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ABSTRACT. We study the connections between the Kadec-Klee property for
local convergence in measure Hy, the Kadec-Klee property for global con-
vergence in measure H, and the Az-condition for Orlicz function spaces L¥
equipped with either the Luxemburg norm || - J|; or the Orlicz norn || - ||g.
Nominally, we prove that for (L¥, ] - ||,) the conditions: ¢ satisfies an ap~
propriate Az-condition and L¥ € Hy, LY € Hy are equivalent, although
L¥ € Hy is not equivalent to E¥ € H,. In contrast, we also prove that,
in the case of a non-atomic infinite measure space, properties H, and H,
for (L#, | - [|'}) do not coincide. More precisely, we prove that if ¢ vanishes
only at zero, then both these properties coincide and they are equivalent
to ¢ € Az. However, if ¢ vanishes outside zero, then (L¥,| - ||%) € H,
if and only if ¢ € Ax(oo). Since in the last case (L7, || ||3) is not order
continuous, properties He and H,, differ. Analogous results are also proved
for the subspace £7 of L¥. It is also worth mentioning that the criteria for
E¥ € Hy as well as for E¥ € H, were not previonsly known. It follows from
the criteria that the appropriate regularity As~condition for ¢ is necessary
for B¥ ¢ Hy, EY € He, £% € Hy and Ef € H, although these spaces are
orcler continuous for any .

1. INTRODUCTION

If (£, - |l&) is a normed linear space, then E is said to have the Kadec-Klee
property (E € H) if sequential wesk convergence on the unit sphere coincides
with norm convergence. It is well known that the classical L,-spaces, 1 < p < o0,
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have the Kadec-Klee property (see [23], [24]). Although the space Ly(0,1) fails
to bave the Kadec-Klee property, Riesz showed that each sequence {z,} on the
unit sphere of an L,-space, 1 < p < oo, convergent almost everywhere to z from
the unit sphere of L,, is also norm-convergent.

Throughout this paper (£2, X, ) denotes a o-finite complete measure space.
Let E be a Banach function lattice over on (2, X, 1) (see [14]). The positive cone
E* of E is defined by E* = {x € E: = > 0}. E is said to have the Kadec-Klee
property for global convergence in measure (F € Hy), if for all {z,} and z in the
unit sphere of E whenever z,, — « globally in measure on §2, then |, — z| — 0.
E is said to have the Kadec-Klee property for local convergence in measure (i.e.
convergence in measure on subsets of finite measure) (E € H; for short), if for all
{z.} and z in the unit sphere of £ whenever z,, — z locally in measure on 1,
then |z, — z|| — 0.

These properties were investigated in [4] and [20] for symmetric spaces defined
on any interval [0,),0 < & < 0o, and on the interval [0, 1), respectively.

In this paper we study the connectious between the Kadee-Klee property for
local convergence in measure, the Kadec-Klee property for global convergence
in measure and the A,-condition in Orlicz function spaces and their subspaces
of order continuous elements equipped with either the Luxemburg norm or the
Orlicz norm.

We start by fixing some notations. In the following R, R* and N will stand for
the sets of real numbers, nonnegative numbers and positive integers, respectively.
By ¢ : R — [0,00] we denote an Orlicz function, i.e., ¢ is convex, even, left
continuous on the whole of R*, (0) = 0 and ¢ is not identically equal to zero.
For any Orlicz function ¢ we let

a, :=supfu > 0: p(u) = 0}

and
¢, = sup{u > 0: p(u) < oc}.

We shall say that an Orlicz function ¢ satisfies the Ay-condition for all v € R
(at infinity) [at zero] if there are positive constants K and ug with 0 < ¢(up) < 0o
such that ¢(2u) < Kep(u) holds for all u € R (for every |u| > ug) [for every
[u] < ug]. Obviously, ¢ satisfies the Ay-condition for all u & R if and only if it
satisfies the As-condition at zero and at infinity. We denote these conditions by
0 € Ay (@ € Ag(0)), [ € Az(0)], respectively.

For any Orlicz function ¢ the statement " p-satisfies the suitable As-condition”,
will mean that:

@ satisfies the Ap-condition for all w if g is nonatomic and infinite.
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o satisfies the Ay-condition at infinity if 4 is nonatomic and finite.

i satisfies the Aj-condition at 0 if x is the counting measure.

