
Chapter 6
The Douglas-Rachford algorithm in the absence
of convexity

Jonathan M. Borwein and Brailey Sims

Summary: The Douglas-Rachford iteration scheme, introduced half a century ago
in connection with nonlinear heat flow problems, aims to find a point common to
two or more closed constraint sets. Convergence of the scheme is ensured when the
sets are convex subsets of a Hilbert space, however, despite the absence of satis-
factory theoretical justification, the scheme has been routinely used to successfully
solve a diversity of practical problems in which one or more of the constraints in-
volved is non-convex. As a first step toward addressing this deficiency, we provide
convergence results for a prototypical non-convex two-set scenario in which one of
the sets is the Euclidean sphere.
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6.1 Introduction

In recent times variations of alternating projection algorithms have been applied
in Hilbert space to various important applied problems—from optical aberration
correction to three satisfiability, protein folding and construction of giant Sudoku
puzzles [8]. While the theory of such methods is well understood in the convex case
[3] and [4–6,12], there is little corresponding theory when some of the sets involved
are non-convex—and that is the case for the examples mentioned above [8, 9].
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Our intention is to analyze the simplest non-convex prototype in Euclidean space:
that of finding a point on the intersection of a sphere and a line or more generally a
proper affine subset. The sphere provides an accessible model of many reconstruc-
tion problems in which the magnitude, but not the phase, of a signal is measured.

6.2 Preliminaries

For any closed subset A of a Hilbert space (X ,〈·, ·〉)we say that a mapping PA :DA ⊆
X −→ A is a closest point projection of DA onto A if A⊆ DA, P2A = PA and

‖x−PA(x)‖= dist(x,A) := inf{‖x− a‖ : a ∈ A},

for all x ∈ DA.
For a given closest point projection, PA, onto A we take the reflection of x in A

(relative to PA) to be,
RA := 2PA− I.

In this note we will focus on the cases when the subset A is a sphere, which
without loss of generality we take to be the unit sphere of the space; S := {x : ‖x‖=
1}, or a line L := {x= λa+αb : λ ∈R} where, without loss of generality, we take
‖a‖= ‖b‖= 1, a⊥ b and α > 0.
The closest point projection of x �= 0 onto the unit sphere S is,

PS(x) :=
x
‖x‖

and so,

RS(x) =

(
2
‖x‖ − 1

)
x.

Excluding x = 0 from the domain of PS, and hence also RS, avoids the problem of
non-unique closest points and hence the need to make a selection. The closest point
projection of x ∈ X onto L is the orthogonal projection,

PL(x) := 〈x, a〉a + αb

and so,
RL(x) = 2〈x, a〉a + 2αb − x.

Given two closed sets A and B together with closest point projections PA and
PB, starting from an arbitrary initial point x0 ∈ DA the Douglas-Rachford iteration
scheme (reflect-reflect-average), introduced in [7] for numerical solution of partial
differential equations, is a method for finding a point in the intersection of the two
sets. That is, it aims to find a feasible point for the possibly non-convex constraint
x ∈ A∩B. Explicitly it is the iterative scheme,
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xn+1 := TA,B(xn),

where TA,B is the operator TA,B := 1
2 (RBRA+ I). This method also goes under many

other names, see [5].
When either of the sets is non-convex various compatibility restrictions between

the domains and ranges of the mappings involved are required to ensure all iterates
are defined. For instance; RA(DA)⊆ DB and 1

2(RBRA+ I)(DA)⊆ DA.
With our particular S and L we have for x �= 0 that,

TS,L(x) =

(
1 − 1

‖x‖
)
x +

(
2
‖x‖ − 1

)
〈x, a〉 a + αb.

Thus, if X isN-dimensional and (x(1), x(2), x(3), · · · ,x(N)) denotes the coordinates
of x relative to an orthonormal basis B whose first two elements are respectively a
and b we have,

TS,L(x) =

(
x(1)
ρ

,

(
1− 1

ρ

)
x(2)+α,

(
1− 1

ρ

)
x(3), · · · ,

(
1− 1

ρ

)
x(N)

)
,

where ρ := ‖x‖=
√
x(1)2+ · · ·+ x(N)2.

