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1. Introduction 

In this short chapter we collect t,ogether examples of fixed point free nonexpansive 
mappings in a variety of Banach spaces. These examples help delineate the class of 
spaces enjoying the fpp, t,he w-fpp, or the w*-fpp. We begin by recalling the relevant 
definitions. 

Let X be a Banach space. A mapping T : C X + .ri is nonexpansive if IITx - Ty 1 1  5 
IIz - yll, for all x, y E C. The fixed point set of T is Fix(T) := {x E C : Tz = x). 

We say that the space X has the fixed point property (fpp) if for every nonempty closed 
bounded convex subset C of X and every nonexpansive mapping T : C + C we have 
Fix(T) # 0. 

Similarly, X is said to have the weak fixed point property (w-fpp) if for every nonempty 
weakly compact convex subset C of X and every nonexpansive mapping T : C -. C we 
have Fix(T) # 0. 

If X is the dual space of a given Banach space E ,  X = E*, we say that X has the 
weak* fixed point property (w*-fpp) if for every nonempty weak* compact (that is, 
cr(X, E)-co~npact) convex subset C of X and every nonexpansive mapping T : C + C 
we have Fix(T) # 0. Which subsets of X are weak* compact depends on the choice 
of pre-dual. Thus, when discussing the w*-fpp it is important that we have a specific 
pre-dual E in mind. 

Clearly, we have fpp ===+ w-fpp, with the two properties coinciding if X is reflexive, 
and when X = E* we have fpp ===+ w*-fpp ===+ w-fpp. Finding characterizations 
of those spaces enjoying the fpp, the w-fpp, or the w*-fpp are perhaps the three most 
fundamental questions of metric fixed point theory. All three questions remain open. 

Much of the effort expended on metric fixed point theory has gone into identifying 
widely applicable and easily verifiable sufficient conditions for either the fpp, the w- 
fpp, or the up-fpp. The results of these efforts occupy a considerable portion of this 
handbook. This chapter approaches the questions from the opposite direction by iden- 
tifying spaces which fail one or more of these properties. 
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Unfortunately, known examples of fixed point free nonexpansive mappings are rather 
sparse. With the exception of Alspach's example (or modifications of it, see section 
4), the mappings concerned are adaptations of affine maps (indeed, modified shifts), or 
minor variants thereof. This dearth of examples is a major impediment to a fuller un- 
derstanding of metric fixed point theory and the discovery of informative new examples 
would be an important step forward. 

In the following section we will document examples that demonstrate failure of the 
fpp. Subsequent sections will deal with more specialized examples that demonstrate 
failures of the w*-fpp in duals of certain Banach spaces and finally Alspach's famous 
demonstration that the w-fpp fails in L1 [O,  11. 

2. Examples on closed bounded convex sets 

Example 2.1 co fails the fpp. 

Let C = B,f, := ((2,) E co : 0 5 xn 5 1, all n )  and define two affine maps by 

and 
T2(xn) := (1 - X I ,  XI, 23 ,  . . . ). 

Then for i = 1, 2 and any n:, y E co we easily see that IITix - Tiyll = llx - yII. SO, both 
TI and T2 are nonexpansive, indeed metric isometries, and map C into C. On the other 
hand, the only possible fixed point for TI is (1,1,1,. . . ) while the only possible fixed 
point for T2 is (i, i, i, . . . )  neither of which is in co.  

It is possible to generalize the above examples in the way illustrated by the next ex- 
ample. 

Example 2.2 co fails the fpp with a contraction; that is a mapping T for which IITx - 
Tyll < 112 - yll whenever x f y. 

As an alternative to  the   resent at ion in examule 2.1, we will describe the current 
example using the standard Schauder basis; el,  e2, e3,. . . of co,  where en := (6,,,) with 
fin,, = 1 and 6,,, = 0 for i f n. 

Let (A,) be a decreasing sequence of real numbers converging 1. Define, 

and an affine map T on C by, 

Straight forward calculations show that T is a mapping of C into C that is always 
nonexpansive and a contraction, provided the sequence (A,) is strictly decreasing, whose 
only possible fixed point is ( X I ,  X2, X3, . . . ) @ cg. 