In the following, LY(x) will stand for the space of all (equivalence classes of)
Y-measurable real functions defined on §2. For a given Orlicz function ¢ we define
on LY(u) a convex functional (called a pseudomodular, see [21]) by

@) = [ welt))du

The Orlicz space L¥ () is defined to be the set of all z € L%(u) such that I,(A\z) <
oo for some A > 0 depending on z. We endow L¥{u) with the Luxemburg norm

lall, = inf{A > 0: I(z/X) < 1}
and with the Orlicz norm
ol = sup { [ letuoldu: v € L7 (0, 1) < 1,
where the function ¢* is defined by the formula

" (u) = sup{|u|v — p(v) : v > 0}

and called complementary to ¢ in the sense of Young.
It is well known that if ¢ is finitely valued and satisfies the condition
p(u)

lim — = o0,
U~ 0O u

then the following Amemiya formula for the Orlicz nonn is true {see [22])
. 1. .
]| = inf {E (1+ /g wlkx(t))dy) : k > O}.

Moreover, for any @ € L¥(u) \ {0} there is a positive number k™ at which the
infimum is attained, that is
0 1 .
Iz = F(l + / ok :v(t))d,u).
Q

In [11] it is proved that the Amemiya formula for the Orlicz norm is truc
for any Orlicz function and in [12] it is proved that Orlicz spaces generated by
Orlicz functions satisfying the Aj-condition have the Kadec-Klece property for
local convergence in measure.

In the sequel we will need some results concerning Banach lattices with order
continuous norms. Recall that a Banach lattice E is said to be order continuous
(OC for short), if z, | 0 implies ||z, | — 0 (see [17]).



1040 . DOMINGUEZ, H. HUDZIK, G. LOPEZ, M. MASTYLO AND B. STMS

For the definition of a symumetric space £ we refer to [15] (cf. also [1]). Let us
only recall that for 2 € E, we denote by =* the nonincreasing rearrangement of z
(see section 3).

The subspace E¥ of L¥ is defined as the space of all order continuous elements
in L¥, where an element x € L¥ is said to be order continnous if |z,|l, — 0
whenever 0 < z, < |x| for any n € N and v, — 0 p-a.e. in Q. It is well known
that if p is nonatomic, then E¥ # {0} if and only if ¢ is finitely valued and that
E? = L if and only if p € Ay (see [3], [19], [21] or [22]). Tt is also known that
in the case of any nonatomic o-finite measure, r € E¥ if and only if I (Az) < x
for any A > 0 (see [5]).

Recall that a Banach lattice (F, <) is called strictly monotone (£ € SIM for
short) if for any @, y € F with 0 < y < 2 and y # x we have [ly|| < ||
E is called upper (respectively lower) locally uniformly monotone (E € ULU
M, respectively E € LLUM) if for any 2 € E and {z,} C FE, the couditions
0 < x €z, (respectively 0 < z, < ) and |lx,|| — ||z|| imply ||z, — || — 0 {see
[2], [4], [10], |16] and [20]}.

The following lemmuna will be useful in what follows. An easy proof may be
found in [14].

Lemma 1.1. Let E be a Banach function lattice over a o-finite measure space.
If ¢, — = in E, then there evist y € BF, {u,,} C {z,} and 2, C RT with
en, | 0 such that |z, — | < €,,y.

We will also use the following remarkable result from [4].

Theorem 1.1. If E is a separable symmetric space on the Lebesgue measure
space (|0, ), m), where 0 < a < oo, then the follounng are equivalent:
(i) E is stricily monotone and E has the property H,.
(i1) E is upper locally uniformly monotone.
(iii) For anyx € E and {xn,} C E such that 0 < z* < b, forn € N, and

lznll = llz|l we have |z5 — 2*|| — 0.
2. LuxeEMBURG NORM
We start with the following general resull.

Proposition 2.1. If E is nol an order conlinuous Banach function lattice, then
E¢ Hpand E ¢ LLUM.

Proor. If F is not order continuous, it is well known (see [17]) that there cxists
a sequence {r,} in £V with ||z,| = 1 and suppz,Nsuppz,, = @ (which implies
that x;,, — 0 p-a.e.) and a funetion z € E'* such that z,, < x for any n € N.
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Define
o0
y= ZI“ and Y, =y — Ty.

n=1
If we can show that y,, — y weakly, or equivaleutly z,, — 0 wecakly, the
implication |lyn| — |ly|| can be deduced bhecause we also have 0 <y, < y.
Let E* denote the dual space of E. For any nonnegative f € E* and for all

k € N we have
k

Do) =f(Dzn) <a7(2),
n=1

Te=1
whence it. follows that 3"~ | f(x,,) converges, and so f(z,) — 0 as n — co. Since
every f € E* can be written as a difference of two nonnegative functionals, we
have shown that x,, — 0 weakly. Therefore ||ly.|| — ||¥l|-
We also have that y,, — y p-a.c.. However

ly - wnll = |l fl=1
for any n € N, which means that E ¢ He. ‘The same proof gives £ ¢ LLUM. O

Carollary 2.1. Let ¢ be an Orlicz function. If ¢ does not satisfy the suitable
As-condition, then L* ¢ H,.

