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Abstract. Let X be a Banach space, let φ denote the usual Kuratowski
measure of noncompactness, and let kX (ε) = sup r (D) where r (D) is the

Chebyshev radius of D and the supremum is taken over all closed convex
subsets D of X for which diam (D) = 1 and φ (D) ≥ ε. The space X is said to

have φ-uniform normal structure if kX (ε) < 1 for each ε ∈ (0, 1) . It is shown

that this concept, which lies strictly between normal structure and uniform
normal structure, implies reflexivity. Hence if X has then X has the fixed

point property for nonexpansive mappings. Related concepts in metric spaces

are also discussed.

1. Introduction

Our objective in this note is to introduce a ‘noncompact’ extension of the
concept of uniform normal structure and discuss some of its properties and related
notions. We begin some standard definitions and a brief review of the general topic.

Let X be a Banach space; let C denote the collection of all bounded closed
convex subsets of X; let Cw denote the collection of all weakly compact convex
subsets of X; let A denote the collection of all admissible subsets of X. Thus A is
the collection of all sets of the form

B = ∩i∈IB (xi; ri)

where B (xi; ri) denotes a closed ball centered at xi ∈ X with radius ri ≥ 0, and I
is some index set.

The Chebyshev radius r (K) of K ∈ C is the number

r (K) = inf
y∈K
{sup {‖x− y‖ : x ∈ K}} .

A Banach space is said to have normal structure if r (K) /diam (K) < 1 whenever
K ∈ C and diam (K) > 0. It is well-known that if a weakly compact convex
subset of a Banach space has normal structure, then every nonexpansive mapping
T : K → K has a fixed point. (T is nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖
for each x, y ∈ K.) Thus Banach space which have normal structure have the weak
fixed point property (weak-FPP).
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We now list the standard normal structure coefficients of X. The first was
introduced by Bynum in 1980 [8]. These are called, respectively, the normal struc-
ture coefficient, the weak normal structure coefficient, and the admissible normal
structure coefficient of X.

N (X) = sup {r (K) /diam (K) : K ∈ C and diam (K) > 0} ;

Nw (X) = sup {r (K) /diam (K) : K ∈ Cw and diam (K) > 0} ;

Na (X) = sup {r (K) /diam (K) : K ∈ A and diam (K) > 0} .

X is said to have uniform normal structure (UNS) if N (X) < 1. This concept,
which is a strengthening of the concept of normal structure, was introduced by
Gillespie and Williams in 1979 ([10]) and it serves as the basis for this entire dis-
cussion. Notice that weak uniform normal structure (w-UNS) and admissible uni-
form normal structure (a-UNS) can be defined analogously. Gillespie and Williams
showed that if a Banach space X has UNS then every bounded closed convex sub-
set of X has the fixed point property for nonexpansive mappings, and they raised
the question of whether every such space is reflexive. This question was answered
affirmatively, and independently, by Bae [3] and Maluta [17].

While the above coefficients are natural in a Banach space environment, the
third requires only a metric setting. It is well known (e.g., [4]) that for any hyper-
convex metric space H,

Na (H) = 1/2.

We now list some well-known facts about normal structure coefficients. Through-
out we only consider the case dimX =∞.

1. It is easy to see that in general, 1/
√

2 ≤ N (X) ≤ 1 − δX (1) , where δX is
the usual modulus of convexity of X ([17]).

2. N (`p) = N (Lp) = max
{

2−1/p, 2(1−p)/p
}

for 1 < p < ∞; in particular

N (`2) = N (L2) = 1/
√

2.

3. Na (L∞) = Na (`∞) = 1/2.

4. Fix λ ≥ 1 and let Xλ denote the space `2 renormed as follows: For x ∈ `2,
set

|x|λ = max {‖x‖2 , λ ‖x‖∞} .
Since

‖x‖2 ≤ |x|λ ≤ λ ‖x‖2
the spaces Xλ are reflexive, and it is easy to see that

N (Xλ) = min
{

1, λ/
√

2
}
.

Thus

Xλ has UNS ⇔ λ <
√

2.

