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Abstract. Two fixed point theorems for uniformly lipschitzian mappings in

metric spaces, due respectively to E. Lif̌sic and to T.-C. Lim and H.-K. Xu, are

compared within the framework of the so-called CAT(0) spaces. It is shown
that both results apply in this setting, and that Lif̌sic’s theorem gives a sharper

result. Also, a new property is introduced that yields a fixed point theorem

for uniformly lipschitzian mappings in a class of hyperconvex spaces, a class
which includes those possessing property (P ) of Lim and Xu.

1. Introduction

A mapping T : M → M of a metric space (M,d) is said to be uniformly
lipschitzian if there exists a constant k such that d (x, y) ≤ kd (Tnx, Tny) , for
all x, y ∈ M and n ∈ N. This class of mappings was introduced by Goebel and
Kirk in [5], where it was shown that if C is a bounded closed convex subset of a
uniformly convex Banach space X, then there exists a constant k > 1, depending
on the modulus of convexity of X, such that every uniformly lipschitzian mapping
T : C → C with constant k has a fixed point. Since then there have been a
number of extensions of this result, typically in a Banach space setting. However
two results in a metric setting are noteworthy. The first is a result of Lif̌sic [11]
and the second is due to Lim and Xu [12]. Here we compare these results, taking
as an underlying framework the so-called CAT(0) spaces. We show in particular
that within this framework both the Lif̌sic and the Lim-Xu theorems apply, and
that Lif̌sic’s theorem yields the sharper conclusion. This is an important feature
of the paper because it provides a class of spaces which are not Banach spaces,
but for which the Lif̌sic character can be calculated, and which satisfy all of the
assumption of the Lim-Xu theorem. This appears to be the first example of such a
class of spaces.

We also introduce a new property that yields a fixed point theorem for uniformly
lipschitzian mappings in certain hyperconvex spaces. The precise relationship of
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this new property to ones previously studied is not yet clear. However the proof is
a departure from the usual methods, and the result yields the Lim-Xu theorem in
a hyperconvex setting as a corollary.

We begin with some basic definitions and notation that will be needed later.
Let (X, d) be a bounded metric space. For a nonempty subset D of X, set

rx(D) = sup {d(x, y) : y ∈ D} , x ∈ X;

r(D) = inf {rx(D)) : x ∈ X} ;

C(D) = {x ∈ X : rx(D) = r(D)} ;

δ(D) = sup {d(x, y) : x, y ∈ D} ;

cov(D) = ∩{B : B is a closed ball and A ⊂ B} .

The number r (D) is called the Chebyshev radius of D (in X).
A subset A of X is said to be admissible if cov(A) = A. The number

Ñ (X) := inf

{
r (A)

δ (A)

}
,

where the infimum is taken over all nonempty bounded admissible subsets A of X
for which δ (A) > 0, is called the normal structure coefficient of X. If Ñ (X) ≤ c for
some constant c < 1 then X is said to have uniform normal structure. (For some

authors, Ñ (X) would be the inverse of the normal structure coefficient.)
The metric space (X, d) is said to be hyperconvex if⋂

α∈Γ

B(xα,rα) 6= ∅

for any collection of points {xα}α∈Γ in X and positive numbers {rα}α∈Γ such
that d(xα, xβ) ≤ rα + rβ for any α, β in Γ. The classical spaces `∞ and L∞ are
examples of hyperconvex Banach spaces. Two facts are pertinent to what follows:
Ñ (X) = 1/

√
2 if X is a Hilbert space and Ñ (X) = 1/2 if X is hyperconvex.

We now turn to the definition of the Lif̌sic character of a metric space X. Balls
in X are said to be c-regular if the following holds: For each k < c there exist
µ, α ∈ (0, 1) such that for each x, y ∈ X and r > 0 with d (x, y) ≥ (1− µ) r, there
exists z ∈ X such that

(1.1) B (x; (1 + µ) r)
⋂
B (y; k (1 + µ) r) ⊂ B (z;αr) .

