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ASSESSING THE MINIMALITY OF CHANGE IN 
BELIEF REVISION: CAPACITIES 

1 INTRODUCTION 

The process of belief revision [Alchourr6n et al., 19851 was developed to model 
the effect of accepting incoming information into a knowledge base. It can be 
based on a total preordering of the set of beliefs held by the system. When this 
ordering relates in a natural way to the semantics of the underlying knowledge 
base, it is dubbed an epistemic entrenchment ordering [Gglrdenfors and Makinson, 
19881. This ranks beliefs in order of the agent's reluctance to give them up. Thus 

.the belief the sun will rise tomorrow would be ranked higher than the universe 
started with a big bang. Such an ordering leads to the construction of a unique 
AGM transformation on the knowledge base to allow for the acceptance of new 
information; information which may be inconsistent with the current beliefs. This 
original work was purely theoretical, concerning itself only with one revision. The 
outcome was a revised set of beliefs, but the question of how those beliefs could be 
fitted with a "revised" ranking was not addressed. This question is, however, not 
only theoretically interesting but also vital for implementation since, in that situa- 
tion, it is necessary to iterate the procedure and so a new epistemic entrenchment 
needs to be the outcome of each revision. 

Later work extended this system to accomodate iterated belief revision, the pro- 
cess of moving under revision from one entrenchment to another being termed a 
transmutation. Following the lead of earlier work on Bayesian and Jeffrey condi- 
tionalisation, and Spohn's ordinal conditional functions [Spohn, 19881, this was 
effected by allowing new information to be inserted with a rank allocated prior to 
insertion [Williams, 1994al. This provided revision operations for ensconcements 
[Williams, 1994b1, which allowed for an actual computer-based implementation 
of iterated belief revision [Williams, 1995; Williams, 1997a; Williams, 1997bl. 

Since then, a number of algorithms for determining the set of beliefs to be dis- 
carded in the event of a revision have been proposed and implemented with the 
focus generally either on speed of execution (for example Linear revision [Nebel, 
19941, and Adjustment [Williams, 19951), or intuitiveness of the output (for exam- 
ple Maxi Adjustment [Williams, 1997al). Typically, the algorithm moves through 
the ranking until it determines the largest 'cut' in which no inconsistency exists, 
and then locates a minimal set of beliefs -either in the next rank, or in the rest of 
the ensconcement - whose removal eliminates inconsistencies. 

In every case, the heart of the algorithm lies in the method for deciding on a 
set of beliefs to discard. Intuitively, this set should be in some sense minimal, but 
various algorithms have differed considerably as to how this should be interpreted. 
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Qualitatively, a notion of minimality was captured by imposing heuristically plau- 
sible constraints on the transformations to be applied. However, little has been 
done to provide quantative measures of this minimality in this context. 

We introduce the notion of capacity for a belief set. In order that a capacity 
reflects the underlying desire for minimal change, it is tied monotonically to the 
set-theoretic structure of the knowledge base, as well as to the preference ordering 
associated to it. The axioms have, however, been kept to a minimum so as to 
permit as much freedom as possible in the construction of capacities. 

Examples showing how capacities may be constructed are presented. A theory 
of capacities is then developed; in particular some general properties of capacties 
are examined, and general techniques for constructing new capacities from given 
ones are explored. We then go on to demonstrate that there is a capacity associ- 
ated to each epistemic entrenchment which exposes the sense in which the beliefs 
removed in the corresponding AGM transformation are minimal. 

Our final consideration of capacities relates to the problem of simultaneous re- 
vision with respect to multiple beliefs. The behaviours of the existing standard 
belief revision strategies when used to revise with respect to multiple beliefs de- 
pend quite heavily on the order in which the new beliefs are added to the system, 
and require that a position in the ranking for each new belief be provided. While 
this can be a beneficial aspect of belief revision, it can also be restrictive in that it 
requires some external system (either user or calling program) to determine where 
new beliefs should lie in the ranking. Capacities can be used to provide an alter- 
native to these iterated belief revision strategies; one that does not rely on a rank 
being preassigned to each new belief, and that is not dependent upon the order in 
which the beliefs are added. 

The aim of capacities, then, is to formalise the concept of minimality by de- 
scribing a set of axioms that circumscribe a family of functions that can be used 
naturally to identify minimal sets of beliefs. 