Karlovitz [12] observed that while X√2 fails even to have normal structure, it does
have the weak-FPP. Later Baillon-Schöneberg [5] proved that Xλ has ‘asymptotic
normal structure’⇔ λ < 2 ; hence Xλ has the weak-FPP in this case. Subsequently
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J. M. Borwein and B. Sims [7] showed that Xλ actually has the weak-FPP, for all
λ ≥ 1. See also [16].

5. UNS ⇒ Reflexivity ([3], [17]), see section 2 for a proof.

6. Every k-uniformly rotund Banach space has UNS ([8], also see [1]).

7. If ρ′X (0) := limτ→0 ρX(τ)/τ < 1/2 then X has UNS, where ρX is the
usual modulus of smoothness of a Banach space. Since X is uniformly smooth
⇔ ρ′X (0) = 0, this in particular implies that uniformly smooth Banach spaces have
UNS. In fact, since it is known that ρ′X (0) < 1⇔ X∗ is uniformly nonsquare ⇒ X
is superreflexive, it follows that ρ′X (0) < 1/2 ⇒ X is both reflexive and has UNS
(see Prus [20] and Turett [21]).

8. It is also known that Nw (X) is finitely determined for any Banach space X.
That is, given ε > 0 there exists a finite subset F of X with the property

Nw (X) ≥ r (conv (F )) /diam (F ) ≥ (1− ε)Nw (X) .

This gives rise to one of the fundamental open questions in the theory of Banach
space geometry, namely: Is UNS a super-property? Equivalently, does UNS ⇒
superreflexivity? (See [1] for details.)

9. Finally we mention that Maluta and Prus [18] have recently introduced a
concept of k-uniform smoothness which is dual to k-uniform rotundity and shown
that, although k-uniformly smooth spaces are superreflexive, they fail even to have
normal structure.

2. UNS and reflexivity

Here we give a proof that UNS implies reflexivity. This proof, which is based
loosely on that given in [3], is found in [11]. We include the details because it is a
modification of this approach provides the basis for our main result.

Suppose X has UNS and let K0
1⊃K0

2⊃K0
3⊃ · ·· be a sequence of nonempty

bounded closed subsets of X. In view of Smulian’s theorem we only need to show
that this sequence has nonempty intersection.

By assumption

k0 := sup {r (C) /diam (C) : C ∈ C and diam (C) > 0} < 1.

Choose k ∈ (k0, 1) , and for each C ∈ C let

A (C) := {x ∈ C : ‖x− y‖ ≤ k diam (C) , ∀y ∈ C}
= [∩y∈CB (y; k diam (C))] ∩ C.

Thus A (C) is a nonempty proper closed convex subset of C for each C with
diam (C) > 0. In particular, diam (A (C)) ≤ k diam (C) . Now set

K1
1 = conv ∪∞i=1 A

(
K0
i

)
;

K1
2 = conv ∪∞i=2 A

(
K0
i

)
;

...

K1
n = conv ∪∞i=n A

(
K0
i

)
.
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Claim. For n = 1, 2, · · · we have diam
(
K1
n

)
≤ k diam

(
K0
n

)
. To see this, let

x, y ∈ ∪∞i=nA
(
K0
i

)
. Then x ∈ A

(
K0
p

)
and y ∈ A

(
K0
q

)
for, say, n ≤ p ≤ q. Since

K0
q ⊆ K0

p , both x, y ∈ K0
p so ‖x− y‖ ≤ k diam

(
K0
p

)
.

We now have:

K0
1 ⊃ K0

2 ⊃ K0
3 ⊃ · · · ⊃ K0

n ⊃ · · ·
∪ ∪ ∪ ∪
K1

1 ⊃ K1
2 ⊃ K1

3 ⊃ · · · ⊃ K1
n ⊃ · · ·

with diam
(
K1
n

)
≤ k diam

(
K0
n

)
, n = 1, 2, · · ·.

By repeating the above construction step-by-step, we obtain sequences of nonempty
bounded closed convex sets that are nested as follows:

K0
1 ⊃ K0

2 ⊃ K0
3 ⊃ · · · ⊃ K0

n ⊃ · · ·
∪ ∪ ∪ ∪
K1

1 ⊃ K1
2 ⊃ K1

3 ⊃ · · · ⊃ K1
n ⊃ · · ·

∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
Kn

1 ⊃ Kn
2 ⊃ Kn

3 ⊃ · · · ⊃ Kn
n ⊃ · · ·

∪ ∪ ∪ ∪
...

