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Abstract 

Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to 
E. LifSic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) 
spaces. It is shown that both results apply in this setting, and that LifSic's theorem gives a sharper result. 
Also, a new property is introduced that yields a fixed point theorem for uniformly lipschitzian mappings in 
a class of hyperconvex spaces, a class which includes those possessing property (P) of Lim and Xu. 
@ 2005 Published by Elsevier Ltd 
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1. Introduction 

A mapping T : M + M of a metric space (M, d )  is said to be  uniformly lipschitzian if there 
exists a constant k such that d ( x ,  y )  5 k d ( T n x ,  T n  y) ,  for all x ,  y E M and n E N. This class of  
mappings was introduced by Goebel and Kirk in  [ 5 ] ,  where it  was shown that if C is a bounded 
closed convex subset of a uniformly convex Banach space X, then there exists a constant k > 1, 
depending on the modulus of convexity of X, such that every uniformly lipschitzian mapping 
T : C + C with constant k has a fixed point. Since then there have been a number of extensions 
of this result, typically in a Banach space setting (see, e.g., the discussion in [6]). However two 
results in a metric setting are noteworthy. The first is a result of LifSic [ l l ]  and the second is 
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due to Lim and Xu [12]. Here we compare these results, taking as an underlying framework 
the so-called CAT(0) spaces. We show in particular that within this framework both the LifSic 
and the Lim-Xu theorems apply, and that LifSic's theorem yields the sharper conclusion. This 
is an important feature of the paper because it provides a class of spaces which are not Banach 
spaces, but for which the LifSic characteristic can be calculated, and which satisfy all of the 
assumption of the Lim-Xu theorem. This appears to be the first example of such a class of 
spaces. 

We also introduce a new property that yields a fixed point theorem for uniformly lipschitzian 
mappings in certain hyperconvex spaces. The precise relationship of this new property to ones 
previously studied is not yet clear. However the proof is a departure from the usual methods, and 
the result yields the Lim-Xu theorem in a hyperconvex setting as a corollary. 

We begin with some basic definitions and notation that will be needed later. Let (X, d)  be a 
bounded metric space. For a nonempty subset D of X, set 

rx(D) = sup{d(x, y) : y E D), x E X; 

r(D) = inf(rx(D) : x E X); 

C(D) = (x E X : r,(D) = r(D)); 

6(D) = sup{d(x, y) : x, y E D); 

cov(D) = n ( B  : B is a closed ball and D c B). 

The number r(D) is called the Chebyshev radius of D (in X) and C(D) is called the Chebyshev 
center of D. 

A subset A of X is said to be admissible if cov(A) = A. The number 

K(x) := sup -- {;::;I 
where the supremum is taken over all nonempty bounded admissible subsets A of X for which 
6(A) > 0 is called the normal structure coeflcient of X. If N(x) 5 c for some constant c < 1, 
then X is said to have ungorm normal structure. (For some authors, k ( ~ )  would be the inverse 
of the normal structure coefficient.) 

The metric space (X, d)  is said to be hyperconvex if 

for any collection of points {x,),,~ in X and positive numbers {r,),,r such that d(x,, xg) 5 
r, + rg for any a, /3 in r. The classical spaces C, and L, are examples of hyperconvex Banach 
spaces. Two facts are pertinent to what follows: k ( ~ )  = 1/& if X is a Hilbert space and 
R(x) = 112 if X is hyperconvex. 

We now turn to the definition of the LifSic characteristic of a metric space X. Balls in X are 
said to be c-regular if the following holds: for each k < c there exist p,  a E (0, 1) such that for 
each x,  y E X and r > 0 with d(x, y) 2 (1 - p)r ,  there exists z E X such that 

The Lijgic characteristic K (X) of X is defined as follows: 

K (X) = SUP{C 2 1 : balls in X are c-regular). 
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Theorem 1 (LifSic [ll]). Let (X, d) be a bounded complete metric space. Then every uniformly 
k-lipschitzian mapping T : X + X with k < K(X) has afied point. 

In [12], Lim and Xu introduced the so-called property (P)  for metric spaces. A metric space 
(X, d) is said to have property (P)  if given two bounded sequences {x,,} and {zn} in X, there 
exists z E n,,, - cov({zj : j 2 n}) such that 

lim sup d (z, x,) 5 lim sup lim sup d (z, , x,). 
n i n 

The following theorem is the main result of [12]. 

Theorem 2 ([12, Theorem 71). Let (X, d) be a complete bounded metric space with both 
property (P) and uniform normal structure. Then every uniformly k-lipschitzian mapping T : 

X + X with k < R(x)-: has a jxed  point. 

