nature

of the proof, which shows that the image of any x; € X under successive

iterates of T, i.e. %y, fxy), fz(xl), Cees fn(xl), «evs givesrise to increasingly
accurate approximations for xp, the fixed point of f.

Further in many applications, the error in the n'th such approximation can be

estimated. Tor instance
dlxg, x_) = d(fn-l(XU), fn—l(xl)) (as £7(xg) = xg)
< 1" La(xg, x1),

so provided d(xg, %;) can be estimated (frequently d(X) < =, in which case

d(xg, x3) < d(X) provides such an estimate) we have
(error in n'th approximation) Qiknui(d(XU, x3))

. . . 1
and so at each iteration the error is decreased by a factor of at least T
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Collateral Reading.

A good introductory discussien of fixed point theorems and their
importance is to be found in Courant and Robbins "What is Mathematies?",
Ch. VIII.

Marvin Shinbrot "Fixed Point Theorems", Seientific American, January
1986, reprinted in: Readings from Scientific American "Mathematics in
the Modern World".

Giles op eit p.52.
Simmons op eit Appendix One, pp. 337-340.

For an interesting discussion of fixed point theorems and their applications,

the student should consult:

Rosenlicht "Introduction to Analysis", Scott, Foresmand, 1968,
Hille "Methods in Classical and Functional Analysis", Addison-Wesley,

1972.

PROBLEMS:

1. Let £: [0, 1] - [0, 1] be continuous with respect to the metrie 4,
show that f has a fixed point.

(Hint: Apply the intermediate value theorem to x » f(x) - x.)

2. Assume that the temperature varies continuously as we move around the
equator of the earth. Prove that at any instant of time there is at
least one pair of antipodal points on the equator which are at the same
tenperature.

3. Let f: X + X be such that d(£f(x), f(y)) < d(x, y) all x, y € X, x # Y,
d & metric on X. Show that f can have at most one fixed point.

4. Let f: [a, b] + R be such that f(a) < 0 < F(b), F' exists and is
continuous on [a, bl and Ffurther there exists constants m, M with

0 <m < Max _ £'(x) < M.
xela, b]

Show that for a suitable choice of constant k the mapping g defined by
g{x) = x - k f(x) is a contraction on (la, b], dy). (Hint: Apply the
mean-value theorem to show g{x) - g(y) = (x - y){(1 - kFf'(z)), for some
z e (%, y).
Hence, conclude that f has a unique zero in (a, b).

5. Let a ¢ R be such that Ia + l] < 1. Show that the mapping f defined by

F(x) = 5((1 + )2 - (1 + a))

is a eontraction on X = {x: |1 + x| < |1 + a|} with respect to the
metric dy. Hence conclude that a has a unique square root in X.
[REMARK. This result remains true in some more general spaces, where it
plays an important role by establishing the existence of gquare roots for

certain elements. ]
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n
Let A = Iaij] be an n % n matrix, such that X Iaijl < 1 for all
j=1

ie{1, 2, ..., n}. Prove that the matrix equation (I - A)X = B,
where X and B are n x 1 column vectors, has a unique solution X for
each choice of B.

(Hint: Consider the affine mapping on 22 defined by

T: X ¥ AX + B.)

In any complete metric space (X, d) find an estimate for the erpror in

the n'th approximation x, = fn—l(xl) to the fixed point of the contraction
f: X = X vwhich is applicable even if d(X) = w.

[Hint: Refer to the proof of the Banach fixed point theorem. ]
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APPENDIX I to lecture 7.
IMPLICIT FUNCTIQNS

Our aim is to illustrate the power of fixed point Theorems by proving,
via the Banach Fixed point Theorem, the following simple
IMPLICIT FUNCTION THEOREM.

Let x, y € R be related by

(1) v = ax + R(y) where R(0) = 0 and for |y| <7

R satisfies the Lipschitz Condition
IR(y1) - R(y2)| <Xx|y; - yal

where k ig a fived constant with 0 < k < 1.
Then there exists a unique continuous funection T with £(0) = 0 and

domain D = {x: |x] <p < %é%—r} such that v = £(x), all x € D.

i.e. the relation implies y is functionally related to x at least in a

neighbourhoed of 0.

Proof. If a solution exists it will belong to the subspace X of C [-p, p]
consisting of those functions g with g(0) = 0 and el = | Max ]g(x)| <r,

|x[<0

with the induced metric, d_(g, h) = IMTA%p |g(x) - h(x)l For all g, h « X.
X

It is easily verified that (X,d_) is a complete metric space.

Further observe that f is a solution if and only if

T(f} = £ where T is the operator on X defined by

T(g)(x) = ax + R(g(x)) for all |x| <p, g € X.

Thus, provided we can show T is a strict contraction mapping into X, the
desired result will follow upon invoking the Banach fixed point Theorem.