2 CAPACITIES 

Before presenting the definition of capacities, we recall the definitions of a number 
of well-known concepts. 

DEFINITION 1. A theory is a set T of beliefs (logical sentences) that is closed 
under the operation of entailment, that is, A c T and A k b implies b E T .  The 
theory closure of a set X of beliefs, denoted Th(X), is the closure of X under 
entailment. That is, Th(X) := {ylX k y). 

DEFINITION 2. Following [Gkdenfors and Makinson, 19881, an episternic en- 
trenchment is a pair (T ,  <) where T is a theory, and < is a total preordering on T 
in which tautology is ranked strictly higher than any other belief and which is such 
that, for any b E T ,  Th({a E Tla 2 b ) )  n {c E Tic < b )  = 0. 
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REMARK 3. To avoid techinical distractions, we will restrict our attention to 
finitely representible epistemic entrenchments [Williams, 1994bl. That is, an epis- 
temic entrenchment (T ,  <) in which there are only a finite number of distinct sub- 
theories ('cuts') of the form C, := { b  E Tla < b )  where a E T ,  each of which is 
finitely axiomatisible. Such entrenchments are of prime importance from the point 
of view of implementation of AGM belief revision. Thus, throughout what fol- 
lows, epistemic entrenchment should be understood to mean finitely representible 
epistemic entrenchment. 

REMARK 4. In an epistemic entrenchment (T,  <), it is not uncommon to asso- 
ciate a number in [0, 11 with the beliefs in each of the ranks, where 1 is reserved 
for tautologies, whilst 0 is reserved for contradictions, and also assigned to non- 
beliefs; that is, beliefs not in T .  

DEFIMTION 5. An entrenchment basis for a finitely representible epistemic en- 
trenchment (T ,  <) is a finite subset B c T ,  together with the restriction of < to B 
(denoted ( B ,  s)), such that for each a E T ,  C, = Th(BrIC,). Such bases always 
exist, and have elsewhere been referred to as ensconcements [Williams, 1994b1. 

For our purposes, it will be convenient to introduce a more general concept. 

DEFINITION 6. A beliefranking is a finite set X of beliefs with a total preorder- 
ing <. We will refer to such a ranking by the pair ( X ,  5). 

REMARK 7. It should be noted that there is no requirement that a belief ranking 
relate to the underlying logical structure of the set X ,  and so the concept of a 
belief ranking is more general than that of an entrenchment basis. Thus every 
entrenchment basis is a belief ranking, but the converse is not, in general, true. 

DEFINITION 8. A function m : P ( X )  + [0, co) is called a capacity on the 
belief ranking ( X ,  <) if for all A, B c X ,  

a) m(0) = 0; 
b) A C_ B =+ m(A) < m(B) ;  and 
c) m(A)  < m ( ( A  \ { x ) )  U { y } )  # x < y whenever x E A and y $?' A. 

REMARK 9: The requirement that m(0) = 0 is not entirely necessary, but it 
does lead to nicer behaviour. In particular, as we shall see later, it ensures that 
the complement of the complement of a capacity is, in fact, equal to the original 
capacity. 

REMARK 10. Although we define capacities as functions from P ( X )  to [0, co), it 
should be clear that every capacity m is equivalent in every respect to the capacity 
m' which maps from P ( X )  to [O, 11 defined by ml(A) := m(A) /m(X) .  For this 
reason, we shall assume that every capacity maps to [0, 11 rather than to [0, co), 
and that m ( X )  = 1 for every capacity m on a belief ranking ( X ,  5 )  
DEFINITION 11. Suppose ( X ,  <) is a belief ranking, and define m : P ( X )  + 
[O, 11 by m(A) = IAJ/(X I for every A c X. This will be referred to as counting 
measure, and is useful in the construction of various capacities. 
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We now give two illustrative examples of capacities. 

EXAMPLE 12. Suppose ( X ,  5 )  is a belief ranking, and define a function r  : 
X  + N by defining r (x )  to be the number of distinct ranks below the one con- 
taining s. For example, r ( l )  = 0.  That is, the function r  assigns to each belief 
its rank counted up from the bottom of the belief ranking. We can then define a 
capacity m  by 

Note that this example reduces to the counting measure when there is only one 
rank in the belief ranking. 