We would like to  have examples of fixed point free non-affine nonexpansive maps on 
nonempty closed bounded convex subsets of co. Here is a simple example of such a 
map due to C. Lennard [private communication, 19951. 
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Example 2.3 co fails the fpp with a non-affine contraction. 

Let C be defined as in example 2.1 and let (p,) be any real sequence that. stirictly 
decreases to  1. Define T by 

Then T is readily seen to be a non-affine contraction mapping C into C. Furthermore, 
if p := pn is finite, then a simple calculation shows that T is fixed point free. 

To put the next example into context it is important to  recall that co enjoys the TV-fpp. 

Example 2.4 co fails the fpp for a contraction and on a set which is compact in a 
topology only slightly coarser than the weak topology. 

The ideas underlying this somewhat interesting example should be clear to  anyone 
familiar wit.h properties of the summing basis for co. However, some of the details are 
both tedious and technical and will only be sketched. The interested reader is referred 
to [6] for a fuller account. 

Let a = (a(n)) be a strictly decreasing sequence of 'weights' in 1, satisfying a 5 a(n)  5 
p, for some 0 < a 5 < co. Define elements of co by: ao := 0 and 

an := (a ( l ) ,  . . . , a(n) ,0 ,0 , .  . . )  for 11. = 1 ,2 ,3 , .  . . . 

and let K be the closed convex hull of Thus, K consists of all vectors of the 
form 

m 

x h n a n =  ( n ( l ) ( l -  h ) , a ( 2 ) ( 1  -(Ao+Ar)),a(3)(1- (Ao+hi  + . \ z ) ) , . . . ) ,  
n=O 

where An > 0, for all n ,  and CTT0 An = 1. 

If T, denotes the affine map defined on K by, 

( a - a ( ( - ( o + ) ) )  := ( a )  a 2 - h o ) , a ( 3 ) ( 1 - ( h n + h l ) )  ,...), 

then we have t.he following. 

Lemma 2.5 (i) T, maps K into K, 

(ii) T, is a contraction, 

(iii) T, is fixed point free in K. 

Proof. To establish (i) it suffices to note that for An > 0 and C:=n An = 1, we have 



To verify (ii) note that for x = (a( l)( l -h0),a(2)(1-(ho+h~)) ,  . . .) and y = ( a ( l ) ( l  - 

PO), a(2) (1 - (PO + PI) ) ,  . . .) we have 

while 
IITax - Ta~ll  = S U P { ~ ( ~ ) I P O  - hoI,a(3)Ip0 - XO + P I  -All,. . . ) .  

Since a = (a(n)) is a strictly decreasing sequence, we now readily see that T, is a 
contraction. Note: if the weights (a(n)) were only required to  be decreasing then T, 
would be nonexpansive, but not necessarily contractive. 

Finally, suppose that x = a ( l ) ( l  - Xo), a(2) (1 - (Ao + XI)), . . . were a fixed point of 

T,; that is, 
( 1 

Then, we would have Xo = 0, XI = 0 , .  . . contradicting the requirement that CEO An = 
1, and so we have (iii). 

We now introduce a topology E, into co which is only slightly coarser than the weak 
topology , but with respect to which K is compact. 

To define this topology, we regard a = ( ~ ( I L ) )  as an element of P; and define 

Thus, E, is a norm closed, but not weak* closed (as a $! co), co-dimension one subspace 
of C1 = c(;. So, Ea is a weak*-dense, and hence, norming subspace for co. Indeed simple 
calculations show that for x E c0, 

We define E, := o(co, E,). That is, E is the smallest locally convex linear topology on 
co for which all the elements of E, are continuous as linear functionals on co. 