The Lif̌sic character κ (X) of X is defined as follows:

κ (X) = sup {c ≥ 1 : balls in X are c-regular} .

Theorem 1.1 (Lif̌sic ([11])). Let (X, d) be a bounded complete metric space.
Then every uniformly k-lipschitzian mapping T : X → X with k < κ (X) has a
fixed point.

In [12], Lim and Xu introduced the so-called property (P ) for metric spaces.
A metric space (X, d) is said to have property (P ) if given two bounded sequences
{xn} and {zn} in X, there exists z ∈

⋂
n≥1 cov({zj : j ≥ n}) such that

lim sup
n

d(z, xn) ≤ lim sup
j

lim sup
n

d(zj , xn).
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The following theorem is the main result of [12].

Theorem 1.2. [12, Theorem 7] Let (X, d) be a complete bounded metric space
with both property (P ) and uniform normal structure Then every uniformly k-

lipschitzian mapping T : X → X with k < Ñ(X)−
1
2 has a fixed point.

It is known that the Lif̌sic character of a Hilbert space is
√

2, and in the next
section we show that the Lif̌sic character of an R-tree is 2. Therefore in these spaces
Lif̌sic’s theorem yields the sharper result. We also show that the same is true in the
CAT(0) spaces, a class of spaces that includes these two spaces as extreme cases.

2. CAT(κ) Spaces

Let (X, d) be a geodesic metric space in which each two points x, y ∈ X are
joined by a unique geodesic (metric) segment denoted [x, y] . A subset Y ⊆ X is
said to be convex if Y includes every geodesic segment joining any two of its points.

Denote by M2
κ the following classical metric spaces:

(1) if κ = 0 then M2
0 is the Euclidean plane E2;

(2) if κ < 0 then M2
κ is obtained from the classical hyperbolic plane H2 by multi-

plying the hyperbolic distance by 1/
√
−κ.

A metric space X is said to be a CAT(κ) space (the term is due to M. Gromov
– see, e.g., [1, p. 159]) if it is geodesically connected, and if every geodesic triangle
in X is at least as ‘thin’ as its comparison triangle in M2

κ . We make this precise
below. For a thorough discussion of these spaces and of the fundamental role they
play in geometry, see Bridson and Haefliger [1] or Burago, et al. [2].

A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space (X, d) consists of
three points in X (the vertices of ∆) and a geodesic segment between each pair of
vertices (the edges of ∆). A comparison triangle for geodesic triangle ∆ (x1, x2, x3)
in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in M2

κ such that dM2
κ

(x̄i, x̄j) =
d (xi, xj) for i, j ∈ {1, 2, 3} . The triangle inequality assures that comparison trian-
gles always exists. If a point x is on an edge [xi, xj ] of ∆, then x̄ ∈ ∆̄ is called a
comparison point of x if

d (xi, x) = dM2
κ

(x̄i, x̄) and d (xj , x) = dM2
κ

(x̄j , x̄) .

A geodesic metric space is said to be a CAT(κ) space if all geodesic triangles
of appropriate size satisfy the following CAT(κ) comparison axiom.

CAT(κ): Let ∆ be a geodesic triangle in X and let ∆ ⊂ M2
κ be a comparison

triangle for ∆. Then ∆ is said to satisfy the CAT(κ) inequality if for all x, y ∈ ∆

(2.1) d (x, y) ≤ dM2
κ

(x̄, ȳ) ,

where x̄, ȳ ∈ ∆̄ are the respective comparison points of x, y.

Of particular interest are the complete CAT(0) spaces, sometimes called Hadamard
spaces. These spaces are uniquely geodesic and they include, as a very special case,
the following class of spaces.
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Definition 2.1. An R-tree is a metric space T such that:

(i) there is a unique geodesic segment (denoted by [x, y]) joining each pair of points

x, y ∈ T ;

(ii) if [y, x] ∩ [x, z] = {x} , then [y, x] ∪ [x, z] = [y, z] .