...
...

...

Since diam (Kn
i ) ≤ k diam

(
Kn−1
i

)
≤ · · · ≤ kn diam

(
K0
i

)
→ 0, the diagonal se-

quence
{
Kn
n+1

}
has nonempty intersection by Cantor’s theorem. But since Kn

n+1 ⊆
K0
n+1, n = 1, 2, · · ·,

x ∈ ∩∞n=0K
n
n+1 ⇒ x ∈ ∩∞n=0K

0
n+1.

Thus UNS implies reflexivity, but it is known that normal structure need not,
see [9] where it is shown that every separable space can be equivalently renormed
to have normal structure. In the next section we introduce notions that genuinely
lie between UNS and normal structure and show that they entail reflexivity.

3. Non-compact UNS

We now introduce an extension of the concept of UNS. Let φ be the Kuratowski
measure of noncompactness. Thus for a nonempty bounded subset A of X,

φ (A) = inf {ε > 0 : A ⊆ ∪ni=1Ai with diam (Ai) ≤ ε} .

In particular, φ (A) ≤ diam (A) and satisfies the following properties. (Actually,
property (iii) is not used in the sequel.) These properties also hold for other mea-
sures of noncompactness as well as that of Kuratowski (see, [6] and [2]).

(i) φ
(
A
)

= φ (A) .

(ii) φ (A) ≥ 0, and φ (A) = 0 ⇔ A is compact.

(iii) φ (conv (A)) = φ (A) .

(iv) If A1⊃A2⊃A3⊃· ·· are nonempty, and if limn φ (An) = 0, then ∩∞i=1Ai 6= ∅.
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Definition 1. For a Banach space X, the φ-normal structure coefficient is

kX(ε) := sup {r (D) : D ∈ C, diam (D) = 1 and φ (D) ≥ ε}

where ε ∈ (0, 1) .

Note that kX(ε) is a decreasing function of ε with kX(0) = N(X). Thus X has
UNS if and only if kX(0) < 1 and has normal structure if kX(1) < 1. It will be
useful to also note that

kX(ε) = sup {r (D) /diam (D) : D ∈ C with φ (D) ≥ ε diam (D) > 0} .

¿From the introductory discussion, if X fails the weak-FPP then X contains a
diametral set K. That is, r(K) = diam(K), hence φ(K) = diam(K) and we have
the following.

Theorem 3.1. If a Banach space X has kX(ε) < 1 for some ε ∈ (0, 1), then
X has the weak-FPP.

Definition 2. A Banach space is said to have φ-uniform normal structure
(φ-UNS) if for each ε ∈ (0, 1) , kX(ε) < 1.

Our main result is the following.

Theorem 3.2. If a Banach space X has φ-UNS, then X is reflexive.

Proof. Suppose X has φ-UNS and let K0
1⊃K0

2⊃K0
3⊃ · ·· be a sequence of

nonempty bounded closed subsets of X. It is enough to show that there exists
a subsequence,

(
K0
nk

)
, with ∩∞k=1K

0
nk
6= ∅. As, if x ∈ ∩∞k=1K

0
nk

, then for all k,

x ∈ K0
nk
⊆ K0

k so x ∈ ∩∞k=1K
0
k and, as before, the result follows by Smulian’s

theorem.
Let φ0 := limn φ

(
K0
n

)
and d0 := limn diam

(
K0
n

)
. If φ0 = 0 we are done by

property (iv) of φ. Now, assume that φ0 > 0 and necessarily d0 > 0, then for all
sufficiently large n we have φ(K0

n) > φ0/2d0 diam(K0
n). Let k0 := kX(φ0/2d0) and

proceed to construct
{
K1
n

}∞
n=1

as in Section 2 but with k0 in place of k. Then, as
before, we have

diam(A(K0
n)) ≤ k0 diam(K0

n) and diam
(
K1
n

)
≤ k0 diam

(
K0
n

)
, n = 1, 2, · · ·.

