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BANACH LATTICES AND THE WEAK FIXED POINT 
PROPERTY 

TIM DALBY AND BRAILEY SIhIS 

ABSTRACT. Banach space properties that imply the weak fixed point 
property are investigated in a Banach lattice setting. 

A Banach space is said to have the weak fixed point property (w-FPP) if 
every nonexpansive mapping on every nonempty weak compact convex set has 
a fixed point. The weak fixed point property and Banach lattices has not been 
the subject of many papers in the last twenty or so years; see Sine 1231, Soardi 
1241, Maurey 1151, Elton et a]. 171, Borwein and Sims 131, Lin 1121, Sirns 1191 and 
[20], and Khamsi and Turpin [ l l ] .  This is despite the fact that many examples 
have an order theoretic nature, see for example Borwein and Sims [3]. 

Hoping to generate renewed interest in the w-FPP and Banach lattices, this 
paper revisits the property of weak orthogonality from Borwein and Sims [3] 
and Sims [19]. We then consider Banach lattices with uniformly rnonotone 
norm, a property that was exploited in Elton et al. [7]. Along the way, other 
properties known to be associated with the w-FPP in Banach spaces are studied 
in the context of Banach lattices. 

The usual approach to proving that a particular Banach space has the w- 
FPP is to assume that it does not have this property and obtain a contradiction. 
Thus there is a nonempty weak compact convex set C with a fixed point free 
nonexpansive mapping T where T : C -, C. Using the weak compactness of C 
and the nonexpansiveness of T it can be shown that there exists, in C ,  a weak 
null sequence with certairi properties involving the norm. So most approaclies 
to the w-FPP problem have involved weak null sequences and their relationship 
to the norm. In Banach lattices. the lattice structure can be added to this mix. 
The following definitions reflect this situation. 
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Opial's condition, from Opial [17], states 

if x, - 0 and x # 0 then limsup l/x, 1 1  < limsup llxn - x11. 
n n 

Nonstrict Opial condition has the strict inequality replaced by '5'. Uniform 
Opial's condition in Prus [18] is a strengthening of Opial's condition: 
for every E > 0 there is an T > 0 such that 

1 + r 5 liminf llx, + xll 
n 

for each x E X with llxll 2 1 and each sequence (x,), x, - 0, with 
liminfn ~ \ x n ~ ~  2 1. 

There is an Opial's modulus, introduced in Lin et al. [13], defined as 

r(c) := inf{liminf llxn + xi1 - 1 : IIxlI 2 c,xn - 0 and liminf ( (xn((  2 1) 
n n 

for c > 0. 
X has the uniform Opial's condition if and only if r(c) > 0 for all c > 0 and 

the nonstrict Opial condition if and only if r(c) 2 0 for all c > 0, see Dalby [5]. 
A slightly different but related approach produces the following property, 

due to Sims [22]. A Banach space has property(K) if there exists K E [0,1) 
such that whenever xn - 0, llxnll + 1 and lim inf, llx, - xi1 5 1 we have 

IIxlI 5 K .  
If K is not the same across X but depends on the sequence (x,), then the 

condition is called property (k). Property(K) with K = 0 is equivalent to  
Opial's condition and Dalby [5] showed that a Banach space has property(K) 
if and only if r(1) > 0. Sims [22] proved that property(K) implies weak normal 
structure. 

Next some definitions for Banach lattices. A Banach lattice is said to be 
weakly orthogonal if whenever x, 0 then 

linm(((xn(A lxlll = 0 for all x E X .  

Sims [20] showed that weakly orthogonal Banach lattices have the w-FPP 
and a Banach space X has the w-FPP if there exists a weakly orthogonal 
Banach lattice Y with d(X, Y) < fi - 1 where d(X, Y) is the Banach-Mazur 

distance between X and Y. In [4], Dalby extended the distance to *. 
Note that Borwein and Sims [3] used a slightly weaker definition of weak 

orthogonality, namely when x, - 0 then 

limlim 1 1 1 ~ ~ 1  A Ixnl// = 0. 
m n 

It  has become the practice to use the stronger definition when referring to 
weak orthogonality, see for example Sirns [19] and Garcia-Falset 181. 

The norm of a Banach lattice is said to be uniformly monotone if given E > 0 
there is a 6 > 0 such that if x, y > 0 with I1yII = 1 and IIx + yII 5 1 + 6 then 

IIxlI I 6 .  
An equivalent definition is: 
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There exists a strictly increasing continuous function b on [0,1] with S(0) = 0 
so that if x ,  y  > 0 with 1 = llyll 2 11x11 then llx + yli > 1 + b(llxII). 

