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A fundamental question in operator theory is: how rich is the collection of 
oprrators on a given Banach space? For classical spaces, especially Hilbert space, 
a well developed theory of operators exists. However a Banach space may have far 
fewer operators than one might expect. Shelah [S] has constructed a nonseparable 
Ba~lach space X ,  for which the space of operators with separable range has codi- 
mension one in B(.Y). An interesting open problem is whether there is a Banach 
space X for which the space of compact operators has finite codimension in B ( X ) .  

For marly classical Banach spaces, the projections generate B ( X ) .  For ex- 
alnple, every operator on a Hilbert space is a linear combination of at most ten 
self-adjoint projections [MI. This is false for l , ,  since every projection thereon, 
~lnless of finite rank, has nonseparablr range [L2]. It is still unknown whether every 
Banach space admits a nontrivial projection. (By nontrivial we mean that  both 
the range and the null space are infinite dimensional.) In this report we will be 
interested in a particular type of projection. 

Let X be a Banach space and let M  be a closed subspace of X .  By a linear 
extension operator (LEO) we mean a linear mapping T : M* --+ X *  such that ,  
for each f in M * ,  Tf is a norm-preserving extension of f. A routine exercise 
shows that there exists a LEO from M* to X *  if, and only if, M 0  is the kernel of 
a contractive projection on X". Most subspaces of most Banach spaces admit no 
LEO. To obtain reasonable results we must restrict our attention to  a smaller class 
of Banach spaces. 

An Asplund spare is a Banach space for which every separable subspace has 
a separable dual. This is equivalent to  every subspace having the same density 
character as its dual [Ph]. JVe use this property to  show that every non-separable 
.i\splund space has Inany subspaces (in fact, an uncountable increasing family of 
them) which adlllit LEOS. Hence the dual of an Asplund space (that is, a dual 
*pace with the Radon-Nikodgm Property IPh]) admits many projections. Moreover 
these projections can be chosen to be well behaved in a certain sense - in particular 
they d l  commute. 

In the second section we consider the problem of renorming Asplund spaces 
and their duals. The existence of many projections is a useful tool for this, and 
other problems. It is well known that  any space with an equivalent Frechet smooth 
llorrn is automatically an Asplund space. The converse remains open. Examples, 
[El and [Tl], show that it may not be possible to  renorm an Asplund space so that 
the dual norm is reasonably convex. We conjecture that  the dual of every Asplund 
space can be renormed so as to be locally uniformly convex, although the known 
proofs all require some additional smoothness hypothesis. Such renormings need 
not of course be dual renornlings. 



In the final section, we examine some particular Asplund spaces, illustrating 
the extent and limitations of previous results. 

By the density character , dens X ,  of a Banach space X ,  we mean the least 
cardinality of any dense subset of X . Thus X is separable if and only if dens X = w . 
We will identify cardinal numbers with their initial ordinals. The reader is assumed 
to be familiar with transfinite induction arguments, and the basic smoothness and 
convexity properties of Banach spaces [Dl. 

' 

1. Asplund spaces have lots of LEOS. 

Our first few results are valid for arbitrary Banach spaces. We begin with a 
rather technical result. 

Lemma 1. L e t  X be a B a n a c h  space,  M a f in i t e  d i m e n s i o n a l  subspace ,  k a 
posi t ive i n t e g e r ,  E a p o ~ i t i v e  real n u m b e r  a n d  G a f in i t e  subse t  of  X*.  T h e n  there  
is  a f ini te  d i m e n s i o n a l  subspace  Z con ta in ing  M ~ u c h  t h a t  f o r  e v e r y  subspace E 
sa t i s f y ing  dim E / M  5 k w e  c a n  find a n  opera tor  T : E -+ Z s u c h  t h a t  T fixes M ,  
/Tli < 1 + E  a n d  If(x) - f ( T x ) (  < ~ l l x  f o r  al l  x E E, f  E G .  

Proof. The special case when G is empty is just [Ll,  Lemma 11. A slight modifi- 
cation of that proof yields the conclusion for any finite G .  Alternatively, the result 
may be viewed as a specialization of [AL, Lemma 21. 

The reasons for introducing G into Lemma 1 will become apparent in the next 
few proofs. In particular it allows us to conclude that Ta(M:) C Tp(Mp') for a < @ 
in Theorem 4, and thus PpP, = Pa for a < P in theorem 5.  Tacon [Tc] obtained 
similar results under the additional assuinption that X was smooth. The extra 
complication in Lemma 1 allows us t,o avoid any such smoothness assumption on 
X ,  at least in this section. 