Once again, if φ1 := limn φ
(
K1
n

)
= 0 we are finished. So assume both φ1 and so

d1 := limn diam
(
K1
n

)
are strictly positive. Then for sufficiently large n, φ

(
K1
n

)
>

φ1/2d1 diam
(
K1
n

)
. Let k1 := kX(φ1/2d1) and proceed to construct

{
K2
n

}∞
n=1

as in
Section 2 but with k1 in place of k. Then,

diam(A(K1
n)) ≤ k1 diam(K1

n) and diam
(
K2
n

)
≤ k1 diam

(
K1
n

)
, n = 1, 2, · · ·

Continuing this process, either it terminates after a finite number of steps with
one of the φj = 0, in which case we are done, or we obtain, as in Section 2, a doubly
infinite collection of closed convex subsets (Kj

n); j = 0, 1, 2, · · ·, n = 1, 2, · · ·, that
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are nested as follows:

K0
1 ⊃ K0

2 ⊃ K0
3 ⊃ · · · ⊃ K0

n ⊃ · · ·
∪ ∪ ∪ ∪
K1

1 ⊃ K1
2 ⊃ K1

3 ⊃ · · · ⊃ K1
n ⊃ · · ·

∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
Kn

1 ⊃ Kn
2 ⊃ Kn

3 ⊃ · · · ⊃ Kn
n ⊃ · · ·

∪ ∪ ∪ ∪
...

...
...

...

and with φj = limn φ
(
Kj
n

)
> 0, and so dj = limn diam

(
Kj
n

)
> 0, for j = 0, 1, 2, · · ·.

It suffices to show that limj φj = 0, as then we can extract Kj
nj

with limj φ
(
Kj
nj

)
=

0. Consequently, by property (iv) of φ, we have ∅ 6= ∩∞j=1K
j
nj
⊆ ∩∞j=1K

0
nj

and we
are done.

Now, suppose limj φj > 0, then necessarily limj dj > 0, and so α := limj φj/dj >
0. Then, since α ∈ (0, 1], for all sufficiently large j we have φj/dj ≥ α/2 and so
kj (= kX(φj/2dj)) ≤ k := kX(α/4) < 1. Starting from a sufficiently large j, we can

therefore find
(
Kj
nj

)
such that

diam
(
Kj+m
nj+m

)
≤ kj+m−1 diam

(
Kj+m−1
nj+m

)
≤ k diam

(
Kj+m−1
nj+m−1

)
· ··

km−1diam
(
Kj
nj

)
.

Thus, limj diam
(
Kj
nj

)
= 0, and so limj dj = 0, a contradiction, as then we would

have limj φj = 0. �

Corollary 1. If a Banach space X has φ-UNS, then X has the FPP.

Remark. An alternate definition for φ-UNS could be: a Banach space is said to
have φ-uniform normal structure if for each ε ∈ (0, 1) ,

kε := sup {r (D) /diam (D) : D ∈ C and φ (D) ≥ ε} < 1.

However, this is equivalent to taking the supremum over all non-compact sub-
sets in C. Thus, though the results of section 3 remain valid, it provides a less
sharp constant than the definition adopted. Nevertheless this alternative defini-
tion, which will be explored in section 5, does make sense in a metric space setting
where scaling is not possible.

4. δ-uniform normal structure

It is possible to formulate a concept which lies between UNS and φ-UNS. It is
not clear that this concept has much significance in a Banach space context but it
does offer another possibility when extended to metric spaces.
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Definition 3. A bounded convex subset K of a Banach space has δ-uniform
normal structure (δ-UNS) if for each ε > 0,

kε := sup {r (H) /diam (H) : H ⊆ K, H convex, diam (H) ≥ ε} < 1.

The following facts are fairly straightforward.

Proposition 1. A Banach space X has δ-UNS if and only if it has UNS.

Proposition 2. Every compact convex subset of a Banach space has δ-UNS.

Proposition 3. If a bounded closed convex subset of a Banach space has δ-
UNS, then it is weakly compact.

The proof of Proposition 3 amounts to a routine re-working of the argument of
the previous section.