Birkhoff [2] was responsible for the first version and the second version ap- 
peared in Katznelson and Tzafriri [lo]. Akcoglu and Sucheston [I] considered 
both these and several other formulations. They showed that the two defini- 
tions are equivalent and in Orlicz function spaces they are equivalent to the A2 
condition. 

Note that a Banach lattice, X ,  that has a uniformly monotone norm is weak 
sequentially complete so it cannot contain a subspace isomorphic to  co. In 
particular, X has order continuous norm. Recall that the norm is said to be 
order continuous if inf(11x11 : x  E A) = 0 for every downward directed set 
A C X such that inf(A) = 0. 

The norm of a Banach lattice is said to be strictly monotone if x  > y  > 0 
implies 11x11 > Il~ll. 
X  having a uniformly monotone norm is equivalent to x := l , (X) /co(X)  
having a strictly monotone norm. See for example Elton et al. [7]. 

Finally, a Banach lattice has a p-superadditive norm if 

(IIxIIP + ~ l ~ l l ~ ) ~ ' ~  5 IIx + yII for a11 disjoint x ,  y. 

A p-superadditive norm is a uniformly monotone norm. 
The w-FPP is separably determined, see for example Goebel and Kirk [9]. 

So throughout this paper X will be assumed to be an infinite dimensional 
separable Banach lattice. So if X is a-Dedekind complete then the norm is 
order continuous, see Lindenstrauss and Tzafriri [14] or Meyer-Nieberg [16] for 
details. 

First a result concerning the nonstrict Opial condition. 

Proposition 3.1. If X  is a Banach lattice with order continuous norm then 
X  satisfies the nonstrict Opial condition for positive weak nu11 sequences. 

Proof. Let xn - 0 where xn > 0 for all n, then by proposition 2.3.4 of Meyer- 
Nieberg [16], there exists a disjoint sequence, (x:) ,  of positive elements in Bx. 
such that 

lim sup x; (2,) = lim sup 11xn 1 1 .  
n n 

Order continuity of the norm implies that x: 5 0. 
So for any x  E X 

lim sup l xn  + 211 2 lim sup x;(xn + 2)  
n n 

= lim sup x; (2,) 
n 

= limsup 11~~11. 
n 
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The situation involving Opial's condition and uniform Opial's condition is 
left for the moment until weak orthogonality has been dealt with. 

Proposition 3.2. If X is a Banach lattice with order continuous norm then 
the lattice operations are weak sequentially continuous if and only i f X  is weakly 
orthogonal, and hence has the w-FPP. 

Pr.oof. (J) Let x ,  - 0 then lx,l - 0. For x E X let 

Then y, - 0 and 0 5 y, 5 1x1. If limn l(yn(l # 0 then by taking subsequences 
we have inf, llynll > a: for some a: > 0. 

Let 2, := y,/a then z, - 0, 0 5 2, 5 Ixl/a: and 112,// > 1 for all n. 
By corollary 2.3.5 of Meyer-Nieberg [16], for 0 < P < 1 there exists a 

subsequence (z,,) and disjoint (wk) such that 0 5 wk 5 z,, and \lwk 1 1  2 /3 > 0 
for all k .  So 0 5 wk 5 \xI/a: for all k .  Then the order continuous norm and 
theorem 2.4.2 of Meyer-Nieberg [16] means ((wkII -t 0, a contradiction. 
(+) This follows the ideas contained in the proof of proposition 2.3.23 in Meyer- 
Nieberg [16]. That is, let x ,  - 0 and by theorem 2.5.9 of [16], it suffices to 
show that /x,, I - 0 for every subsequence such that (Jx, ,  I )  is weak Cauchy. 

From lemma 2.5.11 of [16], there exists an increasing, positive sequence ( y k )  
such that lxnb ( - yk - 0. 

Weak orthogonality implies that 

lim ( 1  Jx,, ( A 1x1 1 1  = 0 for all x E X 
k 

and 
lim ( 1  I Jx,, I - yk ( A 1x1 1 1  = 0 for all x E X .  

k 

Therefore 

Ixnk I A 1x1 + I Ixn, I - ~k 1 A 1x1 + 0. 
But 

Therefore limk / (  yk A 1x1 1 1  = 0. 
But since ( y k )  is increasing so is (yk A 1x1) which means that yk = 0 for all 

k and so I X , ,  I -\ 0. 