Proor. The proof follows from Proposition 2.1 and the fact that the space L¥(u)
is an ovder continuous Banach function lattice if and only if ¢ satisfics the suitable
A,-condition (sec [5], [6], [13] and [25]). 1

If p is a finite measure, the Kadec-Klee properties for local and global conver-
gence in measure are cquivalent. So, i most of the results in this paper we will
restrict ourselves to studying the case of an infinite measure.

Proposition 2.2. Let (2, %, 1) be a nonatomic and infinite measure space and
w be wn Orlicz function with a, > 0 und ¢, = oo. If L* is endowed with the
Luzemburg norm, then LY ¢ H,.

Proor. Consider a sequence {A,,} of measurable sets such that
p(An) =277
Let A ={J A, and define
ZT=apxXona  and  Tp = apXxova T Uuxa,.

where b, > 0 and ¢(b,)p{A,) = 1. Such a sequence {b,, } exists by the assumption
that ¢, = oc.
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We first note that z, — x = b,xa,. Therefore, £, — z globally in measure.
Now we are going to show that

[zl = llzall, = 1.
We have
Lp(x) < I¢(.1?.,l) = 90(””?)/-"(9 \ A) + ‘P(bn)/-"(An) =1,
whence (see [22])
(2.1) ”T”«a < lzally = 1.
On the other hand for all A > 1,
I,(\) = p(ag )@\ 4) = oo

because p(Q\ A4) = co. So ||Az|l, > 1 for all A > 1, which implies ||z[l, > 1.
Hence, by using (2.1), we obtain

Hzncp = |lzally = 1.
In order to finish the proof, observe that
IKF(IH —z) = o(bn)u(An) =1,
which implies that ||z, - ||, = 1 for all n € N. ]

Proposition 2.3. Let ¢ be an Orlicz function with a, = 0 and ¢, = co and
E? be endowed with the Luzemburg norm. Assume o does not satisfy the A,-
condition at 0. Then E¥ ¢ H, whenever (2,2, 1) is o nonatomic and infinite
measure space.

PrOOF. Since p ¢ A3(0), there exists a sequence {u,} of positive real numbers
with ¢, — 0 and

@(2mu,) > 2"p(uy)
for all n. € N.

Let z € E?, 2 > 0 and [|z]|, = 1. We claim that there exists a sequence
{4n} in I such that p(A,) = 0o and I,(2zx,,) £ 27" for all n € N. Indeed,
by o-finiteness of the measure space, there exists a sequence {C,} in £ such that
Cn 1,0 < pu(Cr) < oo for every » € N and |J,, Cr. = Q. The Lebesgue dominated
convergence theorem yields £,(2zxo\¢,}) = 0 a8 n — oo.

Since p(2\ Cn) = oo for any n € N, the claim is proved for {A,} being a
subsequence of the sequence {Q2\ C,}.

Let B, C A, be for any n € N such that zxg, € L™ and o(u,)u(B,) =27".
Define

u.
In =2+ —XB, = TxXu\B, + (z+

Un
2 —-)

2 XBn-'
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Then z, € E¥ for all n € N. Since 2, > z > 0, we have ||z,]|, > ||z]|, = 1. On
the other hand

Ip(zn)

2T +u
Iw(IXn\BnHIw( 3 nXBn)

IA

1
Iv(-TXﬂ\Bn + E(Iv(ZIXB,.) + IsO(UHXB,.)}

IA

1
1 + 5{2—1& " 2—11.} = 1 + 2—-1!)

whence 1 < ||zl < 14277, 1. ||Zally — [|z]|, = 1. Since z,,—2 = Lunxs, and
un, — 0, we conclude that 2, — z globally in measure. However, I,(4(z, — z)) =
©(2un)p(Br) > 2¢(uy)p(B,) = 1, whence ||z, — z|, >  for all n € N. This
yields E¥ ¢ Hy. O

Proposition 2.4. If (2, X, 1) 1is a nonatomic measure space and ¢ is an Orlicz
function with ¢, < co, then L¥ equipped with the Luzemburg norm fails to have
property Hy.

PRrROOF. Choose a sequence {4, } of measurable and pairwise disjoint sets such
that u(A,) > 0 forany n € N and >°07, ¢(bn)p(Ay) <1, where 0 < b, T ¢, as
n — o0. Define
o0
r, = Z brxxa, and z = ZkaAk'
k#n k=1
Then we have
I(z,) < I{z) < L
On the other hand for any A > 1, we have
I,(Ax) 2 I,(Az,) = cc.