Proposition 2.1. [1, Chapter II.1]The following relations hold:

(1) If X is a CAT(κ) space, then it is a CAT(κ′) space for every κ′ ≥ κ.
(2) If X is a CAT(κ) space for all κ < 0 if and only if X is an R-tree.

One consequence of (1) and (2) is that any result proved for CAT(0) spaces
automatically carries over to any CAT(κ) spaces for κ < 0, and, in particular, to
R-trees.

Another fundamental property of CAT(0) spaces that we will need in the sequel
is the so-called CN inequality In fact a geodesic space is a CAT(0) space if and only
if this inequality holds(see [1, p. 163]).

The CN inequality: For all p, q, r ∈ X and all m with d (q,m) = d (r,m) =
d (q, r) /2, one has

(2.2) d (p, q)
2

+ d (p, r)
2 ≥ 2d (m, p)

2
+

1

2
d (q, r)

2
.

All CAT(κ) spaces for κ ≤ 0 have uniform normal structure with normal struc-

ture coefficient c ≤ 1/
√

2. The precise values of c depend on κ. (See [10]; also the
discussion in [8].)

3. The Lif̌sic character of CAT(0) spaces

Theorem 3.1. If (X, d) is a complete CAT(0) space, then κ (X) ≥
√

2. More-
over, if X is a an R-tree, κ (X) = 2.

First a preliminary observation. Every bounded closed convex subset of a
CAT(0) space has a unique Chebyshev center which is a singleton. Since closed
convex subsets of a CAT(0) space are nonexpansive retracts of the space ([1, p.
176]), the unique minimal ball containing such a set must be centered at a point
of the set. In other words, every bounded closed convex set contains its Chebyshev
center. Thus in the definition of the Lif̌sic character of such space, the inclusion
(1.1) may replaced with:

(3.1) r
(
B (x; (1 + µ) r)

⋂
B (y; k (1 + µ) r)

)
≤ αr,

where r (·) denotes the Chebyshev radius.

Proof of Theorem 1.1. We first show that in general κ (X) ≥
√

2. Let r >
0, choose x, y ∈ X with d (x, y) = r and let x̄, ȳ ∈ R2 be any two points with
‖x̄− ȳ‖ = d (x, y) .

Suppose k = κ (X) <
√

2. Then

r
(
B (x; r)

⋂
B (y; kr)

)
≤ ξr
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for some ξ < 1. (This is because the Lif̌sic character of R2 is
√

2.) Now choose
α ∈ (ξ, 1). Then for µ ∈ (0, 1) sufficiently near 0 and α ∈ (0, 1) sufficiently near 1,

r
(
B (x̄; (1 + µ) r)

⋂
B (ȳ; k (1 + µ) r)

)
≤ αr,

and we may assume in addition only that d (x, y) ≥ (1− µ) r. Let

S̄ := B (x̄; (1 + µ) r)
⋂
B (ȳ; k (1 + µ)) r

and
S := B (x; (1 + µ) r)

⋂
B (y; k (1 + µ) r) .

The Chebyshev center of c̄ of S̄ lies on the segment [x̄, ȳ] . Also if u ∈ S and if
4 (ȳ, x̄, ū) is a comparison triangle for 4 (y, x, u) in R2, then ū ∈ S̄. Therefore
‖ū− c̄‖ ≤ αr. If c is the point of the segment [x, y] for which d (y, c) = ‖ȳ − c̄‖ ,
then (using the CAT(0) inequality)

d (u, c) ≤ ‖ū− c̄‖ ≤ αr.

Since this is true for any u ∈ S it follows that r (S) ≤ αr, and since k <
√

2 was

arbitrary, we have κ (X) ≥
√

2.