The topology E, may be seen as only 'slightly' coarser than the weak topology, o(co, C1), 
on co, being induced by a norming codimension one subspace of CI. None-the-less i t  
displays some unusual, though not too pathological, properties. Here are some exam- 
ples. A sequence (x,) in co is E, convergent to x € co if and only if for every f E E,, we 
have f (x,) 4 f (x). Closures are sequentially determined in the E, topology. However, 
the norm is not Ea-lower semi-continuous and Mazur's theorem is not valid for the E, 
topology. The sequence a, does not have any weakly convergent subsequences, but 

a, 5 a0 = 0. This will be used to show that K is E,-compact. However, first we need 
the following lemma. 

Lemma 2.6 K is E,-closed. 

Proof. For n = 1 , 2 , .  . . let 
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where xP) >. 0 and CEO X t )  = 1, be such that :c, 5 z = (pla( l) ,  pzn(2),.  . . ) .  

Choosing f := ( l / a ( l ) ,  -1142). 0,O,. . . ) E E, we have 

That is 
A?) 4 - p2 

Similarly, choosing f := (O,l/a(2), -l/a(3), 0,O,. . .) we obtain, 

and in general, 

~ t )  -* pk - Pkfl. 

Thus, for k = 1 , 2 , .  . . 
Xk : = p k - p k + ~  =limXz 2 0  

n, 

and 
= (/~10(1), ( ~ L I  - X1)(1(2), ( p i  - XI - Xz)a(3), . . . )  E cg 

So we must have 
02 

fL1 = C x k > o ,  

and then, provided pi 5 1, 
r x  

But, given e > O there exists hr so that 

and there exists n for which 

IXk - X r ) )  5 E / ~ N ,  for k = l, 'L,. . . , N. 

Thus, 

k=l 

and so 5 1, as required. 

Since a, 5 ao, we have that { a , , ) ~ .  is &,-compact. The &-compactness of h' then 
follows from Lemma 2.6, t,he definition of &,, and t,he following general rcsult from 
Banach space theory (see, for example, [6] for a proof). 

Lemma 2.7 Let X be a separa.ble Ba.na.ch space and let M be a closed nornling subspa.ce 
of X* . If D c X is u(X, M) -compact then co(D) is g (X ,  A[) -precompact. 

This example suggests the following open questiorl: Does a nonenlpty closed bounded 
convex subset of co havc the fpp if and only if it is weakly compact? See [6] for more 
evidence in support of this. 



3. Examples on weak* compact convex sets 

Example 3.1 l1 =: c; with the equivalent dual norm 1 1  f 1 1 '  := 1 1  f V 11 f - 1 1  fails the 
wt-fpp. 

This example is due to T .  C. Lim [4] and provides us with a nonexpansive map T on 
a domain C that is a ult-compact nlinimal invariant set for T of diameter 2. 

We first show t,hat I (  . 1 1 '  is indeed an equivalent dual norm for l I .  To this end, for x E co 
define 

llxll' := IlrfIl + llx-Il 

Then 1 1  . 1 1 '  is an equivalent norm on co satisfying llxll I 11x11' I 211zIl and SO it suffices 
to show that for f E l l  we have 

Now for x E co with 11x11' 5 1 let 

Then llyll' < 11x11' I 1 and 

00 

To see the reverse inequality note that 1 1  f i  1 1  (or 11 f-11) can be approxitnated arbitrarily 
well by f (x) where the xi are a suitable choice of 0 or 1 (0 or -7) and so IJrI/' 5 1. 

Now let C = {f E l I  : f, 2 O , I l  f 1 1 '  5 1) and define T by 

M 

C is closed and bounded with respect to  1 1  . 1 )  and since the unit ball centred at 0 in 
the same norm is w*-compact we have C is a weakt-compact convex subset of ll. It  is 
readily verified that T is a fixed point free affine mapping of C into C. Furthermore 
C is a minimal invariant set for T. To see this note that for any f = (f,) E C the 
successive iterat,es are: 

00 

Tf = ( l - C f m , f l , f Z  , . . .  ) 
1 

m 



So, Tnf -w* 0. Thus 0 belongs to any no~lempty T-invariant w*-compact convex 
subset K of C. Hence the n'th basis vector, e,, = Tn(0), is in K. I t  follows that 
C = i5{e,) K c C, so K = C. 