Let us note that the only fixed points of TS,L are±
√
1−α2a+αb , the two points

of intersection of S with L.
In this case the Douglas-Rachford scheme becomes,

xn+1(1) = xn(1)/ρn, (6.1)

xn+1(2) = α+(1− 1/ρn )xn(2), and (6.2)

xn+1(k) = (1− 1/ρn )xn(k), for k= 3, · · · , N, (6.3)

where ρn := ‖xn‖=
√
xn(1)2+ · · ·+ xn(N)2.

From this it is clear that if the initial point x0 lies in the hyperplane 〈x, a〉= 0; that
is x0(1) = 0, then all of the iterates remain in that hyperplane, which we will refer
to as a singular manifold for the problem.We will analyze this case in greater detail
in a subsequent section. Similarly, if the initial point lies in either of the two open
half-spaces 〈x, a〉 > 0 or 〈x, a〉 < 0; that is, x0(1) > 0 or x0(1) < 0 respectively,
then all subsequent iterates will remain in the same open half space. Further, by
symmetry, it suffices to only consider initial points lying in the positive open half-
space x0(1)> 0.
Figure 6.1 shows two steps of the underlying geometric construction: the smaller

(green) points are the intermediate reflections in the sphere. Most figures were con-
structed in Cinderella, a software geometry package, [www.cinderella.de]. A
web applet version of the underlying Cinderella construction is available at
http://www.carma.newcastle.edu.au/˜jb616/reflection.html.
Indeed, many of the insights for the proofs below came from examining the con-
structions. The number of iterations N, the height of the line (α), and the initial
point are all dynamic—changing one changes the entire visible trajectory.



96 Jonathan M. Borwein and Brailey Sims

Fig. 6.1 Two steps showing the construction.

Success of the Douglas-Rachford scheme relies on convergence of the (Picard)
iterates, xn = TnA,B(x0), to a fixed point of the generally nonlinear operator TA,B in
A∩B, as n → ∞. When both A and B are closed convex sets convergence of the
scheme (in the weak topology) from any initial point in X to some point in A∩B
was established by Lions and Mercier [12].
However, as noted, many practical situations yield feasibility problems in which

one or more of the constraint sets is non-convex. That the Douglas-Rachford scheme
works well in many of these situations has been observed and exploited for some
years, despite the absence of any really satisfactory theoretical underpinning.

Remark 6.1 (divide-and-concur). If one wishes to find a point in the intersection of

M sets A1,A2, . . .Ak, . . . ,AM in X we can instead consider the subset A :=
M∏
k=1

Ak and

the linear subset

B := {x= (x1,x2, . . . ,xM) : x1 = x2 = · · ·= xM}

of the Hilbert space product
M∏
k=1

X . Then we observe that,

RA(x) =
M∏
k=1

RAk(xk),

so that the reflections may be ‘divided’ up and

PB(x) =

(
x1+ x2+ · · ·+ xM

M
, . . . ,

x1+ x2+ · · ·+ xM
M

)
,
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so that the projection and hence reflection on B are averaging (‘concurrences’);
thence comes the name. In this form the algorithm is particularly suited to paral-
lelization [10].
We can also compose more reflections in serial as illustrated for reflect-reflect-

reflect-average with spheres in Figure 6.2, where we observe iterates spiralling to a
feasible point. �

Fig. 6.2 Douglas-Rachford for three spheres in three-space.

Example 6.1 (linear equations). For the hyperplane H := {x : 〈b,x〉 = α}, where
without loss of generality we take ‖b‖= 1, the projection is

x �→ x+(α−〈b,x〉)b.

The consequent averaged-reflection version of the Douglas-Rachford recursion for
a point in the intersection ofM distinct hyperplanes is:

x �→ x+
2
M

M∑
k=1

(αk−〈bk,x〉)bk, (6.4)

while the corresponding-averaged projection algorithm is:
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x �→ x+
1
M

M∑
k=1

(αk−〈bk,x〉)bk (6.5)

In more general situations, the difference between projection and reflection algo-
rithms is even greater. �

Fig. 6.3 Iterated reflection with a ray.