EXAMPLE 13. Again suppose ( X ,  <) is a belief ranking, and define r  : X  + N 
as in 12. Then for each y  E (0,  I.] we can define a capacity m ,  by 

We refer to this set of capacities as the geometric capacities, since they are based 
on a geometric sequence. 

2.2 Capacity Constructions 

Given the definition of capacities, we now begin to investigate some methods for 
constructing new capacities from old ones. The first of these is the complement of 
a capacity. 

DEFZNITION 14. Let ( X ,  <) be a belief ranking, and let m  be a capacity on 
( X ,  5) .  We define the complement of m ,  denoted m* by 

for every A C X .  

PROPOSITION 15. Let ( X ,  5 )  be a belief ranking, and let m  be a capacity on 
( X ,  5). Then m* is also a capacity on ( X ,  5). 

Proof. 
a) m*(0)  = m ( X )  - m ( X  \ 8) = 0  
b) 

c) Let x  E A and y  $! Aand let B  := ( A  \ { x ) )  U { y ) .  We need x  < y  e 
m* (A) < m* ( B ) .  For this, first suppose x  5 y. Then: 
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Now, suppose m* (A)  5 m*(B). Then we have: 

m*(A) < m*(B) =+ m(X\A) >_ m(X\ B) 
=+ m(X \ A) 2 m(X \ ( ( A  \ { X I )  U { Y I ) )  
=+ m(X \ A) L m(((X \ A) \ { Y I )  U { X I )  
=+ x 5 y (since m is a capacity) 

PROPOSITION 16. Let ( X ,  <) be a belief ranking, and let m be a capacity on 
( X ,  5 ) .  Then (m*)* = m. 

Proof. 

( m * )  (A)  = m* ( X )  - m* ( X  \ A) 
= (m(X> - m(0)) - (m(X)  - m(X \ (X \ A)))  
= m(A) - m(0) 
= m(A) for all A & X 

REMARK 17. Philosophically, rather than removing a set A of minimal capacity 
to acheive minimal change, one might argue for the removal of a set A' whose 
complement has maximal capacity. 15 and 16 taken in conjunction with 14 show 
that there is no essential difference; it is really a choice between the use of two 
well-defined capacities. The latter strategy applied to the capacity m is identical 
to the first strategy applied to m* and vice-versa. 

In fact, the question of whether the complement of a capacity is necessary at all 
is not an obvious one. One would like to discover that every capacity m has the 
property that the ranking of the sets of beliefs given by m* is the same as that given 
by m. We call capacities for which this is true complementary. It is not, however, 
the case that all capacities are complementary, though we do get the following 
result in the case where there is a minimum element. 
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LEMMA 18. Let ( X ,  5 )  be a belief ranking, and m a capacity on ( X ,  5). I f  
8 c A X is such that m ( A )  < m ( B )  for all B E P ( X )  \ { A ) ,  then m ( X  \ 
A )  2 m ( C )  fora l lC c X .  

Proof. Clearly JAl = 1 or else every singleton set that is a subset of A is at least 
as small as A by axiom (a). Hence, A = { a )  for some a E X .  Now suppose that 
C c X .  If C # X \ A, then clearly there is a set C' # X \ A with IC'( = 1x1 - 1 
and C C', so that, in particular, m ( C )  5 m(C1) .  But now, C' = X \ {c )  for 
some c E X so a E C', and hence C' = ( X  \ { c ) )  U {a) .  

Then, 

m ( X  \ A )  = m ( X \  { a ) )  
2 m ( ( ( X  \ { a ) )  \ { c ) )  u { a ) ) ,  by axiom (b )  

= m ( X  \ {c ) )  
= m(C1)  

2 m ( C )  

as required. But if C = X \ A the result is trivially true. I 
COROLLARY 19. Let ( X ,  5 )  be a belief ranking, and m a capacity on ( X ,  5). 
I f A  C_ X is such that m ( A )  > m ( B )  for all B E P ( X )  \ {A)  then m ( X  \ A )  5 1 
m ( C )  for all C E X. I 

Proof. Since A is the maximum under m we know by the definition of the comple- 
ment capacity that X \ A is the minimum under m* . Applying 18 to the comple- 
ment capacity, this tells us that A is maximal under m*, and again by the definition 
of m*,  this implies that X \ A is minimal under m. 

However, as the following example demonstrates, m and m* can behave quite 
differently when there are no single maximum or minimum beliefs. 