We corlclude by showing that T is a metric isometry (hence certainly a nonexpansive 
mapping) on C. 

Given f , g  E C let P := {i : fi - gi 2 0) and N := { i  : fi - gi < 0). In the case that 
C (fi - 9%) > C (gi - fi) we have 
~ E P  (EN 

/ 

negative 

= Ilf - 911. 
The equality follows similarly i11 the case when ( 1  f - yl l '  = C (9; - f,). 

(EN 

Example 3.2 L 1  = c* with its natural norrn fails the w*-ffp for an affine contraction. 

It will be convenient to  t.ake the dual actiox~ of L1 on c to be 

where (f,) E 11 and (2,) E c. In particular then, regarding z = (-1,1,1, ...) E c as a 
weak* continuous linear functional over 11. we see that, 

is a w'-closed hyperplane and consequently the set 

being the intersect,ion of ker x and weak* closed halfspaces is itself convex and weak* 
closed. Obviously, C c 2 ~ ; ,  so C is weak* compact. 

Now, let 6 E (0,1] and let (ck) c [0,1) be a sequcncc such that CEO=, ck < m and so 
nEl (1 - ek) > 0. Define a mapping by 



then T is clearly an affine mapping. We claim that T is a fixed point free nonexpansive 
mapping of C into C and further, T is a contraction if all the t k  are strictly positive. 

To prove the T-invariance of K we need to show that (Tf), > 0, (Tf ) l  = C r = l ( T f ) k  
and ( T  f ) l  5 1. The first two are obvious, for the third observe that,  

We next show that T is always nonexpansive: 

k=l 

= Ilf -gII- 

Now suppose that t k  > 0, for all k ,  and that lITf - Tgll = ( I f  - 911, then the above 
contains only equalities. Hence 

and 

To satisfy (1) we must either have 

and 

or the reverse. Both cases follow a similar proof so we will prove the first case only. 
From (2) we see that the elements of the sum ~ ~ ( f ~ + ~  - gk+l) arc cither all 
negative or all positive, so we must have 

But also, gl 2 f l ,  and hence 



Thus f k  = gr, for k 2 1; that is, f  = g and so T is a contraction 

Lastly we show that T is indeed fixed point free. Suppose there were an f E C with 
T f  = f .  Then, for n 2 3 we would have, 

Thus, if f 2  = 0, then f n  = 0 for n > 3 and also 6(1 - f l )  - 0, whence f l  = 1 and we 
have the contradiction: 

m 

fi = ( T f ) l  = 6(1 - f i )  + C ( 1  - € k ) f k + l  = 0 # f l .  

k=l 

Consequently we must have f 2  # 0 arid, since f n  + 0 as n + co, we have 

fn  d l &  i, = 0. 

This means n E l ( l  - ek) = 0 which contradicts t k  < a. 
When T is a contraction there can be only one minimal invariant set for T ,  but we do 
not know if C is itself that minimal invariant set. However, when ek =- 0, for k = 1 , 2 ,  ..., 
this is not the case 131. There is a smaller weak* closed convex T-invariant set; namely, 

and a slightly more subtle variant of the argumcrlt used in exaniple 3.1 shows that in 
this case C' is in fact the unique mininlal invariant set for t,he nonexpansive map T.  
Indeed, simple calculat~iorls show that in these cases t,he orbit of any point of C under 
T converges weak* to f o  := (1,1,0,0, .  . . ). So, f o  is in any set which is T-invariant 
and it suffices to note that the closed convex hull of the orbit of f o  is C'. Computer 
experiments show that when the t k  are not all zero C' need not be T-invariant. 

Example 3.3 A non-affine example in 1, = c* 

In t,he same spirit as example 2.3 C. Lennard [pivate communication, 19951 has given 
a non-afhne variant of example 3.2 in the case when 6 .= 1 and t k  = 0, for all k .  