Proposition 2. L e t  X be a n y  B a n a c h  space,  N a separable subspace  of  X ,  a n d  
F a separable subspace of  X *  . T h e n  X has  a separable s u b ~ p a c e  M c o n t a i n i n g  N ,  
w h i c h  a d m i t s  a L E O  T : M* + X* sa t i s f y ing  T ( M * )  > F .  

Proof. Let ( f , )  be a sequence dense in F, and (m,) a sequence dense in N .  
Beginning with Mo = {0), we define an increasing sequence of subspaces M, of X 
as follows: Mn is the subspace Z given by Lemma 1 when M = Mn-l+ < na, >, 

-- 

k = n, E = and G = {fl ,  f i r  ... , f,). Clearly M = U M, is separable and 
contains N .  Let Dn be the collection of subspaces E of X which contain M, and 
satisfy dim E/Mn < n .  Then for each E E D,, there is an operator TE : E + M, 
satisfying f,(x) - f,(TEx)l < ) ( x / l z  for x E E. 1 < i < n and J JTE(  5 1 + i. 
Clearly Ur=l  D, is, under inclusion, a directed set, so let U be an ultrafilter 
thereover. Note that ,  for each x E X, TEx is defined for all sufficiently large E ,  
and may be considered as an element of M**.  Thus we may define T : M* + X *  
by ( T  f )(x) = (w* - limU TEr)( f ) .  (Alternatively. we could have defined T by the 



well known Lindenstrauss compactness argument . )  A routine argument shows that 
T is a LEO and that T ( f i M )  = fi for every i .  Hence T ( M * )  > F. 

Taking N = (0) in Proposition 2, and assuming that  X is an Asplund space, 
verifies a claim made by W.B.Johnson [DU,p38]. 

L e m m a  3. Let 
T h e n  there is a 
that dens M = 

N be a subspace of X ,  F a subspace of X *  , with densF 5 densN. 
subspace M of X  containing N ,  and a L E O  T  : M* - X *  such 
dens N and T ( M * )  > F .  

P roof .  We establish this by a transfinite induction on p  = dens N .  The base 
case, p  = w ,  is given by Proposition 2. So assume p  > w ,  and let { x ,  : a  < p )  
and { f ,  : a  < p )  be dense in N and F respectively. The inductive hypothesis 
gives us, for each a  < p ,  a subspace M ,  containing {x,)  U U p < ,  M p ,  and a LEO 

T ,  : M: - X *  such that dens M ,  5 a  and T,(M:) > { f p  : P < a ) .  Set 

M = M,, and let R ,  : M *  - M: be the rest,riction operators. Since the 

unit ball of B ( M * , X * )  is compact in the weak* operator topology, we may take 
T t o  be any limit point of the net (T,R,). 

T h e o r e m  4. Let X  be a n  Asplund space, with dens X = p .  T h e n  there ezist  
subspaces M,  of X  and LEO3 T ,  : M: - X *  ( w  5 a  < p)  such that 

( i i )  dens M ,  < a ,  for all a ,  

( i i i )  T,(M:) C T p ( M ; )  if a  < P ,  and 

( i v )  M ,  = U p < ,  Mp whenever a  is a l imit  ordinal. 

Proof .  Predictably we construct T ,  and M ,  inductively. Proposition 2 gives us 
suitable M ,  and T,  . Now suppose that Mp and Tp are given, for all P < a .  If a  
is a successor ordinal, we may set N = and F = T,-, ( M : - ] ) .  Since X is 
an Asplund space, we have dens F = dens h ! f p l  = dens Ma-]  = dens N .  Thus 
Leinnla 3 yields a suitable M ,  and T,. If a  is a liiuit ordinal, we define M, by 
(iv) and obtain T ,  as in the previous proof. 

T h e o r e m  5. Let Y be any dual space with the Radon-Nihodym property, and let 
11 =dens Y .  T h e n  there ezist norm-one  projections P, o n  Y ( w  5 a  < p)  such 
that 

( i )  Pupp  = PpP,, for  all  a  a n d  P 

( i i i )  dens P,(Y) < a ,  for all a  



Proof. We have Y = X* for some (not necessarily unique) Asplund space X .  Let 
T, and M, be as given by Theorem 4, and let R, : X* + M: be the restriction 
maps. We set P, = T,R, and leave the reader to check the details. 