EXAMPLE 20. Define m on ?({a, b, C ,  d ) )  by: 

m ( 8 )  = 0.0 

m ( { a ) )  = m({b) )  = m ( { a ,  b))  = 0.1 

m({c )>  = m ( { d ) )  = m({a ,  c ) )  
= m ( { a ,  d ) )  = m({b ,  c ) )  = m({b ,  d ) )  = 0.2 

m({c ,  d ) )  = 0.3 

m ( { a ,  b, c ) )  = m ( { a ,  b, d ) )  = 0.4 

m ( { a ,  c, d ) )  = m({b,  c, d ) )  = 0.5 

m ( { a ,  b, c, d ) )  = 1.0 
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Note that the example is not without substance: {a ,  b, c, d ) ,  with the ordering 
that arises from the capacities of the singleton sets in 20, is an entrenchment basis. 

REMARK 21. We see in 20 that whilst { a ,  b )  is minimal, X \ {a ,  b )  = {c,  d )  is 
not maximal, and furthermore that m and m* rank the subsets of X differently in 
the sense that (for example) m({a,  b ) )  = 0.1 < m({c ) )  = 0.2 but m*({a,  b ) )  = 
0.7 > m*({c) )  = 0.6. 

It would be rather nice to know precisely when a capacity is complementary. A 
fairly obvious sufficient condition presents itself: 

LEMMA 22. Let m  be a capacity on a belief ranking ( X I  5). Ifthere is a k  E IW 
so that 

m(A)+m(X\A)  = k ,  f o r a l l A c X ,  

then m  is equivalent to m* in the sense that m(A) < m(B)  ifand only ifm* ( A )  j 
m* ( B )  for all A, B  C X. 

Proof. Supposem(A) + m(X \ A) = k  VA C X .  Then let k' = k  - m ( X ) ,  and 
we have 

m(A) < m(B)  H m(A) - k' 5 m(B)  - k' 

* m(X\A)  ? m ( X \ B )  
w m ( X )  -m(X\A)  < m ( X )  - m ( X \  B)  
H m* ( A )  5 m* ( B )  

REMARK 23. It is clear that any additive capacity satisfies the hypotheses of 
22, so the existence of non-complementary capacities (20) demonstrates that there 
exist capacities that are not equivalent to any additive capacity. Consequently the 
notion of a capacity is more general than that of a measure. 

We now consider combinations of two capacities on the same belief ranking 
that allow us to combine the characteristics of pairs of existing capacities on a set 
of beliefs, as well as allowing us to construct a complementary capacity from any 
capacity at all. Before doing this, we first demonstrate that the set of capacities on 
a given belief ranking is convex. 

LEMMA 24. Let ( X ,  5 )  be a belief ranking, and suppose that m  and m' are both 
capacities on ( X ,  5) .    hen for each X E [0, 11 the sum Am + ( 1  - X)ml defined 
on X  by (Am + ( 1  - X)ml)(A) = Xm(A) + ( 1  - X)ml(A) is also a capacity. 

Proof. It is clear that Am + ( 1  - X)ml is 1 at X, 0 at 0, and takes values between 
these two extremes. Since the remaining axioms, (b) and (c), for a capacity hold if 
and only if they hold for a positive multiple of the capacity, it is sufficient to show 
that (b) and (c) hold for the pointwise sum of any two capacities. For this, let m 
and m' be any two capacities on (X, 5) .  
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A c B + m(A) 5 m(B)  A mr(A) 5 ml(B) (m, m' capacities) 

+ m(A) + ml(A) 5 m(B)  + ml(B) 

c) Let x E A and y $ A and let B := ( A  \ { x ) )  U { y ) .  We need x 5 
y ($ m(A) + ml(A) 5 m(B) + ml(B). For this, first suppose x < y. Then 
m(A) 5 m(B) since m is a capacity, and ml(A) 5 ml(B) since m' is a capacity. 
Thus m(A) + ml(A) 5 m(B) + ml(B). 

Now, suppose ( m  + m') (A)  5 (m  + m') (B )  . Then m( A) + ml(A) < m(B) + 
ml(B),  so either m(A) 5 m(B) or ml(A) < ml(B). In either case, it follows 
that x 5 y since m and m' are capacities. 

We now move on to the capacity sum we were aiming for. 