Therefore, ||z]l, = 1 and ||z}, = 1 for all n € N,

Since p(4,) — 0 as n — oo, we have that x, — z globally in measure.
However, for any A > 1, I,(AMz — x,)) = oo for n large enough. This implies that
|z — zn|, = § for n large enough, and consequently L¥ ¢ H,. O0

Proposition 2.5. Let ¢ be an Orlicz function, (Q, X, 1) be ¢ nonatomic measure
space and E¥ be endowed with the Luzemburg norm. Assume that ¢ does not
satisfy the Ay-condition at oo and ¢, = 0. Then E¥ ¢ H,.

PROOF. If we assume that ¢ ¢ Aa(00), then for all ¢ > 0 and n € N there exists
Up, 2> n such that

?(2uy,.) > cp(tn,c)-
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Taking ¢ = 2*7! gives the existence of u, > n such that
@(2un) > 2" p(u,) for all n € N,

Take any @ € E¥ such that z > 0 and |||, = 1. In the same way as in the proof
of Proposition 2.3 one can find a sequence {4,} C £ and a subsequence {v,} of
{un} such that ax 4, € L%, I.(xx4,) < 27" and (v, )u(A,) = 27" Defining

v,

Tpn =T+ Bxa,, we have

1
1=TI.(z) < Iy(zn) = I(zxa\a,) + Iw(i(mx.—in +UnX4,))

IA

1
1+ §{I¢(IXA") + ‘Pn-(vn)/J(An)} =1427",

whence 1 < ||2]jp € lzally £ 1427 for any n € N. Moreover, from the equality
Tp —x = Yxa, and the fact that u(A,) — 0 as n — oo it follows that z, — =
globally in measure. However, z, € E¥ and I,(4(zn — 7)) = ©(2u,)u(4A,) >
2"p(v,)u(Ayn) = 1, whence ||z, — ||, >  for all n € N. This means that

E* ¢ H,. O

Proposition 2.6. Let (2,3, 1) be a nonatomic and infinite measure space and
v be an Orlicz function with a, > 0 and ¢, = co. Then E¥ ¢ I,.

Proor. Devide @ into AU B, where u(A) = u(B) = oo and AN B =@ Let
A =U2,A,, where A, are pairwisc disjoint and p(A4,) > 1 for any n € N. Take

ag > 2a, and By € ¥ N B such that ¢(ay)u(By) = 1. Define

T = agXB, and T, =z + a,xa, -
Then I,(z) = I (x,) = 1, whence ||z|| = |z,|| = 1 for any n € N. Siuce the
sets A,, are pairwise disjoint, we have «,, — r p-a.e.. However, [,(2(z, — 7)) =
(2a,)1(A,) 2 o(2a,), whence ||z, — 2], 2 (1/2)min(1, ¢(2a,)) > 0. Since
r € E¥ and x, € E¥ for each n € N, the proof is finished. O

Proposition 2.7. Lel (Q,XZ, u) be a nonatomic and infinite measure spuce and
w be an Orlicz function with a, > 0 and ¢ € Ax(o0). Then E¥ € H,.

Proor. Assume that ¢ € S(E¥), {z,} C S(E¥) and z,, — 2 globally in measure.
We have I,(x) = I,(2,) = 1 for each n € N. First we will prove that
(2.2) I(znxa) — Io(xzxa) for any A € X

By the o-finiteness of p and the fact that x,, — x globally in ineasure we
know that {z,} contains a subsequence convergent to r p-a.e.. Assume without
loss of generality that x, — z p-a.e.. Since ¢ € Az(co) and consequently ¢ is
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continvous, we have |jpoz,||ps = I (zn) = Io(x) = |jpoz|r and pox, — pox
p-a.e.. Since L' € H,, we get ooz, — o)1 — 0. Hence for any 4 € I,
we get @ oznxa —wozxall — 0, whence I (xnx4) — I (zxa). Now we are
ready to prove that ||z, — x|, — 0. Since E € H, if and only if E* € H, for
any order continnous Banach function lattice (see Proposition 1 in [12], where it
was proved that E € H, if and only if E" € He whenever E is order continuous,
and observe that the proof works also for H, in place of H ), we may assume in
the remaining part of the proof that 7, > 0 and z > 0. We need to show that
I(A{zy — x)) — 0 for any A > 0. Choose any A > 0 and define for any N

An= {1 € Q: [2a(t) — 2(1)] > a,/A).

We know that p{A,) — 0 as n — oo, so passing to a subsequience if necessary,
we may assume without loss of gencrality that p(USL, A,) < co.