2. Attempts at Renorming. 

Long sequences of projections, such as those given by Theorem 5, have become 
an established tool for studying weakly compactly generated spaces [AL]. Since each 
factor (Pa+] - P,)(Y) has strictly smaller density character than the original space, 
the possibility presents itself of proving results by transfinite induction. 

A routine diagram chasing argument shows that, in the notation of Theorems 
4 and 5, (Pa+] - P,)(Y) " (M,+l/M,)* for every a .  Thus if Y is a dual space 
with the Radon-Nikodym property, so also is each (Pa+] - P,)(Y). Thus one might 
expect transfinite induction arguments to flow fairly smoothly. 

However, there is still one problem. To prove the results we are interested 
in, we also need to know that, for each f E Y * ,  the map a H P,f is norm 
continuous. This is equivalent to the requirement that P,(Y) is the norm closure 
of Up<, Pp(Y), whenever a is a limit ordinal. This is known to be the case for 
WCG spaces. Without this requirement, the decomposition may not be genuine, 
in the sense that the closed linear span of U,(P,+] - P,)(Y) might not be all of 
Y .  We know of no dual space with the RNP for which this fails, but it seems only 
possible to prove it under additional hypotheses. 

Put simply, the idea is this: Given a limit ordinal a ,  and a functional f E P,(Y) 
which attains its norm at some z E Ma, we may approximate z arbitrarily closely 
by some y E Mp, where p < a .  Let g E PB(Y) be a functional which supports 
y .  Given suitable continuity of the support mapping, i.e. reasonable smoothness 

properties for X ,  one then finds that g is close to f .  And so P,(Y) = PB(Y) 
as required. 

Well, the idea might be simple, but the details are the important things. Several 
authors have investigated smoothness properties which would yield the required 
continuity of a H Pa f . The most careful analysis so far has been made by Fabian, 
[Fl] and [F2], who showed the following. 

Theorem 6. Let X be an Asplund space which admits a non-trivial Gateauz 
~ m o o t h  bump function. Then the LEOs in Theorem 4 may be chosen so that 

T,(X*) = Up<, Tp(XL)  whenever a is a limit ordinal. 

The renorming result, implicit in Fabian's work, is then immediate. 

Theorem 7. Let Y be a dual Jpace with RNP, some predual of which admits a 
Gateauz smooth bump function. Then Y has an equivalent locally uniformly convez 
norm.  

Proof. Let Y = X*,  with M,,T,, Pa as usual. We note that P,(Y) " Mz, and 
that M: is a dual space with RNP, whose predual M,, being a subspace of X ,  



has a Gateaux slllooth bump function. Moreover dens P,Y < dens Y ,  so arguing 
inductively. \ve may suppose that each P,Y has an  equivalent locally uniformly 
conlex liorlll. The other hypotheses of [Zj are easily seen to  be satisfied, and the 
conclusion follows. 

3. E x a m p l e s  of A s p l u n d  Spaces.  

Xsplund spaces may be divided into four mutually exclusive categories. 

( i )  Banach spaces with separable duals, 

(ii) nonseparable reflexive spaces, 

(iii) spaces C ( K ) ,  where K is compact, scatt,ered, but not metrizable, 

(iv) exotic examples. 

It is well known [Dl t,hat all examples in ( i)  and (ii) may be renormed so that 
their duals are locally uniformly convex. It is surprising that spaces in category (iii) 
have been ignored for so long. However, this situat,ion has recently been rectified 
by Deville [Dv] and Talagrand [Tl]. Between t,hem, they have proved the following. 

T h e o r e m  8. Let K be a compact scattered space and a any  ordinal. T h e n  we 
have the following. 

( i )  C[O, a ]  admits a n  equivalent Frechet smooth norm.  

( i i )  C[O,cr] admits  a n  equivalent norm,  under  which its dual is strictly convez,  if 
and only if a is countable. 

(iii) If the aih derived set of K is empty ,  and a is countable (and also i n  some other 
cases): then  C(K)  m a y  be renormed so that i ts  dual is locally un i formly  convex. 

These results do not completely settle the situation for all spaces in category 
(iii). For example, it is not known whether C([O,N1] x [0, N1] )  admits a Fkechet 
smooth norm. We note that the dual of any space in category (iii) is l l ( K ) ,  which 
is well known to have an equivalent locally uniformly convex norm. 