It is known that the LifSic characteristic of a Hilbert space is A, and in Section 3 we show 
that the LifSic characteristic of an R-tree is 2. Therefore in these spaces LifSic's theorem yields 
the sharper result. We also show that the same is true in the CAT(0) spaces, a class of spaces that 
includes these two spaces as extreme cases. 

2. CAT(K) spaces 

Let (X, d) be a geodesic metric space in which each two points x ,  y E X are joined by a 
unique geodesic (metric) segment denoted [x, y]. A subset Y c X is said to be convex if Y 
includes every geodesic segment joining any two of its points. 

Denote by M: the following classical metric spaces: 

(1) if K = 0 then M; is the Euclidean plane I E ~ ;  
(2) if K < 0 then M: is obtained from the classical hyperbolic plane IN2 by multiplying the 

hyperbolic distance by 1 / G .  

A metric space X is said to be a CAT(K) space (the term is due to M. Gromov - see, e.g., 
[ l ,  p. 1591) if it is geodesically connected, and if every geodesic triangle in X is at least as 'thin' 
as its comparison triangle in M:. We make this precise below. For a thorough discussion of 
these spaces and of the fundamental role they play in geometry, see Bridson and Haefliger [I] or 
Burago et al. [2]. 

A geodesic triangle A(xl, x2, x3) in a geodesic metric space (X, d)  consists of three points 
in X (the vertices of A) and a geodesic segment between each pair of vertices (the edges 
of A). A comparison triangle for a geodesic triangle A(xl,  x2, x3) in (X, d)  is a triangle - 
A(xl,x2,x3) := A ( i l , i 2 , i 3 )  in M: such that dM2(i i , i j )  = d(xi ,xj)  for i ,  j E {1,2,3}. 
The triangle inequality assures that comparison triangles always exists. If a point x is on an edge 
[xi, x,] of A, then .i E d is called a comparison point of x if 

d (x i ,x )=dM;( i i , i )  and d(xi,x)=dM2(.fj , i) .  

A geodesic metric space is said to be a CAT(K) space if all geodesic triangles of appropriate 
size satisfy the following CAT(K) comparison axiom. 

CAT(K): Let A be a geodesic triangle in X and let d c M: be a comparison triangle for A. 
Then A is said to satisfy the CAT(K) inequality if for all x ,  y E A, 
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where i ,  j  E are the respective comparison points of x, y. 
Of particular interest are the complete CAT(0) spaces, sometimes called Hadamard spaces. 

These spaces are uniquely geodesic and they include, as a very special case, the following class 
of spaces. 

Definition 3. An R-tree is a metric space T such that: 

(i) there is a unique geodesic segment (denoted by [x, y]) joining each pair of points x, y E T; 
(ii) if [y,xl  n [x,zI = {XI, then [y,xl U [x,zl = [y,zl. 

Proposition 4 ([I, Chapter 11.11). The following relations hold: 

(I) If X is a CAT(K) space, then it is a CAT(K') space for every K' ? K. 
(2) X is a CAT(K) space for all K < 0 ifand only if X is an R-tree. 

One consequence of (1) and (2) is that any result proved for CAT(0) spaces automatically 
carries over to any CAT(K) spaces for K < 0, and, in particular, to R-trees. 

Another fundamental property of CAT(0) spaces that we will need in the following is the 
so-called CN inequality. In fact a geodesic space is a CAT(0) space if and only if this inequality 
holds (see [I, p. 1631). 

The CN inequality: for all p, q ,  r E X and all rn with d(q, m) = d(r, m) = d(q, r)/2, one 
has 

All CAT(K) spaces for K 5 0 have uniform normal structure with normal structure coefficient 
c (. l/&. The precise values of c depend on K. (See [lo]; also the discussion in [ti].) 

3. The Lifiic characteristic of CAT(0) spaces 

Theorem 5. I f  (X, d) is a complete CAT(0) space, then K(X) > A .  Moreovel; if X is an 
R-tree, K(X) = 2. 

First a preliminary observation. Every bounded closed convex subset of a CAT(0) space has a 
unique Chebyshev center which is a singleton. Since closed convex subsets of a CAT(0) space are 
nonexpansive retracts of the space [I, p. 1761, the unique minimal ball containing such a set must 
be centered at a point of the set. In other words, every bounded closed convex set contains its 
Chebyshev center. Thus in the definition of the LifSic characteristic of such space, the inclusion 
(1 . l )  may be replaced with: 

where r (.) denotes the Chebyshev radius. 