Remark 6.2 (The case of a half-line or segment). Note, even in two dimensions,
alternating projections, alternating reflections, project-project and average, and
reflect-reflect and average will all often converge to (locally nearest) infeasible
points even when A is simply the ray R := {(x,0) : x � −1/2} and B is the circle
as before. They can also behave quite ‘chaotically’. (See Figure 6.3 for a periodic
illustration in Cinderella and Figure 6.4 for more complex behaviour.) So the affine
nature of the convex set seems quite important. �

For any two closed sets A and B and feasible point p ∈ A∩B we say that the
Douglas-Rachford scheme is locally convergent at p if there is a neighbourhood,
Np of p such that starting from any point x0 in Np the iterates TnA,B(x0) converge to
p. The set comprising all initial points x0 for which the iterates converge to p is the
basin of attraction of p.
As a first step toward an understanding of the Douglas-Rachford scheme in the

absence of convexity, we analyze its behaviour in the indicative situation when one
of the sets is the non-convex sphere S and the other is the affine line L. We begin by
establishing local convergence of the scheme when 0≤ α < 1.
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Fig. 6.4 More complex behaviour for a ray and circle.

6.3 Local convergence when 0≤ α < 1

In this section we show, at least when X is finite dimensional, that for 0 ≤ α < 1
local convergence at each of the feasible points is a consequence of the following
theorem from the stability theory of difference equations.

Theorem 6.1 (Perron, [11], Corollary 4.7.2, page 104). If f :N×Rm −→ Rm sat-
isfies,

lim
x→0

‖ f (n,x)‖
‖x‖ = 0,

uniformly in n and M is a constant m×m matrix all of whose eigenvalues lie inside
the unit disk, then the zero solution (provided it is an isolated solution; that is, there
is a neighbourhood of 0 containing no other solution) of the difference equation,

xn+1 =Mxn + f (n,xn),

is exponentially asymptotically stable; that is, there exists δ > 0, K > 0 and ζ ∈
(0,1) such that if ‖x0‖< δ then ‖xn‖ ≤ K‖x0‖ζ n.

To apply this in our context, we begin by noting that the operator T := TS,L is
differentiable at any non-zero point y with derivative the linear operator,
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Fig. 6.5 Case with α = 0.95.

T ′
y (x) =

〈(
2
‖y‖ − 1

)
x− 2 〈x,y〉‖y‖3 y, a

〉
a+

(
1− 1

‖y‖
)
x+

〈x,y〉
‖y‖3 y.

By symmetry it suffices to consider local convergence at the unique fixed point of
TS,L lying in the positive open half-space 〈x, a〉> 0; namely, p :=

√
1−α2a+αb.

Observing that, p is an isolated fixed point of TS,L (see the discussion before (6.1))
and, using ‖p‖= 1 and 〈p,a〉=

√
1−α2, we obtain,

T ′
p(x) =

〈
x, α2a−α

√
1−α2b

〉
a +

〈
x,α

√
1−α2a+α2b

〉
b.

Which, relative to the basis B corresponds to the n× nmatrix,


α2 −α
√
1−α2 0 · · · 0

α
√
1−α2 α2 0 · · · 0

0 0 0 · · · 0
· · · ·
· · · ·
· · · ·
0 0 0 · · · 0



.

From this we immediately deduce that the only points in the spectrum of T ′
p are

the eigenvalues 0, and α2± iα
√
1−α2.

Introducing the change of variable ξ := x− p and defining f by,
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f (ξ ) := TS,L(p+ ξ ) − TS,L(p) − T ′
p(ξ ),

we see that the Douglas-Rachford scheme becomes,

ξn+1 = TS,L(p+ ξn)− p= TS,L(p+ ξn)−TS,L(p) = T ′
p(ξn)+ f (ξn).

Further, by the very definition of the derivative we have,

lim
ξ→0

‖ f (ξ )‖
‖ξ‖ = lim

ξ→0

∥∥TS,L(p+ ξ )−TS,L(p) − T ′
p(ξ )

∥∥
‖ξ‖ = 0.

Thus, all the conditions of Perron’s theorem are satisfied, provided T ′
p has its spec-

trum contained in the open unit disk. But, this follows immediately since both
non-zero eigenvalues have modulus equal to α < 1, establishing that locally the
Douglas-Rachford scheme converges exponentially to ξ = 0; that is, to x= p. Thus,
we have proved,

Theorem 6.2. If 0≤α < 1 then the Douglas-Rachford scheme is locally convergent
at each of the points ±

√
1−α2a+αb.