So Banach lattices with lattice operations weak sequentially continuous and 
order continuous norm have the w-FPP, as do Banach spaces whose Banach- 
Mazur distance from such lattices is less than 
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The lattice operations of any abstract M space are weak sequentially con- 
tinuous. See for example Meyer-Nieberg [16], proposition 2.1.1 1. But lemma 
l.b.10 of Lindenstrauss and Tzafriri [14] states that an abstract M space has 
order continuous norm if and only if it is order isometric to  co(I'),  for some 
index set I?. So proposition 3.2 includes co but excludes any M space with an 
order unit, for example C(K)  where K is an infinite compact Hausdorff space. 
Also see Borwein and Sims [3] for further consequences of proposition 3.2. 

If the Banach lattice is atomic then by proposition 2.5.23 of Meyer-Nieberg 
[16] the lattice operations are weak sequentially continuous and so we have the 
following corollary. 

Corollary 3.3. Let X be an atomic Banach lattice with order continuous norm 
then X is weakly orthogonal, and hence has the w-FPP. 

It is well known that if X is a Banach lattice and co f+ X (by Linden- 
strauss and Tzafriri [14] this is equivalent to  X not containing a sublattice 
order isomorphic to co)  then X has order continuous norm which leads to the 
following. 

Corollary 3.4. Let X be an atomic Banach lattice where co f+ X then X is 
weakly orthogonal, and hence has the w-FPP. 

Khamsi and Turpin [ll] considered Banach spaces with a vector lattice struc- 
ture satisfying: 

( a )  (xf I yf and 2- h y-) * llxll I Ilyll, X , Y  E X ;  
( p )  forsomerealconstant k < 2 ,  1x1 I lyl*11xll hkllyll, x , g E X .  

Instead of the weak topology, the topology, 7, studied was the coarsest 
topology on X for which the map x + 1 1  1x1 u 1 1  is continuous at 0 for 
every u E X ,  TL > 0. Khamsi and Turpin showed that every nonexpansive map 
on every nonernpty 7-compact convex subset has a fixed point. For weakly 
orthogonal Banach lattices this is the w-FPP result of Sims [19]. 

Garcia-Falset [8] extended this set up to have k 5 2 but required the ad- 
ditional condition of the alternate-signs Banach-Saks property. In this paper 
Garcia-Falset called a Banach space, X ,  weakly orthogonal if X satisfies (a )  
and (p)  and if for each weakly null sequence (x,) in X ,  limn 1 1  Ixn ( A 1x1 1 1  = 0 
for every x E X .  To obtain the w-FPP the additional condition was the weak 
Banach-Saks property. 

Related to the foregoing is the following. 
Question: If X is a weakly orthogonal Banach lattice with norm 1 1  . 1 1 ,  does 

X with the new norm 1 1 ~ 1 1 ~  := Ilxf 1 1  V 112-11 satisfy the w-FPP? It is straight 
forward to  show that 1 1  . I l l  is an equivalent Banach space norm that satisfies 
(a)  and ( P )  So (X, 1 1  . 111) satisfies the w-FPP if X has the weak Banach-Saks 
property. 

To obtain Opial's condition, the condition that X must have an order con- 
tinuous norm has to be strengthened to X having a uniformly monotone norm. 
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Note that a Banach lattice that is weakly orthogonal has the Banach space 
property, WORTH: 

if xn --\ 0 then lim sup llxn - X I \  = lim SUP llxn + xi1 for all x E X. 
n n 

This in turn implies the nonstrict Opial condition. 

Proposition 3.5. If X zs a Banach lattice with uniformly monotone norm 
and whose lattice operations are weak sequentially continuous then X satisfies 
Opial's condition. 

Proof. Recall that a uniformly monotone norm implies that co + X and so by 
proposition 3.2, X is weakly orthogonal. Thus X has WORTH. Assume that 
X does not satisfy Opial's condition then there exists xn - 0 and a nonzero 
x E X such that 

limsup IIxnJI + limsup llxn + xII. 
n n 

Since X satisfies the nonstrict Opial condition we have 

lirnsup Ilxnll = limsup llx, + X I / .  
n n 

Without loss of generality we may assume limn llxn 1 1  = limn Ilxn + xll = 1 and 
inf, IIxnll > 0. SO x,/llxn/( 0 and 1xn1/11xnll -\ 0. 