DEFINITION 25. Let m and m' be capacities on a belief ranking ( X ,  5 ) .  We 
define the sum capacity of m and m' by 

(m @ ml> (A)  : = m(A) + m'(A) , for all A 5 X .  
2 

As an immediate consequence of 24, we have 

COROLLARY 26. Let ( X ,  <) be a belief ranking, and suppose that m and m' 
are both capacities on ( X ,  5). Then the sum capacity m @ m' of m and m' is a 
capacity. 

REMARK 27. The division by two in the above is not necessary to define the 
capacity sum sensibly; the simple pointwise sum of the two functions would do 
equally well. The only reason for dividing by two is to conform to our convention 
that capacities map P(X)  to [O,1]  and that m(X)  = 1. 

Now, given any capacity m on a belief ranking, we can construct a complemen- 
tary capacity from it as follows: 

LEMMA 28. Let ( X ,  <) be a belief ranking, and m a capacity P I  ( X ,  5). Then 
the sum capacity m @ m* is a complementary capacity. 

Proof. 
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Hence, by 22 with k = 1 we have (m @ m*) a complementary capacity. 

REMARK 29. Note that the capacity mem* may have desirable features in so far 
as minimising with respect to it would, in some sense, represent a balance between 
the two strategies discussed in 17. 

Next we introduce the extension capacity which we use to extend an existing 
capacity to a slightly larger belief ranking. This capacity will be used in our devel- 
opment of a belief revision strategy based on capacities. 

DEFlNITION 30. Let m be a capacity on a belief ranking ( X ,  I), and suppose 
a  g! X .  Suppose that ( X U  {a), 5,) is also a belief ranking, with La extending 5 
on X .  Then we define the extension capacity ma on ( X  U { a } ,  5,) by 

LEMMA 3 1. Let m be a capacity on a belief ranking ( X ,  5). and suppose a  $! X .  
Suppose that ( X  U { a } ,  5,) is also a belief ranking, with la extending 5 on X .  
Then ma defined above is a capaciv on ( X  U { a } ,  5,) extending m. 

Proof. It is clear that ma agrees with m on X, so that it is, in fact, an extension of 
m t o X  U {a) .  

a) ma(@) = m ( 0 )  = 0 
b) Suppose A 5 B. Then C C A + C C B (and specifically, A \ { x }  g 

B \ { x }  for all x  E X ) ,  so that 

C) Suppose x  E A, y $! A, and let B := ( A  \ { x } )  U { y } .  In the case where 
x # a  and y  # a  it is clear that the result follows from the definition of ma and 
the fact that m is a capacity. Suppose now that x  = a. Then 
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and 

m,(B)  5 m,(A) =. m,(B)  < max{m(C)  ( 3 c  <, a  s.t. 

A = (C \ { c ) )  U { a ) )  
* m ( ( A  \ { a ) )  U { Y ) )  5 m ( ( A  \ { a ) )  U { c ) ) ,  

(for some c  <, a )  

* Y I max{c I ,  a  I A = (C  \ { c ) )  U { a ) )  

Finally, suppose y = a  and x  # a. Then x 5, y  implies that A is one of the 
sets the maximum capacity of which is assigned to B by ma, so m,(B)  2 m,(A).  
On the other hand, m a  ( A )  = m ( A ) ,  so 

I m a ( B )  * m ( A )  I m a x { m ( ( B  \ { a ) )  U { c ) )  1 c  5 ,  a )  
* m ( A )  I m ( ( B  \ { a ) )  u { c ) )  for some c  <, a  
* m ( ( B  \ { a ) )  U { X I )  l m ( ( B  \ { a ) )  U { c ) )  
+ x  < c  (since m is a  capacity) 

+ x  5,  a  by the definition of <, . 

Finally, we introduce the substitution capacity on a belief ranking X with regard 
to a subset R of X and a belief a  $ X .  

DEFINITION 32. Suppose that ( X ,  I )  is a belief ranking, that m is a capacity on 
X ,  that R S X and that a  # X. Then we define the substitution capacity m,,R 

on ( X  \ R )  U { a )  via the extension capacity where a  is ranked in ( X  \ R )  U { a )  
in such a way that a  < b  if and only if m ( R )  5 m ( { b ) )  and a  2 b  if and only if 

m ( R )  1 m({b) ) .  
LEMMA 33. For any set R 2 X and for any belief a  E X the substitution 
capacity m , , ~  is a capacity. 