Let A=152A, and A" = Q\ A. Then p(Nz,(t) —z(t)]) =0 for any n € N
and t € A’ Consequently, 7,(A(z, — 2))x,1/) = 0 for any n € N. To finish the
proof we only need to show that I,(A(xn — 2))xa) — 0. Let us prove first that
L((zn = 2z)x4) — 0. By the superadditivity of ¢ on R* and the fact that z,, > 0

and r > 0 yg-a.c., we have
(2.3) po({Zn ~2)xA) < |po (Taxa) —po (LL'HXA)| .
By condition (2.2) and the fact that L' € H,, we have

llgo (znxa) =~ ¢o(rnxalllr — 0.

So, inequality (2.3) gives [wo((2n—z)xa)ll11 = Ip(zn—z)x4) — 0. Given XA > 0,
we may assume passing to a subsequence if necessary that p(A(z, —2)x4) — 0
t — a.e.. Moreover, by inequality (2.3), Lemma 1.1 and the assumption that ¢ €
As(00), it follows that this sequence has an integrable majorant. Consequently,
the Lebesgue dominated convergence theorem vields I.(A(z, — z)) — 0. This
finishes the proof. a

We remark that the only reason that Proposition 2.7 is not true for L¥ instead
of E¥ is that if o does not satisfy suitable Ay-condition, then for & € LY it can
happen that |z]l, = 1 and L.(z) < 1.

The previous results can be summarized in the following theorem.

Theorem 2.1. Let (S, %, 1) be o nonatomic mensure space, @ be an arbitrary
Orlicz function, and (L¥, || - ||) be the Orlicz space endowed with the Luxemburg
norm. The following statements are equivalent:

1 QDEA-;_.
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2. L¥(u) € H,.
3. L¥(p) € Hy.
Assuming additionully that ¢, = oo, we have:
4. E¥ € H; if and only «f LY € Hy.
5. E¥ € H, if and only if, either
(i) ap =0 and p € Ay, or
(i) ap, >0 and ¢ € Ay(co).

PRrooF. It is known (see [5] and [12]) that L¥ € H, if and only if ¢ € Az, The
implication 2 => 3 is obvious. By Corollary 2.1 and Propositions 2.2-2.5 we get the
equivalence 2 <= 3. Statement 4 follows by Propositions 2.3, 2.4 and 2.6 and
by the first part of the theorem. Finally, statement 5 follows from Propositions
2.2, 2.3, 2.5 and 2.7 and the first part of the theorem. 0O

Remark 2.1. If ¢, = o0 and a, = 0, stetement 4 of Theorem 2.1 can also be
deduced in o different way, by observing that under the assumptions, E¥ is the
STM (see [16]). Consequently, by Theorem 1.1, E¥ € ULUM and, by Theorem
2,3 in [10]. p € A,.

Example 2.1. Consider the Orlicz function p(u) = max(0, |u| — 1) end assume
that (0, X, 1) is a nonatomic measure space. Then L' + L™® = L¥ and

lzlle = inf {max(Julli, ||le0) : u € L',v € L™ andu + v = z}.
If u is finite, then LY = E¥ and L¥ € H; since p € Aq(o0). If p is infinite, then
L¥ ¢ H, (see Proposition 2.2) but E¥ € H, (see Proposition 2.7). Recall that L¥

consists of those = € L° that u({t € Q : |2(t)| > A}) < oo for some X > 0 and E¥
consists of those x € LV that u({t € Q : |z(£)] > A}) < oo for any A > 0 (see [9]).

3. OrLICZ NORM

As usual, L' := L'(u) and L* := L*(u) denote the Lebesgue spaces of
p-integrable functions and pi-essentially bounded functions, respectively. These
spaces are equipped with the standard norms. The spaces L' N L>® and L! + L™
play an important role in the interpolation theory of symmetric spaces (see [1]
and [15]). Usually these spaces are equipped with the following norms:

2l Linze = max{[|z]l1, |{loo}

and
llzllLigreo = nf{|[u)ls + WWloo: T=u+v,u€ L', ve L®).
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It is well known that for the Orlicz functions ¥(u) = |u| for |u| <1, ¥(u) = 0o
for |u| > 1 and ¢(u) = max(0, |u] — 1), we have L'NL*® = L¥ and L! + L™ = L¥,
with the equality of norms if L¥ is equipped with the Luxemburg normm and L¥ is
equipped with the Orlicz norm (see [7], [8] and [9] for details). Note that the func-
tions 9 and ¢ are mutually complementary in the sense of Young and, moreover,
the spaces (L1NL™®, ||zl p1nre), (L + L%, ||z 11 4100 ) and (LY, ||.|ly), (L¥, ||.||2)
form two couples of mutually dual spaces in the sense of Kothe. Hence