Let C be defined as in example 3.2, and let ( p n )  be any sequence of real numbers that 
strictly decreases to 1. Define T by 

Then one may verify that T is a non-affine contraction of C into C. Furt,hermore, if 
w p  := n,=' p ,  is finite, then T is readily seen to be fixed point free. 

4. Examples on weak compact convex sets 

Although the cluestion had been raised more than twenty years earlier it was not until 
1981 that Dale Alspach gave an example, drawn frorn ergodic theory, showing that not 
all Banach spaces enjoy the ,w-FPP. 

Example 4.1 Alspach's example [I] 

Here we take C to be the set 



As the int,ersection of an order interval with a hyperplane in an order continuous Banach 
lattice, C 1:s weak compact. 

The mapping T is essentially t,he baker transform, of ergodic theory. Formally, for f  E C 

( 2 f  ( 2 t ) )  A 1  f o r O < t < ; ;  
T f ( t )  := { ( 2 f ( 2 t  - i )  - 1 )  v 0  tor 4 < t i. 1. 

I t  is clear from the above description t,hat T is an isometry on C. 

We now show that T is fixed point free and hence L1[O, 11, and any space containing 
a11 isometric copy of it, fails to  have t,he w-fpp. 

Intuitively the idea is simple. First observe t,hat the successive iterates of any point 
in C under T assume values closer to 0  or 1. Hence any fixed point for T must be a 
function which assumes only the values 0 or 1. By the 'ergodic' nature of T it then 
follows that such a function must be either constantly 0  or constantly 1 ,  and neither of 
these functions lie in C. 

The details follow. 

For any f  E C we have Tf (t) = 1  if and only if either 

O < t < i  and ! j < f ( 2 t ) < l  

or 
i < t < l  and f ( 2 t - 1 ) = 1 .  

E'urthermore if $ < t 5 1  and T f  ( t )  = 1 ,  then T f  ( t  - i)  = 1.  

Now, suppose f is a fixed point for T then 

A := { t  : f ( t )  = I} 

= { t  : T f ( t )  = 1 )  

= { t : O < t < i a n d $ <  f ( 2 t ) 5 1 ) U { t : ; < t < l a n d  f ( 2 t - 1 ) = 1 }  

= { i t  : ; < f  ( t )  < 1 )  U { i  + it : f  ( t )  = 1 )  

= i { t :  $ 5  f ( t ) <  ~ } U ~ A U ( ~ + ; A )  

Since the three sets in the above union are mutually disjoint and each of the last two 
sets has measure one half that of A it follows that: 

B1 := { t  : ; 5 f  ( t )  < 1 )  

is a null set. But, then 

B 1 = { t : ; < T f ( t ) < l )  

3 { $ : i S f ( t ) <  ;> 
and so Bz := { t  : < f  ( t )  < $1 is also a null set. Continuing in this way we have 

1  1  
B, := { t  : - < f  ( t )  < 

2, 

is a null set for n = 1,  2,  . . . , hence 
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is null and 

f = XA (where meas(A) = 

From the definition of T we have 

so, up t,o sets of measure zero, 

A = ; A  u (i + ; A ) .  

Continuing to iterate under T yields 

A = ; A U ( ~ + + A ) U ( ; + $ A ) U ( ; + + A )  

A =  ~ A U ( ~ + ~ A ) U ( ~ + ~ A ) U  . . .  

cl hoc gcnus omnc 

Thus, the interscction of A with any dyadic int(erva1 (and hence any interval) has 
measure one half that of the int,erval, an impossibility for a set which is not of full 
1ncss11re. 

Notice that,  unlike the previous example, the domain C of the baker transform T is 
not a minimal invariant set,. This follows since 

while for any f E C we have -; 5 f - < a hence 

1 6' 1 1  
I l f  - ~x[o,l]lll = If - I ' 5 

Thus, C is 11ok dia~net,raI and t,hereforc not a minimal invariant set, 

Indeed there seems to be no known explicit example of a non-trivial nlininlal invariant 
set for a nonexpansive map on a weak con~pact convex set. 