But IT(eM_ < |a||x] + digll_ < |a[|p| + I <r by the choice of

D[< %é%—r] so T(g) € ¥.

Further 4 (T(g), T(h)) = Max |R(g(x)) - R(h(x))|
X

<k Max |g(x) - h{x)]| = kd (g, h),
x|<p

so T is a strict contraction and the result follows.

Take £ € Cl (%g - v1, xg + r1) with £'(xg) # 0. If £(xg) = yg we aim to

Application: INVERSE FUNCTION THEOREM

show there exists a unique function g, domain D= (yy - vy, yg + 1vy) for
some vy > 0, such that if y = £(x) then x = g(y) all v e D.
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i.e. f is invertible on a neighbourhood of Xg.
It suffices to show that such a g must satisfy a relation of the form (1).
The following reasoning is due to édouard Goursat (1858 - 1936) in 1803.
We rewrite y = £f(x) as
X - xg = F'(x0) (¥ - yg) - R(x)
£1(x) TIE(x) - £xg)] - (x - xg).
This is of precisely the right form, and further, from the continuity of £

where R(z2)

there exists r3 e (0, v;] such that

|£'(x) - F{xg)}| < %lf'&&oﬂ all x with |x - x| < rq
whence, for x1, %y ¢ (xg - r3, xp + r3) we have
IR(x1) = Rlxp)| = [£(x1) - £(xp) - (%1 - x5) £'(xg) || (x)| "t

X1
[ [£'(x) - £'(xq)]dx

X2

f'(xo)’_l

x -1
sj [£1G0) = £1 (e x| £ ()

X2

<E[E Gl Jxy - x| £ (x0) [

by choice of rj
and so R satisfies the required Lipschitz condition
|[R(x;) - R{xz)| < %lx; - =o].

Thus an application of our simple implicit function Theorem gives a unique

h such that

x - xp = h{y - yp) for all x with |x - x| <p, = max {ry, B|£'(xg)|rg}

whence x = g(y) = xg + h(y - yg) as required.

REMARKS: (1) The proof of our simple implicit Function theorem may be trivially

extended to cover the case where R = R(x, y) provided the Lipschitz condition
IR(xla y1) - Rlxg, yp) < k[,xl "X2| + Iyl _Yzlls 0<k<1,
is satisfied for lel, |x2| < ry and lYl‘: [y2] < rp some ri, rg > 0.

(2) Under appropriate assumptions on F, Goursat's arguments can be
combined with this extended implicit Function Theorem to obtain @ version of the

usual implicit function Theorem:
F(x, y) ¥ 0 =y = £f(x) some function f.

The calculations are however considerably more involved.
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(3) Both versions of the Implicit Ffunction Theorem considered remain
valid if x and y are allowed to be elements of a Banach algebra*, the only
difference in the proof being the replacing of [-] by the norm in the appropriate
places, while the Inverse function Theorem extends to cover complex valued

functions of a complex variable.

Collateral Reading.

Essentially, the above considerations were extfacted from the two books
of Einar Hille, "Analytic Function Theory" Vol. I Gin, Boston, 1559 and
"Methods in Classical and Functional Analysis”, Addison-Wesley, Massachusetts,
1972.

EXERCISE,
Let x and y be related implicitly by

x3 + ¥y o+ x - ¥y = 0.

Establish the existence of an r > 0 and function f e C{-r, r) with £(0) = 0,
such that
y = £f(x) for all x € (-r, p).

[Hint: Consider T: X -+ X where
T(g)(t) =t + t3 + g3(t) for all g ¢ X,

4 suitable subspace of C{-r, v).]

* i.e. a normed linear space, complete with respect to the induced metric
in which a product is defined, which is distributive over + and satisfies
lzyll < l=llllyll and (Ax)y = x(Ay) = A(xy) for all =%, y in it and A e R(C).
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APPENDIX IT to lecture 7.
AN EXISTENCE UNIQUENESS RESULT FOR DIFFERENTTAL EQUATIONS

We develop conditions on F: R2 + R under which the Fivst crder intial

value problem

u'(t) = F(t, u(t)), ultg) = ug

has a unique solution on a neighbourhood of the initial point tp.
OBSERVE that, under the twansformations
X =T -ty y=1u-ug, flx,y)=F(x+ty, vy +up)

the problem has the more convenient Formulation
y' = £f(x, y), y(0) = 0,
with which we will work from now on.

CORRESPONDING INTEGRAL EQUATION.
Henceforth assume that f defines a continuocus mapping from (A, dy) into (R, dy)
where A is the rectangle
{(x, y) € R?: x| <a, [v] <mB},
and let

X, = {¢ ¢ C[-h, h]: ol =x [Mﬁxh] lo(x)] <b}

>

then we have

X
LEMMA., If ¢ Xh 18 such that ¢§(x) = J £f(t, ¢(t))dt, then v = ¢(x) 15 a
solution of the initial value problem °y' = £(x, y), y(0) = 0.