Remark 6.3 (Explaining the spiral). It is also worthy of note that the non-zero eigen-
values both have arguments whose cosines have absolute value α , so ‘spiraling’, as
illustrated in Figure 6.5, should be less rapid the larger the value of α , an observa-
tion born out by experiment. It should also be noted that when α = 1; that is, the
line L is tangential to the sphere S, Perron’s theorem fails to apply, as in this case
T ′
p has eigenvalues lying on the unit circle. Indeed the conclusion of theorem 6.2 is
false as we will shortly show. �

6.4 Convergence when α = 0

We show that starting from any initial point with x0(1) > 0 the Douglas-Rachford
scheme converges to the feasible point a = (1, 0, 0, · · · , 0), as illustrated in Figure
6.6. In this case the scheme (6.1), (6.2), (6.3) reduces to,

xn+1(1) = xn(1)/ρn, and

xn+1(k) = (1− 1/ρn )xn(k), for k= 2, · · · , N,

with ρn = ‖xn‖=
√
xn(1)2+ · · ·+ xn(N)2 ≥ xn(1)> 0.

Proposition 6.1. If ρn > 1 then ρ2n+1 < ρ2n .

Proof. We may estimate as follows.
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Fig. 6.6 Case with α = 0.

ρ2n+1 =
xn(1)2

ρ2n
+

(
1− 1

ρn

)2 N∑
k=2

xn(k)
2

=
xn(1)2+ xn(2)2+ · · ·+ xn(N)2

ρ2n
+

(
1− 2

ρn

) N∑
k=2

xn(k)
2

= 1+

(
1− 2

ρn

) N∑
k=2

xn(k)
2

≤ 1+
(
1− 2

ρn
+
1
ρ2n

) N∑
k=2

xn(k)
2

= 1+

(
1− 1

ρn

)2 N∑
k=2

xn(k)
2

≤ 1+
(
1− 1

ρn

)2
ρ2n

= 1+(ρn− 1)2
= ρ2n + 2(1−ρn)

< ρ2n , as ρn > 1.

�

Corollary 6.1. If ρn > 1 for all n then ρn −→ 1.
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Proof. By the above proposition, the ρn are decreasing and so converge to some
limit ρ ≥ 1. But then, taking limits in ρ2n+1 ≤ ρ2n + 2(1−ρn) leads to ρ ≤ 1 , so
ρ = 1. �

Proposition 6.2. If ρn ≤ 1 then so too is ρn+1 ≤ 1.
Proof. From the first three lines in the proof of the above proposition we have

ρ2n+1 = 1+
(
1− 2

ρn

) N∑
k=2

xn(k)
2

≤ 1−
N∑
k=2

xn(k)
2, provided ρn ≤ 1

≤ 1.

�

Theorem 6.3. If α = 0 and the initial point has x0(1) > 0 then the Douglas-
Rachford scheme converges to the feasible point (1, 0, 0, · · · , 0).
Proof. In case ρn > 1 for all n then, by the above corollary, ρn → 1, so by the
recurrence xn(k)→ 0 for k = 2, · · · , N and xn → (1, 0, 0, · · · , 0).
On-the-other-hand, if this is not the case then there is a smallest n0 with ρn0 ≤ 1

and then either ρn′ = 1 for some n′ ≥ n0, in which case we have xn′+1(k) = 0 for
k= 2, · · · , N, so xn′+1 = (1, 0, · · · , 0) and we have arrived at the feasible point after
a finite number of steps, or alternatively from the last proposition ρn < 1 for all n≥
n0. Consequently, the sequence (xn(1))

∞
n=n0

is strictly increasing (hence convergent
to some x(1) ≤ 1) and so for n ≥ n0 we have ρn ≥ xn(1) ≥ xn0 > 0. But then, for
each integer k ≥ 2 and n≥ n0 we see from the recurrence that,∣∣∣∣ xn+1(k)xn+1(1)

∣∣∣∣ = (1−ρn)

∣∣∣∣ xn(k)xn(1)

∣∣∣∣
≤ (1− xn0(1))

∣∣∣∣ xn(k)xn(1)

∣∣∣∣ .
Hence,

xn(k)
xn(1)

converges to 0 and we conclude that xn −→ (1, 0, · · · , 0). �

6.5 The tangential case when α = 1

When α = 1 the only feasible point is b = (0, 1, 0, · · · , 0), however we show that
starting from an initial point with x0(1) > 0 the Douglas-Rachford scheme con-
verges to a point ŷb := (0, ŷ, 0, · · · , 0) with ŷ> 1, whose projection onto either S or
L is the feasible point. The following result will be needed.
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Fig. 6.7 Case with α = 1.