Proof. The proof is an immediate consequence of the fact that the new ranking is, 
in fact, a belief ranking, and 3 1. 

3 CAPACITY BASED REVISION 

Suppose that we are given an entrenchment basis ( X ,  I ) ,  a belief a,  and a position 
we would like to assign a  relative to the elements of X in X U { a ) .  This gives 
rise to a total ordering 5,  on X U {a ) .  Then to perform a capacity belief revision 
with a  on ( X ,  <) we begin by testing whether a  E X .  If so, we do nothing. 
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If not, we must insert a  into the belief ranking, and then find the minimal set of 
beliefs not containing a  whose removal will eliminate any contradictions in the 
new belief ranking. To do this, of course, we require a capacity on the belief 
ranking ( X  U { a ) ,  5,). If such a capacity already exists, we use this. If we do not 
already have a capacity on ( X  U {a ) ,  I,), however, we can easily generate one, 
namely the extension m a  of m to ( X  U { a ) ,  5,) as defined in 30. 

We now select the subset M  X (so a  @ M )  such that I@ T h ( X  \ M )  that 
is minimal under ma. This set is removed, giving a new belief ranking ( ( X  U 
{ a ) )  \ M ,  5,). To convert the belief ranking into an entrenchment, we move any 
beliefs that are ranked higher than a  and which would be removed by a revision 
with Ta  down to the same rank as a, and move any beliefs ranked below a  that 
can now be proved from higher ranked beliefs up to the highest rank at which they 
can be proved. This done, we have a new ranking, which is clearly an epistemic 
entrenchment in which a  is ranked as required. 

Note that the smallest set may be non-unique - there may be more than one 
such set. Given that there is no way to distinguish them, a skeptical policy would 
consider only the union of equally-ranked sets for removal. Another policy is 
to choose randomly between them. A third is to maintain all equally acceptable 
adjustments until further information is introduced which allows a distinction to 
be made. Only the skeptical policy is discussed in this paper. 

Under the skeptical policy, when a search reveals that several sets tie for min- 
imal capacity, the removal of any particular one of them is not allowed; the only 
set derived from them which could, in keeping with the policy, be removed is their 
union. Their union may, however, have a capacity larger than that of some other 
set whose removal is allowable under the policy. Thus, the tied minimal sets are 
removed from consideration, and the search is reiterated on the sets that remain - 
one of which is obviously the union of the excluded tied sets. 

Operation of the algorithm is made more clear by the following example. It 
should, however, be noted that considerable searching among the elements of the 
power set of B is required, but has been suppressed. 

EXAMPLE 34. Consider the geometric capacity (13) where y = $ acting on the 
entrenchment basis B = 

T C Y  

€ + a  
P + a , y + P , r  

7 + a , d + a  
6 

K + E , K  

Where the beliefs on a given line are ranked higher than those on the line below. 
We begin by determining the sets which generate contradictions: 
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Clearly we need to find a set of beliefs of minimal capacity containing at least 
one belief from each of the above sets. It is readily checked that there are two sets 
meeting this requirement ({y, 6, n -+ E), {y, 6, n)). Each has a capacity of G ,  
so they are indistinguishable. Hence we can only consider their union, {y, 6, n -+ 
E ,  n) for removal. Comparing it to the next best set (one of {y, 6 -+ a ,  n -+ 
E), {y, 6 -+ a, r c ) ,  each with capacity g), we note that its capacity is now 
uniquely minimal amongst those sets left under consideration, so we remove it. 
The revised entrenchment basis is: 

l a  
E -+ a 

P - + a , y - + P  
y - + a , b + a  

4 AGM REVISION FROM A CAPACITY 

To simulate the AGM entrenchment construction [Ggirdenfors and Makinson, 19881 
of a theory via capacities, we show how to construct an appropriate capacity on an 
entrenchment basis. Revising the basis by minimising with respect to this ca- 
pacity implements revision of the basis, yeilding a new basis whose theory clo- 
sure is the AGM revision of the initial basis' theory closure [Williams, 1994b; 
Williams, 19951. To acheive this we merely need to construct a capacity which 
throws away any and all beliefs which are ranked at or below the first point in the 
belief ranking at which a contradiction will follow from the incoming informa- 
tion. This is shown to be equivalent to base revision in [Williams, 1994bl. The 
appropriate capacity is the one defined as follows: 

DEFINITION 35. Let (X, 5 )  be a belief ranking. Define a funtion f : X -+ 

(07 1) by 
0 if ( y E X l x < y ) a l  

f := { 1 otherwise 

Then we define the AGM-capacity by 

LEMMA 36. ~ A G M  is a capaciry on (X, 5). 