Proof of Theorem 1. We first show that in general K(X) ? A .  Let r > 0, choose x, y E X 
with d(x, y) = r and let i ,  j  E R2 be any two points with I l i  - jll = d(x, y). 

Suppose k = K (X) < A. Then 
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for some 6 < 1. (This is because the LifSic characteristic of R2 is &.) Now choose a E (6, 1). 
Then for p E (0, 1) sufficiently near 0 and a E (0, 1) sufficiently near 1, 

and we may assume in addition only that d(x,  y) 2 (1 - p) r .  Let 

S := ~ ( i ;  ( I  + p) r )  0 ~ ( j ;  k ( l +  p))r  

and 

s := B(X; ( I  + p) r )  0 ~ ( y ;  k ( l +  p)r) .  

The Chebyshev center c of lies on the segment [i, j ] .  Also if u E S and if A ( j ,  i ,  i )  is a 
comparison triangle for A(y, x ,  u) in R2, then i E S. Therefore Ili - ell 5 a r .  If c is the point 
of the segment [x, y] for which d(y,  c) = Ilj - ZII, then (using the CAT(0) inequality) 

d(u,  c) 5 Ili - ell _( ar .  

Since this is true for any u E S it follows that r(S) 5 a r ,  and since k < was arbitrary, we 
have K (X) > &. 

We now suppose X is an R-tree, and we show that K(X) = 2 by a direct calculation. Let 
x ,  y E X with d(x,  y) = r ,  and let k < 2. Set 

We show that diam(S) 5 2(k - 1)r. Let u, v E S. There exist points p ,  q E [x, y] such 
that d(x ,  v) = d(x, p )  + d ( p ,  v) and d(x,  u) = d(x, q )  + d(q, u). Similarly, (y, v) = 
d(y, p )  + d(p ,  v) and d(y,  u) = d(y, q )  + d(q,  u). Without loss of generality we may assume 
d (x, p )  = d (x, q)  + d (q, p). Therefore 

d(u, v) = d(u, q )  + d(q, p )  + d(p ,  v). 

Since u, v E B(y: kr) we now have 

2kr 2 d(u, y) +d(y ,  v) 

= d(y, q )  + d(q, u) + d(y, p )  + d ( p ,  v) 

= r - d(x, p )  + d(p ,  v) + r - d(x.9) + d(q,  v) 
= 2r + d(u, v). 

This implies d(u,  v) _( 2(k - 1)r. Therefore, for p E (0, 1) sufficiently small and a E (0, 1) 
sufficiently near 1, 

diam ( ~ ( x ;  (1 + p) r )  0 B(x; k( l  + p)r))  5 2ar 

when d(x,  y) 2 (1 - p) r .  Since X is hyperconvex (thus N(x) = 112) this in turn implies 

r (B(x; (1 + p) r )  0 B(X; k(1 + p)r))  5 ar .  

In view of the LifSic theorem we have the following result. 

Theoremd Let (X,d)  be a bounded complete CAT(0) space. Then every uniformly 
k-lipschitzian mapping T : X + X with k < has afiedpoint. 
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The case when X is an R-tree is moot because every bounded (indeed every geodesically 
bounded) complete R-tree has the fixed point property for continuous maps. This fact is a 
consequence of results of G.S. Young [13, cf. Theorem 161. For a direct proof, see [9]. 

Remark 1. It seems reasonable to conjecture that the LifSic characteristic of a CAT(K) space for 
K < 0 is a continuous increasing function of K which takes values in the interval (A, 2). 

Remark 2. If T : X -+ X is uniformly k-lipschitzian, then T is nonexpansive relative to a 
metric r on X that satisfies 

d(x, y) i r(x, y) i kd(x, Y). 

Also, if T : X -+ X is nonexpansive relative to a metric s on X with 

ad(x,  y) i s(x, y) i Bd(x, Y), 

then T is uniformly t-lipschitzian on (X, d). (For the details, see [5].) While these observations 
might seem interesting, their usefulness in this context is mitigated by the fact that the CAT(K) 
inequality is not necessarily preserved under small perturbations of the metric. 

4. CAT(0) spaces and property (P) 

In this section we show that every complete CAT(0) space has property (P). Let {xn) be a 
bounded sequence in a complete CAT(0) space X and let K be a closed and convex subset of X. 
Define (o : X -+ R by setting (o(x) = limsup,,, d(x, x,), x E X. 