We now suppose X is an R-tree, and we show that κ (X) = 2 by a direct
calculation. Let x, y ∈ X with d (x, y) = r, and let k < 2. Set

S := B (x; r)
⋂
B (y; kr)

We show that that diam (S) ≤ 2 (k − 1) r. Let u, v ∈ S. There exist points p, q ∈
seg [x, y] such that d (x, v) = d (x, p) + d (p, v) and d (x, u) = d (x, q) + d (q, u) .
Similarly, (y, v) = d (y, p) + d (p, v) and d (y, u) = d (y, q) + d (q, u) . Without loss of
generality we may assume d (x, p) = d (x, q) + d (q, p) . Therefore

d (u, v) = d (u, q) + d (q, p) + d (p, v) .

Since u, v ∈ B (y; kr) we now have

2kr ≥ d (u, y) + d (y, v)

= d (y, q) + d (q, u) + d (y, p) + d (p, v)

= r − d (x, p) + d (p, v) + r − d (x.q) + d (q, v)

= 2r + d (u, v) .

This implies d (u, v) ≤ 2 (k − 1) r. Therefore, for µ ∈ (0, 1) sufficiently small and
α ∈ (0, 1) sufficiently near 1,

diam
(
B (x; (1 + µ) r)

⋂
B (x; k (1 + µ) r)

)
≤ 2αr

when d (x, y) ≥ (1− µ) r. Since X is hyperconvex (thus Ñ (X) = 1/2) this in turn
implies

r
(
B (x; (1 + µ) r)

⋂
B (x; k (1 + µ) r)

)
≤ αr.

�

In view of the Lif̌sic theorem we have the following result.

Theorem 3.2. Let (X, d) be a bounded complete CAT(0) space. Then every

uniformly k-lipschitzian mapping T : X → X with k <
√

2 has a fixed point.
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The case when X is an R-tree is moot because every bounded (indeed every
geodesically bounded) R- tree has the fixed point property for continuous maps.
This fact appears to be a consequence of results of G. S. Young [13, cf. Theorem
16]. For a direct proof, see [9].

Remark 1. It seems reasonable to conjecture that the Lif̌sic character of a
CAT(κ) space for κ < 0 is a continuous increasing function of κ which takes values

in the interval
(√

2, 2
)
.

Remark 2. If T : X → X is uniformly k-lipschitzian, then T is nonexpansive
relative to a metric r on X that satisfies

d (x, y) ≤ r (x, y) ≤ kd (x, y) .

Also, if T : X → X is nonexpansive relative to a metric s on X with

αd (x, y) ≤ s (x, y) ≤ βd (x, y) ,

then T is uniformly
β

α
-lipschitzian on (X, d) . (For the details, see [5].) While these

observations might seem interesting, their usefulness in this context is mitigated
by the fact that the CAT(κ) inequality is not necessarily preserved under small
perturbations of the metric.

4. CAT(0) spaces and Property (P )

In this section we show that every complete CAT(0) space has property (P ).
Let {xn} be a bounded sequence in a complete CAT(0) space X and let K be closed
and convex subset of X. Define ϕ : X → R by setting ϕ (x) = lim supn→∞ d (x, xn) ,
x ∈ X.

Proposition 4.1. There exists a unique point u ∈ K such that

ϕ (u) = inf
x∈K

ϕ (x) .

Proof. Let r = infx∈K ϕ (x) and let ε > 0. Then by assumption there exists
x ∈ K such that ϕ (x) < r + ε; thus for n sufficiently large d (x, xn) < r + ε, i.e.,
for n sufficiently large x ∈ B (xn; r + ε) . Thus

Cε :=

∞⋃
k=1

( ∞⋂
i=k

B (xi; r + ε) ∩K

)
6= ∅.

As the ascending union of convex sets, clearly Cε is convex. Also the closure Cε of
Cε is also convex (see [1, Prop. 1.4(1)]). Therefore

C :=
⋂
ε>0

Cε 6= ∅.