1% = lzllerszoo
holds for all z € L¥. In addition, the Amemiya, formula for the norm in L! 4+ L™
is proved in [9].
For any £ € L°p) the decreasing rearrangement of z is the function * defined
for any ¢ > 0 by
z*(t) = inf{A > 0: d.(N) < ¢},
where d; is the distribution function defined by
de(N) = p({w € Q2 : |z(w)| > A}).
For our purpose, it is worthwhile to note (see for example [17]) that
(z+y)(s+1t) <x™(s) +y"(t)

for any s, > 0 and that for all x € L + L% we have

1
|l 13 42,00 =/0 z* (t)dt.

From Proposition 2.2 we know that (L¥,]| - ||,) does not have the Kadec-Klee
property for global convergence in measure if ¢, > 0 and ¢, = co. However, this
fact is not true when the Orlicz norm is considered, because by Proposition 1.2
in [4], it follows that L' + L™ € H,. We will present here a simple alternative
proof of this fact.

Assume that {z,} C L'+ L*, x € L' + L™, z,, — x globally in measwre and
lenllisr= = |2llLr o= = 1 for all n € N. Since z,, — = globally in measure,
2y, — ¥ ae., and thus

TnX0.0) — T X(0.1) a-€.

(see [15]). Bearing in mind that L' € H, and |z} x(0,1ll. = l=*x@onlle =1,
we deduce that

1
/U lr5,(5) — z*(s)|ds — 0.
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By Lemma 1.1 there exists a subsequence (2}, ) of (z},) and y > 0, y € L*(0, 1)
such that [} () — 2*(t)| < y(t) a.e. in (0,1).
By the assumnption that z,, — z — 0 globally in measure, it follows that (z, —
r)* — 0 a.e.. Moreover,
(Zn, — )" (t) < xy, (t/2) + 27 (t/2) < 22*(t/2) + y(1/2).

Since 2x*(¢/2) + y(t/2) € L*(0,1), by applying the Lebesgue dominated con-
vergence theorem, we obtain

/ (Tn, —2)*(t)dt — 0,

which is equivalent to
6y = 2ll 1420w = 0.
Thus, since for each subsequence of {z, — ¥} we can extract a subsequence
which converges to 0 strongly in L! 4+ L>, the proof is finished.

Proposition 3.1. If ¢ is an Orlicz function with ¢, = oc not satisfying the As-
condition at ov and (Q, T, ) is @ nonatomic measure space, then (L%, |-||%) ¢ H,.

ProOF. If p is finite this is obvious, because we have
Hy = Hr = OC = As(oc).
So, assume that x is nonatomic and infinite and that o ¢ As(>0). Then there
exists a sequence {u,} of positive real numbers such that u, 1 co and
w(2u,) > 2"p(u,,).

Take any nonnegative » € £¥ with [|z]|2 = 1, Since ¢ ¢ Ax(00), we have
p(t)/t —» o0 as t — oo, and so, in the Amemiya formula for the Orlicz norm
[|-11%, the infimum is attained at some k > 0, that is, ||lx||% = (14 I,(kz)). Note
that, since [|z||% = 1, nccessarily k > 1.

Further (see the proof of Proposition 2.3) Lhere exists a sequence {4,} in T
with u(A4,) = oo for any » € N such that

I,(2kxx4,) <27
Let for any n € N, B,, C A, be such that
Lp(?t”_)[l.(an) =27

and define
Un
Tn =2+ %Z\(Bn =2rxXnsg, + (® + —)xB,-
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Since x,, > & > 0, we have ||z, ||? > |z[|2 = 1. On the other hand

laallt, = fgnf L1+ I(pma)
< E(l+1¢(kxn))
= L0+ Llkexans,) + L(kexs, + 2 xu,)
< 1+ ‘l(la(.'lkxxg“) + Io(unxs,))
< 1+4= (—+i) 1

2 217.
As a consequence, we obtain [z, (% —
globally in measure.
In order to finish the proof, we show that ||z, — =%

[z[l}, and, since u(Bp) — 0, T, — «

We have

@ 2 '4L
I (4k(zn — 7)) = 1.(2unx B, ) = @(2un)p(By)) >

for all n € N. Hence |2, — 2|, > 1/4k, and so the proof is finished, by observing
that Jlz, — 1"]2, 2 |zn — 2}, and x, € E? for all n € N. o

Proposition 3.2, Let (2, 2. 1) be a nonatomic measure space and @ be an Orlic:
function such that a, = 0, o, = oc, and lim,_. p(t)/t = co. Then Ef ¢ H,
whenever o ¢ Ao,