Proposition 6.3. If ρn > 2 then ρn+1 ≤ ρn.

Proof. The proof is similar to that of Proposition 6.1. We may estimate as follows.

ρ2n+1 =
xn(1)2

ρ2n
+

((
1− 1

ρn

)
xn(2)+ 1

)2
+

(
1− 1

ρn

)2 N∑
k=3

xn(k)
2

=
xn(1)2+ xn(2)2+ · · ·+ xn(N)2

ρ2n

+

(
1− 2

ρn

) N∑
k=2

xn(k)
2+ 2

(
1− 1

ρn

)
xn(2)+ 1

= 2+

(
1− 2

ρn

) N∑
k=2

xn(k)
2+ 2

(
1− 1

ρn

)
xn(2)

≤ 2+
(
1− 2

ρn

)
ρ2n + 2

(
1− 1

ρn

)
ρn, as ρn > 2

= ρ2n .

�

To show the asserted behaviour, we begin by noting that from the recurrence,

xn+1(2) = xn(2) + 1− xn(2)
ρn

≥ xn(2), (6.1)
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since
xn(2)
ρn

≤ 1. Thus, the xn(2) are increasing and so either they converge to a

finite limit, ŷ̀ say, or they diverge to +∞.
In the first case, taking limits in the above equation (6.1) yields ŷ= limn xn(2) =

limnρn ≥ 0 and so xn−→ (0, ŷ, 0, · · · , 0). To see that ŷ> 1 we argue as follows.We
have xn(1)→ 0. But (6.1) shows xn+1(1) = xn(1)/ρn so we must have limnρn > 1.
To show that the second, divergent, case is impossible we appeal to Proposition

6.3. to deduce that if the xn(2) diverges to+∞, we must have for all sufficiently large
n that 2< xn(2)≤ ρn and so eventually the ρn are decreasing and hence convergent
to a finite limit which is necessarily greater than or equal to limsupn xn(2) which
cannot therefore be infinite; a contradiction.
Consequently, we have proved,

Theorem 6.4. When L is tangential to S at b (that is, when α = 1), starting from
any initial point with x0(1) �= 0, the Douglas-Rachford scheme converges to a point
ŷb with ŷ> 1.

This is consistent with the behaviour in the convex case [5, 12].

6.6 Behaviour in the infeasible case when α > 1

Satisfyingly, when there are no feasible solutions, starting from any point off the
singular manifold, the Douglas-Rachford scheme diverges. More precisely,

Theorem 6.5. If there are no feasible solutions (that is, when α > 1) then starting
from any initial point with x0(1) �= 0, we have that xn(2) and hence ρn diverge to
+∞ at a linear or faster rate in the sense that liminfn xn+1(2)− xn(2)� α− 1.
Proof. From the recursion we have,

xn+1(2)− xn(2) = α− xn(2)
ρn

> α− 1, as xn(2)< ρn
> 0,

from which the result follows. �

It is also worth noting that, as a consequence of the above theorem and the
recurrence, xn(1) → 0 and so asymptotically the iterates approach the hyperplane
〈x, a〉= 0.

6.7 Behaviour on the singular manifold, 〈x, a〉= 0

Here we consider the iterates of a non-zero initial point with x0(1) = 0 and so
xn(1) = 0 for all n.
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We again distinguish the cases; α = 0, 0< α < 1, α = 1. The case α > 1 having
already been dealt with in the previous section.
When α = 0 it is readily seen that for any non-zero point x in the singular

manifold we have TS,L(x) =
(
1− 1

‖x‖
)
x. If ‖x‖ = 1 then the first iteration yields

x1 = 0 �∈ DTS,L , so subsequent iterates are not defined. At points with ‖x‖ < 1
we see that TS,L has period two (that is, T 2S,L(x) = x), while for ‖x‖ > 1 we have