Example 4.2 Sine's modification of the Alspach example 

Robert Sine [9] gave the following modification to  example 4.1 which allows us to take 
as the domain C of our fixed point free nonexpansive mapping the whole order int(erva1 
o f 0 5  f I 1 .  

For f  E C := {g  : 0 5 g 5 1)  let S f  := XLO,JI - f, then S  defines a mapping of C onto 
C with J J S f  - SgJJ  = J J  f  - gJJ for all f ,g E C. 

An argument similar to  that for Alspach's example shows that the composition S T ,  
where T  is the baker transform of 4.1, is an isometry on C with y~ whcrc A = [O, 11 
or 0 the only possible fixed points. However, t,he action of ST  is to  map each of these 
functions onto the other, hence S T  is Jised point free on the order interval 0 f _< 1. 

Example 4.3 Schechtman's construction. Gideon Schcchtman [8] gave a construction 
which leads to a greater variety of examples and is in some regards somewhat sinlpler 
than that of Alspach. 



Suppose (0, C, p)  is a measure space for which there exists a measure preserving trans- 
formation T : R  + 62 x [ O ,  11; that is, for any measurable S  C R  x [ O ,  11 we have 
p ( r - l S )  = meas(S) [3] .  Then if C is the weak compact convex set 

c : = { f  E L 1 ( p )  : 0 <  f  5 1  and f  = 1) I 
we can define a mapping T : C + C by 

Clearly T is an isometry on C and f  E C is a fixed point for T if and only if f  = x.4 

where A  E C is such that p ( A )  = and ? ( A )  := T F ' ( A  x [ O ,  11) = A  a.e. 

Thus if T is further chosen so that i is ergodic ; that is ? ( A )  = A a.e. if and only if 
A  = R  or A  = 4, then T is an example of a fixed point free nonrxpansive mnp11,iny on  
C .  

Perhaps the simplest example of an  (0, C, p)  and T suitable for the above construction 
is the following. 

Let R = [0 ,  1IN0 with product Lebesgue measure and define T by 

7 - 1  ( ( w l ,  wa, . . . ), t )  := ( t ,  W l ,  W 2 ,  . . . ) 

Clearly T is measure preserving, further if A  # 4 and ? ( A )  = A,  then for any 
( w l ,  W Z ,  . . . )  E A  we see that ( t ,  w l ,  wa, . . . ) E A  for any t  E (0, I ] .  Iterating under ? 
gives 
( t l ,  ta, . . . , t,, w l ,  w2, . ..) E A  for any n E N and t l ,  t 2 ,  . . . , t ,  E [ O , l ] ,  and so we 
have A  = R .  

An alternativc example with R  = [ O ,  11 is obtained by taking 

where E ~ , ,  6, E { 0 , 1 )  for n = 1 , 2 , .  . . A good way to view this example is via thc 

A set specified by prescribing precisely m of the ~, , ' s  has measure 1/2m.  F'rom this it is 
clear that the product of two such sets has measure 1/2m1+m2 where 111.1 + m2 is also 
the number of digits prescribed for points in the T-' image of the product. It  follows 
that. T is measure preserving. The ergodicit,~ is established by iterating under i and an 
argument similar to  that used for the conclusion of Alspach's example. 

Remark 4.4 Schechtman's const,ruction is both simpler and more versatile than that 
of Alsoach and is of course also amenable to  Sine's modification. None-the-less. the 
Alspach example has some advantages. The relatively simple action of t,he baker t,rans- 
form permits det,ailed calculations. For example, it is possible to determine the orbit 
fo,  T f o ,  T V o ,  T3  fo,  . . . , of certain starting funct,ions fo under T. If fo = :X[o , l l  we 
obtain the iterates depicted below. 
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Here we see that the sequence Tnfo = i(r,, + 1) is an orbit under T ,  where r,, is 
the n't,h Rademacher fu~action. This may be combined with a result of Maurey ([TI, 
also see the chapter entitled Ultra-methods in metric fixed point theory); that reflexive 
subspaces of L1 [I), 11 have the fixed point property, to show that the closed convex hull 
of an orbit of a nonexpansivc mapping on a weakly compact convex set need not be 
invariant. Indeed, define D to  be E6{TfL(fo) : n E N}. Since the closed linear span of 
the Radeiliacher functions is isomorphic to Lz[O, 11 151, D can not be invariant. Indeed, 
were it invariant, Maurey's result on the reflexive subspaces of L1[O, 11, would imply 
t,hat T possessed a fixed point in D and, a fortiori, in G. 