PROOF. First we will show that E§ ¢ H, if ¢ ¢ Ay(co) (it does not 1natter
if p(2) = oo or u(fl) < oo in this case). Take any x € S(EY) such that
u(2\ suppx) > 0). The assumption ¢ ¢ As(oc) tinplies that there exists a
sequence {uy,} of positive numbers such that ¢(2u,) > 2"p{u,) for each n € N
and u, — oo. Passing to a subsequence of {u,} if necessary we may assuie
that o(u)u(B,) = 2™ for a sequence {B,} in £ N (Q \ suppr). Defining
T = 2+ uau(B,), we easily see that &, € EY for any n € N, z,, — z glob-
ally in measure and 1 < ||z, [|S < 1+ 27", However

|z, ~ 1[[8 > %min{l,f“,(Z(xn —z))} = ~mm{1 Pp(Qun)p{Ba)} > 1/2,

which meaus that Ef ¢ H,,.

Assume now that () = oo and ¢ ¢ Ay(0). Then therc is a decreasing
sequence {u,} of positive nunibers with u, — 0 such that (2un) > 2%¢p(u,,) for
cach n € N. Take any nonnegative = € EJ with ||z[|% = 1. We know (see the
proof of Proposition 2.3) that there is a sequence {An} C T such that j(A4,) = oo
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and
I,(2kzxa,) <277
for each n € N, where k > 1 satisfies k™1 (1 + I, (kz)) = ||z = 1.

Let B, C A, be such that p(u,)u(B,) = 27". Defining x, = z +unu(By,), we
can prove in the same way as in the proof of Proposition 3.1 that 1 < ||z,[| <
14 27" for each n € N and z,, — z globally in measure, but |iz,, — :c||g, > 1/4k
for all n € N. Consequently, Ef ¢ H,. O

Proposition 3.3. Assume ¢ is an Orlicz function with c, < oo and (2, %, ) 1s
o nonatomic measure space. Then L§ ¢ H,.

PROOF. Let {A} be a sequence of positive numbers with Ay < ¢ygrphs for any n €
Nand A; T e, a8 k — oo and {A,} C X be a sequence of pairwise disjoint sets of
finite positive measure such that o(Ax)u(A4n) < 27%. Define z = 3 oo | AiCoX s
and z,, = Ek;én MCoX A, Then 0 <z, <z and z, — z a.e. in §. Since L has
the Fatou property, we get ||z, |3, — [|z||%. Moreover,

Io(zn — z) = p(Ancy)pu(An) <277
and
LMz, —x)) = S"(’\’\ncx,p/»‘(An) =00
for any A > 1 and n large enough. Therefore
l2n ~ 2l 2 llzn — 2y = 1
for n € N large enough. Since 2, — z globally in measure, L} ¢ H,. 0

The results of this section are summarized as follows.

Theorem 3.1. Suppose that (S, X, u) is ¢ nonatomic measure space and i 1is
an Orlicz function with lime_,o o(t)/t = 00, a, = 0 and ¢, = oo. Let Lf and
E$ be the spaces L¥ and E¥ equipped with the Orlicz norm. Then the following
conditions are equivalent:

(1) L(f € Hy.

Proor. The implications 1 = 2 => 3 are obvious. Let us prove that 3 <= 4.
It is obvious that 4 = 3. If Ef € H,, then by Propositions 3.1 and 3.2, we get
¢ € Ay. Consequently (see [3], 5] and [12]), Ly € H, and so Ef € H,, too.
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Therefore, the equivalence 3 <= 4 and the implication 5 = 1 are proved. By
Propositions 2.3 and 2.5, we get 4 = 5. ]

Remark 3.1. The equivalence of conditions 1, 2 and 5 in Theorem 3.1 holds
for LY generated by an Orlicz function ¢ with a, = 0 without the assumption
that ¢, = oo because, by Proposition 3.3, the condition ¢, = oo is necessary for
LY € H,.

Remark 3.2. If, in addition, we assume that the measure p is separable and
¢, = 00, then the space Ef is separable and EY # {0}. Applying Theorem 1.1,
we can recapture some implications of Theorem 3.1 in a different way. Namely, if
a, =0, then Ef € STM. We also know that ¢ € Ay is necessary for E§ € ULUM
(see [10]).

Theorem 3.2. Assume @ is an Orlicz function such that a, > 0 and p(t)/t — oo
ast — oo and (1, T, p) is a nonatomic measure space. Then L§ € H, if and only
if p € Ax(0). If we assume additionally that ¢, = oo, then E§ € H, if and only
if ¢ € Ap(c0).