T 2S,L(x) =
(
1− 2

‖x‖
)
x, so again the scheme breaks down as above, but after two

iterations if ‖x‖= 2.
We observe that the iterates of any non-zero point on the line {x : x= λb, λ ∈R}

remain on this line and that when α = 1 (that is, L is tangential to S at b) all points
on the open half line corresponding to λ > 0 remain fixed under TS,L.
In the other cases the scheme exhibits periodic behaviour when rational commen-

surability is present, while in the absence of such commensurability the behaviour
may be quite chaotic. To make this precise we need to consider interval-valued
mappings to deal with the jump at the origin. Luckily, the work in [1, 2] shows
that various interval mapping analogues of Sharkovskii’s theorem—“period three
implies chaos”—are applicable. The interval mapping is needed to deal with the
multivalued nature of the projection PS at zero.

Remark 6.4 (Hilbert space analogues). It is not essential that X be finite dimen-
sional for any of the arguments in sections 3, 4 and 5, since the iterates are tracked
by a finite number of coordinates. However, since convergence (to zero) in the other
dimensions is only coordinate wise, we can in general only guarantee weak conver-
gence of the iterates. �

6.8 Some final remarks

A wealth of experimental evidence, using both Maple and the dynamic geometry
package Cinderella, leads to the conclusion that the basin of attraction for p =√
1−α2a+hb is the open half space {x : 〈x, a〉 > 0} – the largest region possible.

See also http://www.carma.newcastle.edu.au/˜jb616/expansion.html.
Moreover, we found that for stable computation in Cinderella it was necessary

to have access to precision beyond Cinderella’s built-in double precision. This was
achieved by taking input directly from Maple. We illustrate in Figure 6.8 which
show various spurious red points on the left and accurate data on the right. The fig-
ures show the effect of roughly ten steps of the Douglas-Rachford iteration for 400
different starting points—where the points are coloured by their original distance
from the vertical axis with red closest.
However, we are as yet unable to furnish a proof of this, leaving open the follow-

ing conjecture:
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Fig. 6.8 Multiple iterations in Cinderella.

Conjecture 6.1. In the simple example of a sphere and a line with two intersection
points, the basins of attraction are the two open half-spaces forming the complement
of the singular manifold.

Remark 6.5 (The case of a sphere and a proper affine subset of X). If we replace
the line L by a proper affine subset, say A := {λ1a1 + λ2a2 + · · ·λKaK + αb :
λ1, · · · ,λK ∈ R}, where 0 ≤ α , 1 < K < N, and a1, a2, · · · , aK , b are mutually or-
thogonal norm one elements, then when α < 1 the feasible points are no longer
isolated, so Theorem 6.1 no longer applies, indeed local convergence in the sense
described above is impossible. Nonetheless, all our results appropriately viewed
continue to hold and we shall sketch the argument. Details will be given elsewhere.
Indeed, if for any non-feasible point q �= 0 we let Q := A⊥0 +Rq, where A⊥0 is

the orthogonal complement of the subspace A0 := A−αb, then we see that for any
initial point x0 ∈ Q the sequence of iterates, xn = TnS,A(x0) remains confined to the
subspace Q. So, if the Douglas-Rachford scheme converges it will converge to a
point in S∩A∩Q. Further, the fixed points of TS,A|Q consists of two isolated points
comprising S∩A∩Q; namely, p= (kq(1), kq(2), · · · , kq(K), α, 0, · · · , 0), where,

k :=±
√

1−α2

q(1)2+ · · ·+ q(K)2
.
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And so we have ‘local convergence’ in the following sense. For either feasible point
p ∈ S∩A∩Q there is a neighbourhood,Np of p in the subspace Q such that starting
from any point x0 in Np the iterates converge to p.
Additionally, we may derive similar conclusions to those obtained above in the

cases when α = 0, α = 1 and α > 1. Further, in this case the singular manifold is
the subspace A⊥0 . �

In conclusion, our analysis sheds some significant light on the behaviour of non-
convex Douglas-Rachford schemes but much remains to be studied.

Example 6.2 (Other regions). For example, we observe that neither convexity nor
so much symmetry is essential to the behaviour exhibited in Theorem 6.1. Fig-
ure 6.9 shows the situation for a line and a nonconvex p-sphere, where S(p) :=
{(x,y) : |x|p + |y|p = 1}, in the plane. The details of such analysis remain to be
performed. �

Fig. 6.9 Spiralling with the 1/2-sphere.
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