VCTe conle to category (iv). We have only been able to think of three sporadic 
Banach spaces which are also Asplund - the Johnson-Lindenstrauss space [JL] and 
the long Janles space (!El or [B]), and its dual. (Note that the predual of the 
James tree space, and certain James-Lindenstrauss spacvs, fall into category (i).) 
We consider these tliree spaces in turn. 

The Johnson-Lindenstrauss space - call it .rZ - contains an unconlplenlented 
subspace Ad Z co such that H = li!llf is a nonseparable Hilbert space. It follows 
from the lifting property of el that X* r el @ H .  A long sequence of projections, 
as in Theorem 5, is then easy to  construct explicitly. However these projections 
cannot be chosen to  be weak* continuous. Indeed a peculiarity of the dual is that 
el is weak* dense in X * .  This shows that the operator in our basic Proposition 
2 cannot be chosen weak* continuous. If it could, then by Sobczyk's theorem, M 



would be complemented in X .  Nonetheless X can be renormed so that  X' is 
locally uniformly convex [JL]. 

The  long James space, J ( q ) ,  was first studied by Edgar [El. A more detailed ex- 
position of Edgar's work was later given by Bourgin [B]. Let q be an  uncountable or- 
dinal. (If q is countable, then J ( q )  falls into the uninteresting category (i).) Given 

a function f : [o,q]  + R  we define f 1 1  by f l 2  = ~ u p C : = ~  J f ( a , )  - f ( a , - ] ) I 2 ,  
where the sup is taken over all finite subsets of LO, q] satisfying a 0  < ctl < . . . < a,. 
Then J ( q )  is defined as the set of all continuous functions f : [0,q1 + R  for which 
f ( 0 )  = 0 and f 1 1  is finite. Letting g, be the characteristic function of ( c t , ~ ] ,  it 
can be verified tha t  iga : a < .rl} is a transfinite basis for J ( q ) .  If en E J ( q ) *  
are the evaluation functionals, then { e n  : a < q)  is a basis for J ( q ) * .  Moreover, 
-- 
lin sp (c, : a < q,  a zs a successor ordznal)  is a subspace of J ( q ) *  whose d u d  
is naturally isomorphic t o  J ( q )  Thus { e n  : a < q,  a is a successor ordznal)  is 
a basis for a predual, J (q ) ,  . One can verify that every separable subspace of J ( q )  
or J ( q ) ,  has separable dual, so both of these spaces are Asplund spaces. 

A little manipulation with ordinal numbers shows that J ( q ) * *  J ( q +  1) N J ( q ) ,  
and so all the evpn d u d s  and preduals of J ( q )  are isomorphic. Likewise the odd 
tiuals and  preduals of J ( q )  are all isoinorphic t o  one another. Thus there are only 
two spaces of real interest here, .T(q) and J ( q ) ,  . They are both Asplund spaces 
with RNP, but  are highly nonreflexiilve. 

Define projections Pa on J ( q )  by 

for 9 > a .  

It is routine to verify that the P, satisfy all the coilclusions of Theorem 6. Of course 
the P, are just the basis projections corresponding to g, . Note that as P a ,  

U" gp -g,. Thus P, is weak" continuous precisely when a is not a limit ordinal. 

It  follows from [Tr] that J (q ) ,  and  J(11) have equivalent locally uniformly 
convex norms. The  standard argument for making this a dual renorming for J ( q )  
cannot be applied, since not every P, is weak* continuous. In  fact Edgar [El showed 
that  J ( q )  does not admit any such dual renorming. Adapting the argument of 
Talagrand [Tl, Theorem 31 gives us a stronger result. The  argument is so delightfully 
simple that  it bears repeating. 

Proposition 9. Let X be any Banach space, and q a n  uncountable ordinal. Sup- 
pose X *  contain3 a subset weak* liomeomorphic to  IO,q]. T h e n  X *  is not strictly 
convex. 

Proof. Let { g ,  : ct < q)  be the given subset of X* .  We show that ,  under any 
equivalent dual norm I 1 - 1 ,  X* contains an  isometric copy of the posit,ive cone 
of e l .  

Since 1 1  lga 1 1  1 is a lower semicontinuous function of ct , it  must be constant on 
some closed uncountable set S c [O,  q]  . Scaling, we may suppose tha t  g ,  1 ( = 1 
for every ct E S. Let us denote by ctn the nth successor in S of any such ct .  