Clearly for u ∈ C, ϕ (u) ≤ r. Uniqueness of such a u follows from the CN inequality
(2.2). [Suppose u, v ∈ C with u 6= v. Then if m is the midpoint of the geodesic
joining u and v,

d (m,xn)
2 ≤ d (u, xn)

2
+ d (v, xn)

2

2
− 1

4
d (u, v)

2
.

This implies ϕ (m)
2 ≤ r2 − 1

4d (u, v)
2

– a contradiction.] �
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In view of the above, X has property (P ) if given two bounded sequences {xn}

and {zn} in X, there exists z ∈
∞⋂
n=1

cov {zj : j ≥ n} such that

ϕ (z) ≤ lim sup
j→∞

ϕ (zj) ,

where ϕ is defined as above.

Theorem 4.1. A complete CAT(0) space (X, d) has property (P ).

Proof. Let {xn} and {zn} be bounded sequences in X and define ϕ (x) =
lim supn→∞ d (x, xn) , x ∈ X. For each n, let

Cn := cov {zj : j ≥ n} .

By Proposition 4.1 there exists a unique point un ∈ Cn such that

ϕ (un) = inf
x∈Cn

ϕ (x) .

Moreover, since zj ∈ Cn for j ≥ n, ϕ (un) ≤ ϕ (zj) for all j ≥ n. Thus ϕ (un) ≤
lim supj→∞ ϕ (zj) for all n. We assert that {un} is a Cauchy sequence. To see
this, suppose not. Then there exists ε > 0 such that for any N ∈ N there exist
i, j ≥ N such that d (ui, uj) ≥ ε. Also, since the sets {Cn} are descending, the
sequence {ϕ (un)} is increasing. Let d := limn→∞ ϕ (un) . Choose ξ > 0 so small

that
2dξ + ξ2

2
< ε/8, and choose N so large that |ϕ (ui)− ϕ (uj)| ≤ ξ if i, j ≥ N .

Now choose i > j ≥ N so that d (ui, uj) ≥ ε, let mj denote the midpoint of the
geodesic joining ui and uj , and let n ∈ N. Then by the (CN) inequality

d (mj , xn)
2 ≤ d (ui, xn)

2
+ d (uj , xn)

2

2
− ε

4
.

This implies

ϕ (mj)
2 ≤ ϕ (ui)

2
+ ϕ (uj)

2

2
− ε

4

≤ (ϕ (ui) + ξ)
2

+ ϕ (uj)
2

2
− ε

4

= ϕ (uj)
2

+
2ϕ (un) ξ + ξ2

2
− ε

4

< ϕ (uj)
2 − ε

8
.

Since mj ∈ Cj , this contradicts the definition of uj .
This proves that {un} is a Cauchy sequence. Consequently there exists z ∈

∞⋂
n=1

Cn such that limn→∞ un = z and, since ϕ is continuous, limn→∞ ϕ (un) = ϕ (z) .

Since ϕ (un) ≤ lim supj→∞ ϕ (zj) for all n, we conclude that

ϕ (z) ≤ lim sup
j→∞

ϕ (zj) .

�
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5. Hyperconvex Spaces

Since hyperconvex metric spaces have uniform normal structure, it is a con-
sequence of Theorem 1.2 that if M is a bounded hyperconvex metric space with
property (P ), then every uniformly k-lipschitzian T : M →M has a fixed point for

k <
√

2. Here, by embedding the problem in a larger space, we show that uniformly
lipschitzian mappings have fixed points under an assumption that appears to be
weaker that property (P ) . At the same time, we recover the Lim and Xu result in
this setting.

Every metric space (X, d) can be embedded isometrically into a hyperconvex
space. To see this let

`∞(X) =

{
{mx}x∈X : mx ∈ R for all x and sup

x∈X
|mx| <∞

}
.

Define the distance d∞ on `∞(X) by d∞ ({mx}, {nx}) = supx∈X |mx − nx|. Thus
the metric space (`∞(X), d∞) is hyperconvex. Fix a ∈ X and consider the map
I : X → `∞(X) defined by I(b) = {d(b, x)− d(a, x)}x∈X . It is easy to see that I is
an isometry.