Proor. The necessity of p € Az(oo) for LY € H, follows by Propositions 3.1 and
3.3 and by Remark 3.4. When ¢, = 00, the necessity of ¢ € Ay(c0) for Ef € H,
follows by Propositions 3.1 and 3.2.

We present a proof of sufficiency of the respective conditions for L € H, only.
The proof for E in place of L¥ is the same. Let z € S(Lf) and {z,} be a
sequence in S(L¥) such that x, ~» z globally in measure. By the assumption
that im,_, (t)/t = 0o, there are k > 1 and k,, > 1 for n € N such that

2l = 2L+ To(ka)) and flzallh = 2-(1+ Lo(kuza):
n
We need to prove that I,(A(z, — x)) — 0 for any A > 0. Choose an arbitrary
A > 0 and dcfine

An = {t € Q: |za(t) — 2(t)| < ap/A}.

The assumption that z, — z globally in measure yields u(A)) — 0 as n — oo,
where for any A € I, A’ := 2\ A. So, one can find a subsequence {A;, } of
{A},} such that p(A}, ) < 27%. Defining A = ;2 A, we have u(A4) < 1. Note

that A’ = e, An, and |zn, (t) — 2(t)] € ap/A for all k € N whenever ¢t € A
Consequently, J,(A(zn, — z)xa’) = 0 for all k € N. In order to prove that
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I,(Mzn, —2)) — 0, we need to show that I,(A(z,, —x)xa) = 0. Let k and k,,

be as above. We first prove that the sequence {k,} is bounded. Define
C.={teQ:|z(t)] > e}

for each £ > 0. Clearly, it is possible to choose an gy > 0 such that a 1= p(Ce,) >
0. Since z,, — z globally in measure, there exists mn € N such that

wu({t € Cep : |2n(l) — z(t)| > €4/2}) < af2 for all n > m.
Let D,, = {t € C., : [zn(t) — z(t)| < &y/2}. Then we have pu(D,) > a/2 for all

n > m, and so
| |za(B)] = |2(8)] | < €0/2
for all t € D,, and n > m. Consequently, whenever n > m, we have

|z, (t)] = €0/2 forallte D,.

Assuming that ¢ := sup, k,, = 0o oue can find a subsequence {k,,;} of {k,} such
that k,,, — oc as j — oo. Hence we get,

1 < 1
1= ”Tn, “37 (1 + Igp(knJI‘n.J) Z k_Iv(knjmnj)
0,j

C'NJ
) 1
2 r‘p(knjf/2)y‘(DnJ‘) —
()
a contradiction, showing that sup,, k,, < co. So, one can find a subsequence of
{k.} convergent to a positive number £. Assume without loss of generality that
k, — € as n — oo, Since the measure space is o-finite and z, — x globally
in measure, we can assume without loss of generality that =, — x p-a.c. in Q.
Conscquently, p o k,z, — @ olxr u-a.e. in 0. By the Fatou Lernma, we get

I (€x) < liminf L,(k,2,),
whence
1 1
(31 U=l € GO+ L) < liminf (14 L(kara)) = 1

for all n € N. This implies the equality I.(¢z) = ( — 1. Moreover, I, (k,x,) =
kn—1— £€—1asn — oo, whence we get by (3.1) that I,(knz.) — I.(fz) or
equivalently, ||¢ o knZn|lzs — |l o€zl 1. We get ||woknzy —po bz — 0 as
n — oo by L' € Hy. Consequently, ||[(¢oknz, —@olx)xp|: — 0asn — oo for
any D € . This yields that

(32) I:p(knanD) - I~P(£IYD)1
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for any D € ¥ as n — 00. Recall that we want to show that I,(A(zn —2)xa) — 0
as n — ovu. Taking into account that &, — ¢, € Az{o0) and u(4) < oo, we
conclude from (3.2) that I (x,xa) — [,(Txa). Since x,Xx4 — x4 in measure
and L' € H,, we get ||[poxnxs —wozxal — 0asn — oo. Consequently, in
view of Lemma 1.1, we may assume by passing to subsequence if necessary that
the sequence {|w 0 Zrx 4 — w0 wxal} has a majorant z € L*. Since

T, — T

2

1
po xAa < —2—{<pom.,,‘x,; +<p01'x,4}

1
< E{l';ooanA'*-(POIXM+2<p°‘$XA}

< %z +pozx
and 2z/2 + pox € L', the Lebesgue dominated convergence theorem yiclds
Io(z, — x)xa/2) — 0 as n — oo. Further u(4) < oo, £, — = in measure
and v € Ag(oo) implies that L, (A(z, — 2)x.4) — 0 for any A > 0. In consequence,
we got ||z, — | — 0 as n — oo, which finishes the proof. O
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