Proof. From the assumption on f and the nature of ¢ follows the continuity of

the composite £(t, ¢(t)) and so the fundamental thecrem of calculus applies to

give
a (¥
p'{x) = EE’[ £, ¢(E))at = Flx, ¢).
0 o
It is also clear that ¢{0) = J F(t, ¢#(£))at = o,
0

OPERATOR REFORMULATION.

For any h > 0 define the operator (mapping)

T: Xh -+ C[-h, h] by

p:4
T(W)(x) = I £, Pp(t))dt for all ¢ € X, -

Then the above lemma may be restated as

"If ¢ € X, is such that T(¢) = ¢, then v = ¢(x) is a solution of
h

y' = f(x, ¥), y(0) = om,
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Thus to establish the existence of a solution to the initial value problem it
suffices to find an h > 0 such that T has a fixed point in Xh' To achieve this
we seek a value of h > 0 for which T is a contraction on (Xh, d_). The result
then follows from Banach's fixed point theorem, since it is readily shown {(do so)

that (Xh, d_) is a complete metric space.

Now for ¢ € X

h
%
[T (x)| = J £, p(t))dt
e
®
J |£(t, w(t))]at for x 20
< {0
0
J |£(t, v(x))]dt For x < 0
%
< Mx|
where M= Max_ |f(x, v} (< =, by the continuity of f)
(x,v)eA
So T _ = Max |T(¢)(x)]| < mn
xel[-h,h]
whence if h $§§—we have IT(¢M_ <Db and so T(y) ¢ X or Ti X + X .

The final step is to show that we can choose h so that in (Xh, dm)
d_(T(y), T()) Sk d_ (¢, ¢) for some k ¢ (0, 1).

Regrettably this is not,in general, possible without Ffurther restricting £. We

will assumethat f satisfies a Lipschitz's condition in the second variable, i.e.
|f(X, y1) - f(x: Yz)l \<‘K’yl - YZI

for some K > 0 and all (x, yi) e A (1=1,2). Then

d_(T(y), T($)) Max JT(w)(x) - T($)(x)]

xe[-h,h
H
= Max ff(t, p(t)) - £(t, ¢(t))dt
xe[~-h,h]
X
< Max J |£0t, ¢(t)) - £, #(t))]at (x = 0)
xeg[-h,h]

0

.4
< M KJ )
.xejfﬁ?hj G lw(t) - ¢(t)]dt
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< Max [K Max  |y(t) - ¢(t)|x]
xe[~h,h]\ te[-h,h]

= Kh  Max [y(E) - $(t)]
te[-h,h]

= Kh dm(w, $). (The same result holding if x < 0.)

Thus dw(T(w), T{4})) Sgkdm(¢= $)

where k = Kh < 1 provided h < %?

We have therefore proved:

For h < Min{g-, %}, T has a unique fixmed point ¢h e X Thus

he
X
¢y (x) = J £, ¢, (£))dt for |x| < n
0
and so y = ¢h(x) ig a solution of y' = f(x, y)s ¥(0) = 0 on the neighbourhood
(~h, h). )
We now show that this solution is unique, at least for h sufficiently small.
Assume y = ¢(x) is any solution of y' = £(x, y), y(0) = 0, then a priori
¢ is differentiable and so continuous, thus there exists
h; € (0, Min{g‘, %}) such that
x| <m = sG] < b
Hence, on the open interval (-h1, hy) the composite f(x, ¢ (x2))

= ¢'(x) (by assumption)

is continuous and therefore integrable. Whence the fundamental theorem of calculus

applies to give %

b{x) = J £flt, ¢(£))dt = T(p)(x).
: _

Thus, ¢ is a fixed point of T in Xh,which is unique by the above rvesult.
In all, we have therefore proved

THEOREM: If £: R? + R 48 continuous on some rectangle

Aﬁ{m,yhlxléa,hlgb}

‘and satisfies a Lipschitz condition
lf(x: Yl) = f(X: Yz)l gl<|Y:|. - Y2|

for all pairs of points (x, y1), (x, Y2} € A, then there exists h > 0 such that

the initial value problem y' = f(x, v), y(0) = 0 has a unique solution on (-h, h).
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REMARKS. (1) A sufficient (and often used) condition for f to satisfy a
Lipschitz condition of the type referred to above is that %g-be continuous in
A, as may easily be seen upon an application of the Mean Value Theorem.
(2) From the proof of Banach's f%xed point theorem and the remarks
following it, for T defined by T($)(x) = | £(t, ¢(t))dt, the sequence of
0

iterates

dgs TChods T2(d0)s veuy TCig)s ovns

for any continuous starting function ¢g with ¢5(0) = 0,
form successive approximations (known as Picard's approximations) to the solution

of y' = £(x, y), y(0) = 0 (at least for sufficiently small values of x).