For a nonempty subset D of a bounded hyperconvex metric space (X, d), it is

known that r(D) =
1

2
δ(D) and

C(D) = C(cov(D)) =
⋂

x∈cov(D)

B(x, r(D)) 6= ∅

(cf. [4])
Let H = (H, d) be a bounded hyperconvex space. Embed H into `∞(H)

isometrically via the mapping h 7→ {d(h, p)−d(a, p)}p∈H where a is a fixed element
of H. Write hp = d(h, p)− d(a, p) for each h ∈ H and p ∈ H. Let R : `∞(H)→ H
be a nonexpansive retraction.

Let {en} be the standard basis in the classical `∞ space, i.e., {en} = {δnj}j∈N
where δnj is the Kronecker delta. Observe that

⋂
n≥1 cov({ej : j ≥ n}) = {0},

lim sup
n

enj − lim inf
n

enj < ε for all j,

and

lim sup
n

sup
j
|enj − 0| = 1 > 1− ε for all ε ∈ (0, 1).

Following this observation, we say that a sequence {xn} in H is a copy of
{en} if for each ε ∈ (0, 1), there exists a sequence {pn} in H with lim supn xnpj −
lim infn xnpj ≤ εδ({xn}) for all j, and lim supn supj |xnpj − zpj | > (1 − ε)δ({xn})
for all z ∈

⋂
n≥1 cov({xj : j ≥ n}).

Thus, if H does not contain a copy of {en} , given {xn} in H there exists
ε ∈ (0, 1), depending on {xn} , such that if {pn} is any sequence in H for which

lim sup
n
xnpj − lim inf

n
xnpj < εδ ({xn}) for all j,

then there exists z ∈
⋂
n≥1 cov ({xj : j ≥ n}) for which

lim sup
n

sup
j

∣∣xnpj − zpj ∣∣ ≤ (1− ε) δ ({xn}) .
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This prompts the following definition. We say that H has property (Pε) if
H does not contain a copy of {en} in the following uniform sense: There exists an
ε ∈ (0, 1) such that, for a sequence {xn} and a collection {pλ}λ∈Λ of points inH with
lim supn xnpλ − lim infn xnpλ < εδ({xn}) for all λ, there exists z ∈

⋂
n≥1 cov({xj :

j ≥ n}) satisfying

(5.1) lim sup
n

sup
λ
|xnpλ − zpλ | ≤ (1− ε)δ({xn}).

In proving the theorem of [12], Lim and Xu use property (P ) to construct a
sequence {xn} in X satisfying for each integer j ≥ 0,

(5.2) lim sup
n

d(xj+1, T
nxj) ≤ c̃δ({Tnxj}),

(5.3) d(xj+1, y) ≤ lim sup
n

d(Tnxj , y), far all y ∈ X.

In the proof to follow, we shall construct such a sequence using property (Pε).
We first observe that if a hyperconvex H has property (P ) , then it has property(

P1/2

)
To see this we let {xn} and {pn} be any sequences in H. Let zn ∈ C({xj :

j ≥ n}). By property (P ) , we can take a point z ∈
⋂
n≥1 cov({zj : j ≥ n}) such

that

(5.4) lim sup
n

d(z, xn) ≤ lim sup
j

lim sup
n

d(zj , xn) ≤ 1

2
δ({xn}).

Clearly,

lim sup
n

sup
j
|xnpj − zpj | ≤ lim sup

n
d(xn, z) ≤

1

2
δ({xn}).

We do not know whether the converse is true, that is, whether property
(
P1/2

)
implies property (P ) .

Theorem 5.1. Let H be a bounded hyperconvex space which has property (Pε)

for ε ∈ (0,
1

2
]. Then every uniformly k-lipschitzian mapping T : H → H with

k <

√
1

1− ε
has a fixed point.