Nonstrict Opial condition implies 

1 I limsup IIxn/IIxnII + x I I  
n 

I l i m s ~  1 1  l ~ n I / I l ~ ~ l l  + 1x1 I I  
n 

= limsup / /  (xnl/llxnll - 1x1 1 1  using WORTH 
n 

5 limsup 11xn/IIxnII + 
n 

Therefore 

1 I limsup 1 1  1xn1/I(xn(l + 1x1 / I  = l i m s ~  IIxn/IIxnII + xII. 
n n 

Also 

limsup Ilxn/((xnll + I limsup I/xn/IlxnII -xnII + lim IIxn + xII 
n n n 

= l i ~  11/11xn1 - 1 IIxnll + lim Ixn + 211 
n 

= 1. 

Thus using the weak lower semi-continuity of the norm 
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This means that ) /  1x1 1 1  5 1 1  lxnl/llxn(( 1 1  for a11 n.  The uniformly monotone 
norm means there exists a strictly increasing continuous function b  on [ O , 1 ]  
where 

I I I n I / I I n I I + I I I I + I I I I  f o r a l l n .  
Letting n -+ cm we have 

A contradiction. 

It can be shown that a Banach lattice satisfying the conditions of proposition 
3.5 has property(K) and so has weak normal structure. 

Uniform Opial's condition can be found by using the spaces I,, 1 < p < cm, 
as guides. 

Proposition 3.6. If X is a Banach lattice with p-superadditive norm, 1 < 
p < cm, and whose lattices operations are weak sequentially continuous then X 
satisfies the uniform Opial's condition with r(c) > (1 + cp)'/p - 1. 

Proof. Recall that a norm is p-superadditive if 

llxllp + l l y l l P  < IIx + yllp for a11 disjoint x ,  y. 

It can be shown that this condition is equivalent to the same inequality where 
x  and y are merely > 0. See for example proposition 2.8.2 of Meyer-Nieberg 

[161. 
Let x, - 0, liminf, llxnll > 1 and IIx)I > c > 0. Then 

I I n  I + I 1x1 I P  < 1 I n  + 1x1 1 '  for a11 n .  

So 
1 / P  

(liminf n xn l lp  + xl lp)  5 liminf n 1 1  lxn + 1x1 1 1  
Using weak orthogonality and a similar argument to that in proposition 3.5 we 
have 

liminf ( 1  ( xn(  + 1x1 1 1  = liminf llxn + xi1 
n n 

and thus 

liminf l lxn+x\ \  2 ( ~ + c P ) ~ ' P  = 1+  [ ( l + ~ ) l / P - l I .  
n 

Which means that X satisfies the uniform Opial's condition with 

This proposition covers the cases of l,, 1 < p < cm. Note that if the norm is 
padditive and X is atomic and separable then X is isometrically isomorphic 
to 1,. 

It is a long standing conjecture in metric fixed point theory that reflexivity 
and the fixed point property are linked. This means that the presence or 
absence of co and L1 is of interest, which leads to the following proposition. 



70 TIM DALBY AND BRAILEY SIMS 

Proposition 3.7. Let X be a Banach space. If co -+ X then X does not have 
property(K). 

Proof. co -+ X if and only if there exists a sequence (E,) in ( 0 , l )  where E + 0 
and a sequence (2,) in X such that 

00 

( ~ - F , , ) s u ~  I tk  5 I tkx1;I < (I+tn)sup t k  for all ( tk )  E co, for all n E N. 
k2n k=n k2n 

Without loss of generality 6, 1 0. Note that x, - 0 and limn llxnll = 1. 
Fix n E N then 

1 - E, < llx, - xkll 5 1 + E, for all k > n 

So 
1 - en < lim llxn - xkll < 1 +en.  

k 

Therefore rl:llxnll) 5 limk Ixn - xkll - 1 for all n and r(llxnll) I en for all n. 
Taking n + co we have r(1) < 0 which implies r(1) = 0. But X has 

property(K) if and only if r(1) > 0. 

Another way of viewing this is: if X has an equivalent norm which satisfies 
property(K) then X does not contain an isomorphic copy of co. 

Note: Thus if X is a Banach lattice where l 1  + X and X has property(K) 
then X is reflexive. 

Dalby [6] showed that if X *  statisfies the condition that R(X*)  < 2 and 
has the nonstrict *Opial property then X satisfied property(K). So if X is a 
Banach lattice with X *  order continuous, R(X*) < 2 and having the nonstrict 
*Opial property then X is reflexive. 
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