5. Notes and Remarks 

E,xailiple 2.1 is due to Kakutani, the modification presented in nxa~nple 2.2 is due to  
Lennard. The presence of the An allow one to compensate for slight perturbations of 
the en. Thus, the conclusion remains valid if the vectors e,, are replaced by vectors xn 
which are 'asymptotic' to the basis vectors. This allows the example to be t.ransported 
into spaces containing an 'asymptotically isometric copy' of co, thereby demonstrating 
that. such spaces fail to have the fpp. Similarly, example 3.2 may be exploited to  show 
that spaces cont,aining an 'asymptotically isometric copy' of el also fail the fpp. Details 
of t,hese exciting new ideas niay be found in the chapter entitled Renormings of PI and 
co and fixed point properties. 

Example 3.2 is also due to Lennard, the observation t.hat it is in fact a contraction was 
made by Snlyth who also extended it to the following broader result [lo]: Let R be 
an infinite compact Hausdorff topological space. Then C(S1)" fails the w*-fpp with an  
affine contraction. 

In our example S1 is the one point compact,ification of N, where ' a '  is the extra point. 
So we can write n E S1 in the form n = (1, co, 2,3, ...). Now, if for z = (zl, t g ,  23, ...) E c 
we writ,e 

t = (21, lim zTL, 22, 23, ...) 
n- na 

z is a continuous function on R. This is because 

lim t ( n )  = lim zn = 
n + m  n-03 . ( a ) .  

So c=C(CL). If we let l 1  act on c by 

then l 1  = c* = C(b2)' and T is the affine contract,ion for which the,w*-fpp fails. 

The fpp, w-fpp, or wf-fpp re1at.e to all mappings in a particular class having fixed 
points. This class of mappings depends on both which mappings are picked out as 
nonexpansive by the norm and which domains are admissible. Since B1 = ct, enjoys the 



w*-fpp in its natural norm, examples 3.1 and 3.2 taken together show that both of these 
factors are critical. Moving to an equivalent norm varies which mappings are picked 
out as nonexpansive, but not the admissible domains. On the other hand, for a dual 
space, changing the pre-dual does not affect the dual norm, nor alter which mapping are 
nonexpansive, but does change the class of admissible domains. These considerations 
also show that any characterization of the g-fpp will necessarily involve a condition 
on the pre-dual. 

Chris Lennard [private com~nunication, 19961 has given a wavelet construction of a 
fixed point free isometry, sirnilar to  t,hat of Alspach, and also on the order interval 
[0 5 f 5 11 in L 1 [ 0 , 1 ] .  

P R O B L E M S .  

The results of sect,ion 4 indicate an intimate connection between fixed point free isome- 
tries and ergodic transformations of the underlying measure space. In the true tradition 
of ergodic theory, we ask: 

I s  the set of f i e d  point free ,isometrics o n  the order interval [0 5 f 5 I]  residual zn 
a n  appropriate sense, at least among isometries which m a p  in to  the set of 0 , l -va lued  
functions? 

Clearly any space containing an isometric copy of L 1 ( p )  also fails the rv-fpp. C a n  one 
gzve a n  intrinsic description of examples demonstratzng this  failz~re for the spaces 1 ,  
and C[O, 11 ? 

Examples 3.1, 3 .2  and those of section 4 also suggest the following question. 

If a space X fails the  (ru, w*)-fpp does i t  necessarily fail with a n  isometry? 
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