Proof. First choose ε′ ∈ (0, ε) so that k <

√
1

1− ε′
. Fix x0 ∈ H and con-

sider the sequence {Tnx0}. Define sets An = {T jx0 : j ≥ n} and C = {p ∈ H :
lim supn {Tnx0}p − lim infn {Tnx0}p < εδ(A1)}. By (5.1) we see that with some
z ∈

⋂
n≥1 cov(An),

(5.5) lim sup
n

sup
p∈C
|{Tnx0}p − zp| ≤ (1− ε)δ(A1).

Thus, since 0 < ε′ < ε, for all large n,we have

(5.6) sup
p∈C
|zp − {Tnx0}p| < (1− ε′)δ(A1).
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Let p ∈ C′, where C′ is the complement of C. Write

a = inf{Tnx0}p; b = lim inf
n
{Tnx0}p;

c = lim sup
n
{Tnx0}p; d = sup{Tnx0}p.

Observe that we either have

a ≤ d− εδ(A1) ≤ a+ εδ(A1) ≤ d, or a+ εδ(A1) < d− εδ(A1),

from which we respectively have

[b, c] ∩ [d− εδ(A1), a+ εδ(A1)] 6= ∅, or [b, c] ∩ [a+ εδ(A1), d− εδ(A1)] 6= ∅.
In either case, we can find a point wp ∈ [b, c] such that

|a−wp| ≤ εδ(A1) and |d−wp| ≤ εδ(A1) or |a−wp| ≤ (1−ε)δ(A1) and |d−wp| ≤ (1−ε)δ(A1).

As ε ≤ 1

2
, we have ε ≤ (1− ε). Thus

| sup
n
{Tnx0}p − wp| ≤ (1− ε)δ(A1)

|wp − inf
n
{Tnx0}p| ≤ (1− ε)δ(A1).

So, for each j,

|wp − {T jx0}p| ≤ max{sup
n
{Tnx0}p − wp , wp − inf

n
{Tnx0}p} ≤ (1− ε)δ(A1),

and thus

(5.7) sup
p∈C′
|wp − {Tnx0}p| ≤ (1− ε)δ(A1) for each n.

Finally, (5.6) and (5.7) imply for j ≥ n where n is sufficiently large,

d(x1, T
jx0) = sup

p∈H
|x1p − {T jx0}p| ≤ sup

p∈H
|wp − {T jx0}p|

≤ (1− ε′)δ(A1).

Consequently,

(5.8) lim sup
n

d(x1, T
nx0) ≤ (1− ε′)δ(A1).

Consider a ball B(y, r(y,An)) in H. Since |wp−yp| ≤ r(y,An) for all p, bearing
in mind that z ∈ cov(An), we thus have

d(x1, y) = d(R(w), R(y)) ≤ d(w, y) ≤ r(y,An).

This inequality holds for each y, therefore x1 ∈
⋂

cov(An), and so

(5.9) d(x1, y) ≤ lim sup
n

d(Tnx0, y) for all y ∈ H.

By induction we can obtain a sequence {xn} in H satisfying (5.2) and (5.3).
The proof is now can be completed as in the proof of Theorem 7 in [12]. �



FIXED POINTS 11

Since hyperconvex spaces satisfy property P1/2, we have the following.

Corollary 5.1. Let H be a bounded hyperconvex space which has property
(P ) . Then every uniformly k-lipschitzian mapping T : H → H with k <

√
2 has a

fixed point.

Corollary 5.2. Let T : H → H be a uniformly k-lipschitzian mapping. Sup-
pose that each orbit {Tnx}n of T is not a copy of {en}, i.e., all orbits {{Tnx}n :

x ∈ H} satisfy (5.1) for some ε ∈ (0, 1). If k <

√
1

1− ε
, then T has a fixed point.

Remark. In [7] it is shown that every left reversible totally ordered uniformly

k-lipschitzian semigroup of self-mapping of M has a common fixed point for k <
√

2
if M is bounded, hyperconvex, and satisfies property (P ).
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