5. Metric spaces

We begin with the relevant terminology and notation. Let (M,d) be a metric
space, and for A ⊆M let

cov (A) = ∩{B : B is a closed ball and A ⊆ B} .

Also let A (M) = {D ⊆M : D = cov (D)} . Thus A (M) denotes the collection of
all admissible subsets of M.

The Chebyshev radius r (D) of D ∈ A (M) is the number

r (D) = inf
y∈D
{sup {d (x, y) : x ∈ D}} .

The family A (M) is said to have normal structure (or to be normal) if for each
D ∈ A (M) with diam (D) > 0 it is the case that

r (D) < diam (D) .

If there exists a constant c ∈ (0, 1) for which

r (D) < cdiam (D)

for each D ∈ A (M) with diam (D) > 0 then A (M) is said to have uniform normal
structure.

Finally, A (M) is said to be compact [resp., countably compact ] if every family
[resp., countable family] of nonempty sets in A (M) which has the finite intersection
property has nonempty intersection.

In this context the fundamental fixed point result for nonexpansive mappings
is the following (see [19], [14]).

Theorem 5.1. Suppose M is a bounded metric space and suppose A (M) is
compact and has normal structure. Then every nonexpansive T : M → M has a
fixed point.

Using admissible sets it is possible to give metric space analogs of all the fore-
going concepts. As before we use

Definition 4. A bounded metric space M is said to have δ-UNS if for each
ε > 0,

kε := sup {r (D) /diam (D) : D ∈ A (M) and diam (D) ≥ ε} < 1.
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Definition 5. A bounded metric space M is said to have φ-UNS if for each
ε > 0,

kε := sup {r (D) /diam (D) : D ∈ A (M) and φ (D) ≥ ε} < 1.

The principle results of this section are the following.

Theorem 5.2. Suppose M is a bounded and complete metric space for which
A (M) has φ-UNS. Then A (M) is countably compact.

Theorem 5.3. Suppose M is a bounded and complete metric space for which
A (M) has δ-UNS. Then A (M) is compact.

Proof. By Theorem 5.2 A (M) is countably compact, and it is clear that if
A (M) has δ-UNS then A (M) has normal structure. However it is known (Kulesza-
Lim [15]) that if A (M) is countably compact and has normal structure, then A (M)
is in fact compact. �

Proof of Theorem 5.2. The approach is similar to that of Theorem 3.1.
Suppose M has φ-UNS and let D0

1⊃D0
2⊃D0

3⊃ · ·· be a sequence of nonempty sets
in A (M) , and let d1 = limn φ

(
D0
n

)
. We only need to show that ∩∞i=1D

0
i 6= ∅.

Since M is complete, if d1 = 0 this follows from Cantor’s theorem. Otherwise
φ
(
D0
n

)
≥ d1 > 0 for each n and by definition kd1 < 1. Let

k1 =
1

2
(1 + kd1)

and define

A
(
D0
i

)
=
[
∩y∈K0

i
B
(
y; k1 diam

(
D0
i

))]
∩D0

i , i = 1, 2, · · ·.

Now let

D1
1 = cov ∪∞i=1 A

(
D0
i

)
, D1

2 = cov ∪∞i=2 A
(
D0
i

)
, · · ·, D1

n = cov ∪∞i=n A
(
D0
i

)
.

As before diam
(
D1
n

)
≤ k1 diam

(
D0
n

)
, n = 1, 2, · · ·. Now proceed to construct{

D1
n

}∞
n=1

as in Section 2 by replacing K with D and k with k1. This gives

diam
(
D1
n

)
≤ k1 diam

(
D0
n

)
, n = 1, 2, · · ·

where kd1 < k1 < 1. Now define d2 = limn φ
(
D1
n

)
.

By following the steps of the proof of Theorem 3.2 it is possible to conclude
that ∩∞i=1D

0
i 6= ∅ either via Cantor’s theorem (inf dj > 0) or by an application of

property (iv) of φ. �

The approach of this section does not lead to the conclusion that φ-UNS of
A (M) implies compactness of A (M) because it is not clear that φ-UNS implies
normal structure of A (M) . Indeed, compact sets in A (M) may consist entirely of
diametral points.
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