If X' does not contain t h e  positive cone of e l ,  then  for any a E S, there exist 
e , X l , X z , . . .  , A n  E Qi such tha t  1 )  Cy=n=l X;g,iI/I 5 C:_l Xi - E .  But  then  we can 
fix e ,  X I , .  . . , A n  SO tha t  T = { a  E S : / ) I  C X;g,i 1 1  / 5 C A; - e) is uncountable. 
Select a sequence ( a l ,  a?,  .. .) in  T for which am+] > a: for all m .  Clearly 
a = sup  a ,  E S a n d  I I lg, 1 1  I = 1. Now g, = w *  - lim,,, g , ~  for each i , and so 

which is impossible. 

T h e  hypotheses of Proposition 9 are  satisfied, of course, by C[O,v], J ( v )  a n d  
J (v) .  . T h e  question of whether or not J ( v ) ,  o r  J ( v )  admit  equivalent Frechet 
smooth norms remains totally open. 

References 

[AL] D.  Amir a n d  J.Lindenstrauss, The ~ t r u c t u r e  of weakly compact sets in Banach 
spaces, Ann. Math . ,  88(1968) 35-46. 

[B! R.D.Bourgin,Geometric aspects of convex sets with the Radon-Nikodym Prop- 
erty, Lecture Nobes i n  Mathematics 993, Springe! -Verlag, Berlin 1983. 

[Dr j  Robert  Deville, Problemes de renorrnages, J .  Fuilct. Anal. ,  68(1986) 117-129. 

[Dl J .  Diestel, Geometry of Banach spaces- selecter topics, Lecture Notes in Math-  
ematics 485, Springer-I7erlag, Berlin, 1975. 

[DU] J.Dieste1 a n d  J .J .Uhl ,Jr ,  The Radon-Nikodyn Theorem for Banach space valued 
measures, Rocky Mtn .  Math .  J . ,  6(1976) 1-16. 

[Ej G.A.Edgar, A long James  space ,pp 31-37 of : Measure Theory, Oberwolfach 
1979, Lect,ure Not,es in  Mathe~na t ics  794, Springer-Verlag, Berlin 1980. 

[F l ]  hl.Fabian, On Projectional Resolution </ Identity on the duals of certain Ba-  
nach spaces, t o  appear  (Bull. Austral.  .tIath. Soc.) 

IF2' M.Fabian, Every weakly countably del-rinined Asplund space admits a n  equiv- 
alent Frechet differentiable norm, t o  ippear  (Bull.  Austral. Math .  Soc.) 

JL ,  W.B.Johnson a n d  J .  L indens t raus~ ,  Sonze remarks on weakly compactly gcn- 
?rated Banach spaces, Israel J .MF h. 17(1974) 219-230, Correction Israel J .  
Math .  32(1979) 382-383. 

[Ll :  J.Lindenstrauss, On nonseparab'? rt$exi~le Banuch spaces, Bull. Amer. Math .  
Soc., 72(1966) 967-9'7'0. 



[L2] J.Lindenstrauss, On complemented subspaces of m, Israel J .  Math. 5(1967) 
153-156. 

[MI K. Matsumoto, Self-adjoint operators as a real span of 5 projections, Math. 
Japonica, 29(1984) 291-294. 

[Ph] R.R.Phelps, Differentiability of convex functions on Banach spaces, unpub- 
lished lecture notes, University College London, 1977. 

[S] S.Shelah, A Banach space with few operators, Israel J .  Math. 30(1978) 181-191. 

[Tc] D.G. Tacon, The conjugate of a smooth Banach space, Bull. Austral. Math. 
SOC., 2(1970) 415-425. 

[Tl] M. Talagrand, Renormages de quelques C (K), Israel J .  Math., 54(1986) 327- 
334. 

[Tr] S.L. Troyanski, On locally uniformly convex and differentiable norms in certain 
nonseparable Banach spaces, Studia Math. 37(1971) 173-180. 

[Z] V.Zizler, Locally uniformly rotund renorming and decomposition of Banach 
spaces, Bull. Austral. Math.  Soc. 29(1984) 259-265. 

Department of Mathematics, 
1nstit.ute of Advanced Studies, 
Australian Nat,ional University, 
G.P.O. Box 4, Canberra 
A.C.T. 2601, 
Australia. 

Department of Mathematics, Stat.istics and Coll~puter Science, 
University of New England, 
Armidale, 
N.S.W. 2351, 
Australia. 