EXERCISE.
(1} Transform the initial value problem u' = u, u(0) = 1 into the form
y' = £f(y}, y(0) = 0 and repeat the general arguments of this appendix

for this specific case.

(ii) Obtain the first five successive Picard approximations to the solution
of y' = £(y), y(0) = 0 (f as in (i)) starting with initial approximation
li)D(X) = 0.
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MISCELLANEOUS PROBLEMS

Let (X, d) be a metric space,for x € X and A € X define the distance from

®x to A to be

d(x, A) = inf d(x, A).
ach

(i) Show A # ¢ implies 0 <d(x, A) < =
(i.e. d(x, A) = = iFff A = ¢).

{ii) Does d{x, A) = 0 imply x € A?
(iii) Prove x e Int (X\A) iff d(x, A) > 0.

(iv) Prove x € A iff d(x, A) = ¢, (hence characterise those x ¢ bdry A

in terms of distances from sets).

(SEPARATION THEOREMS)
(a) If x, v are distinct points of the metric space (X, d), show that
there exists a pair of disjoint open balls each of which is centred
on one of the points. Because of this property metric spaces are

said to satisfy the Hauszdorff separation axiom.

(b) In the metrvic space (X, d) let x ¢ A = A, Show there exists disjoint
open sets Gy, G, with x € Gy and A < Gj.

%“{c) Let Ay, Ay be any pair of disjoint closed subsets in the metric space

(X, d). Show that there exists disjoint open sets G, Gz with
As Q_Gi (i = 1, 2). Because of this property we say metric spaces
are normal spaces.

Let £f: ¥ =+ Y and g: X + Y be two continuous mappings between the metric
spaces (X, d) and (Y, d4') such that £(a) = g(a) for all a € A, a dense
subset of X. ©Show that £ and g are in fact identical.

The ruler function r: [0, 1] = Q n [0, 1] defined by

0 if » is irrational

l-if ¥ = B
a a

r(x) =

where p and g are mutually prime Integers (i;g;'the greatest common

divisor of p and q is 1),

has the properiy of being continuous at each irraticnal point, but discontinuou:
at every rational point. Prove this for, at least, the two special cases of

x =% and x = v2/2. (This function is considered in many of the standard
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4, {(continued)

books, including Spivak "Calculus".)

5. Cantor's Ternary Set, may be comsiructed inductively by deleting the

:t‘.') %_‘?- open interval (%—, %) from [0,1],
[}
3 2/3 leti (._J:. 2) 4 (7 B)
cenem e s o r— then deleting 5> g0 and (5 3>
DL
=33 --- teeT followed by the deletion of
sH--HH--- - BH--BH (L 2y (7 8 (8 20, (95 25,
2707 27 277 27 277 27 277 27

a.tco » followed by e

(see diagram)
7 8
9° 9°
and so K # ¢, in fact K contains infinitely many points, despite the fact

Clearly, the points %3 %3 %3 %3 .... are never deleted by this process

that the total "length" of non-averlapping intervals deleted is readily seen

to equal
n
1.2 . 4 8 1 2 4 8 2
—'3“+-é-+§-,7-+'-8'z+...—-3[l+3+9+27+...+gﬁ"+...J

a geometric progression whose sum is 1!

(1) Deduce that X is a closed subgset of ([0, 1], d;).

%(jii) (For latter parts you may assume the results of this part, if you feel
unable to prove them and feel they would help.)} Show the following
are equivalent definitions of K

3ty

o 2
2m -~ 1 2m
= U ) ~ =, =2
(@) X =10, 11\ n=1 m=1 [ 5P ? Bn]

(b) X consists of precisely those points in [0, 1] having a

ternary representation (i.e. representation to base 3)
@ g
of the form z ~§-With a = 0 or 2 for all n e N.
n=1l 3

(Yote: %-= 0.01 = 0.00222; (base 2) etc.)
(iii) Show Int K = ¢
(iv) Show bdry K = K
(v) Show [0, 1]\K is a dense subset of [0, 1]
#(vi) Show K' = X

%“(vii) Show K is an uncountable set with cardinality that of the continuum
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5. *¥(vii) (continued)
i.e. there exists a 1-1 and onto mapping from K to [0, 1].
(Thus although K has zero "length" it contains as "many" points

as the original interval [0, 1].)

You will find many more problems both elementary and more advanced in
the various reference books cited at the end of sach lecture.
The interested student is encouraged to read further on the theory
of metric spaces.
Topics which such reading might include are:
1. The Baire Category Theory
2. Compactness

3. Connected Sets.