Proof. a) 
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b) is trivial as we are taking a sum over a smaller set, and c) is trivial because 
the capacity is defined additively. W 

THEOREM 37. Let a be a belief and let ( T ,  5 )  be a finitely representible epis- 
temic entrenchment. Zf(X,  5 )  is an entrenchment basis for ( T ,  L ) ,  then the theory 
closure of the AGM-capacity belief revision with a of ( X ,  5 )  is the same as the 
standard AGM revision (with a on T )  based on the entrenchment construction. 

Proof. In view of the above discussion, it is sufficient to show that the beliefs 
removed from X are precisely those that are ranked at or below the first point in 
the ranking at which a contradiction follows from the inclusion of the belief to be 
incorporated. 

Clearly if all beliefs x such that m A G M ( x )  = 0 are removed, then the belief 
ranking will become consistent. No less than all of them will be removed because 
they are indistinguishable. On the other hand, no other beliefs will be selected for 
removal because doing so would necessarily increase the capacity of the removed 
set to at least 1. Consequently the set of such beliefs is exactly the set removed, as 
required. W 

5 MEASURE BASED TRANSMUTATION 

It has been noted that, in some situations, the fact that a rank needs to be provided 
for each new belief can be a drawback to the methodology of standard belief revi- 
sion. Another drawback is the fact that only revision with a single belief at a time 
is well-defined. 

Capacities provide a method for avoiding the first of these difficulties using 
substitution capacities (32) to iterate the transmutation process on a belief ranking. 
At the nth step, we progress from a belief ranking (X,, 5,) with a capacity m, 
to a new belief ranking (X,+l, and a capacity m,+l which are all defined 
as in definition 32 with R E X ,  the subset that is minimal (in the sense dictated 
by the skeptical policy) with respect to m ,  subject to Tan $! T h ( X ,  \ R,). It is 
clear that at each step we are left with a belief ranking and a capacity, and that we 
can iterate for as many beliefs as required. 

Furthermore, if an entrenchment is to be maintained throughout the iteration, 
it should be clear that at each step we can use the current capacity to determine 
the smallest set of beliefs that needs to be moved up to the same ranking as a 
to maintain the entrenchment property (that is, the analagous procedure to that 
employed in 3). 

Capacities also allow us to deal with the second problem in one of two ways: 
the first is to take the minimum of m,(R,), over all permutations of the finite set 
A of beliefs to be inserted, as the revision to accept. The second is simply find 
the set R X that is minimal with respect to m subject to T h ( X  \ R )  n { ~ a  : 
a E A) = 8. This second solution, however, does not give a belief ranking on the 
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new set, but it does allow us instead to avoid the iteration by revising with all the 
required beliefs at once. 

6 DISCUSSION 

This paper defines capacities, a family of functions that provide a general method 
for capturing the principle of minimal change. Some preliminary results concern- 
ing the behaviour of capacities were presented, and a capacity that can be used 
to implement a standard AGM revision based on the entrenchment construction 
[Giirdenfors and Makinson, 19881 was introduced. A capacity-based method of 
iterating transmutations on a belief ranking, or indeed, an entrenchment basis, to 
incorporate new beliefs in such a way that a rank for each new belief need not be 
provided was also outlined, as was a method for revising to accept a set of beliefs 
rather than an individual belief. 

Since we have been concerned with transmutations on entrenchment bases, we 
have restricted ourselves to finite belief sets. However, it is clear that much of 
the theory extends to the case of an infinite belief set with an infinite number of 
distinct ranks provided that convergence of the appropriate sums is accounted for. 

Future work will look at capacity transmutations that correspond to other ex- 
isting strategies for nonmonotonic reasoning [Brewka, 19891 and belief revision 
[Nebel, 1989; Williams, 1994a; Williams, 1997a1, will determine the relationship 
between the operators defined by capacity transmutations and the AGM rationality 
postulates [Alchourr6n et al., 19851, and will investigate topologies on the set of 
capacities of a belief ranking (X, 5)  and attempt to identify its extreme points; 
that is, fundamental generating sets of capacities. 
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