Proposition 7. There exists a unique point u E K such that 

P(U) = inf ~ ( x ) .  
X G K  

Proof. Let r = inf , ,~ (o(x) and let E > 0. Then by assumption there exists x E K such 
that ~ ( x )  < r + E; thus for n sufficiently large d(x, x,) < r + E, i.e., for n sufficiently large 
x E B(xn; r + E). Thus 

As the ascending union of convex sets, clearly C, is convex. Also the closure of C, is also 
convex (see [1, Proposition 1.4(1)]). Therefore 

Clearly for u E C,  (o(u) 5 r. Uniqueness of such a u follows from the CN inequality (2.2). 
Specifically, suppose u, v E C with u # v .  Then if m is the midpoint of the geodesic joining u 
and v ,  

This implies (o(m)2 5 r 2  - id (u ,  - a contradiction. 
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In view of the above, X has property (P) if given two bounded sequences {x,] and {z,} in X, 
there exists z E nzl cov{zj : j > n] such that 

where q is defined as above. 

Theorem 8. A complete CAT(0) space (X, d) has property (P). 

Proof. Let (x,] and (z, ] be bounded sequences in X and define q(x) = lim sup,,, d(x , x,), 
x E X. For each n, let 

Cn := cov(zj : j 2 n]. 

By Proposition 7 there exists a unique point un E Ctl such that 

q(un) = inf q(x). 
XEC" 

Moreover, since z j  E Cn for j > n, q(un) q(zj) for all j > n. Thus q(un) 5 
limsup,,, q(zj) for all n. We assert that {u,,] is a Cauchy sequence. To see this, suppose 
not. Then there exists E > 0 such that for any N E N there exist i, j > N such that 
d(ui, uj) 2 E. Also, since the sets {C,} are descending, the sequence (q(u,)} is increasing. 

2d6+t2 Let d := lim,,,, q(un). Choose 6 > 0 so small that < ~ / 8 ,  and choose N so large that 
Iq(ui) - q ( ~ j ) l  6 if i, j 2 N. Now choose i > j > N so that d(ui, uj) 2 E ,  let m, denote 
the midpoint of the geodesic joining ui and u,, and let n E N. Then by the (CN) inequality 

This implies 

Since m, E Cj , this contradicts the definition of u, . 
This proves that (u,] is a Cauchy sequence. Consequently there exists z E nzl C,, such 

that limn,, u,, = z and, since q is continuous, limn,, q(un) = q(z). Since q(u,,) 5 
lim sup,,, ~ ( 2 , )  for all n, we conclude that 

5. Hyperconvex spaces 

Since hyperconvex metric spaces have uniform normal structure, it is a consequence of 
Theorem 2 that if M is a bounded hyperconvex metric space with property (P), then every 
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uniformly k-lipschitzian T : M + M has a fixed point for k < 2/2. Here, by embedding 
the problem in a larger space, we show that uniformly lipschitzian mappings have fixed points 
under an assumption that appears to be weaker than property (P).  Consequently we recover the 
Lim and Xu result in a hyperconvex setting. 

Every metric space (X, d )  can be embedded isometrically into a hyperconvex space. To see 
this let 

{mx]xex : mx E R for all x and sup jmxJ < cc 
X E X  

Define the distance d, on &(X) by d,({m,}, {n,}) = supxEx Im, - i tx I. Thus the metric 
space (l,(X), d,) is hyperconvex. Fix a E X and consider the map I : X + l,(X) defined 
by I(b) = {d(b, x) - d(a, x)},,~. It is easy to see that I is an isometry. 

For a nonempty subset D of a bounded hyperconvex metric space (X, d), it is known that 
r(D) = ~ s ( D )  and 

(see [4] for details). 
Let H = (H,  d )  be a bounded hyperconvex space. Embed H into l,(H) isometrically 

via the mapping h H {d(h, p)  - d(a, p ) I p E ~ ,  where a is a fixed element of H .  Write 
h, = d(h, p )  - d(a,  p)  for each h,  p E H .  Let R : l,(H) + H be a nonexpansive retraction. 

Now let {el, } be the standard basis in the classical l, space, i.e., {en} = {G,, } jeN where S,j 
is the Kronecker delta. Observe that n,, - cov({ej : j 2 n}) = {O], 

lirn sup en, - lirn inf e,,, < E for all j, 
71 I1 

and 

limsupsup~e,,, -01 = 1 > 1 - E  foralle E (0, I). 
I1  j 

Following this observation, we say that a sequence {x,} in H is a copy of {en} if for each 
E E (0, I), there exists a sequence {p, 1 in H with lim sup,, xnpj - lim inf, xnpj 5 eS ({x,}) for 
all j ,  and lim sup, supj Jxnpj - zpj  I > (1 - E)~({x,]) for all z E n,,,, cov({xj : j 2 n]). 

Thus, if H does not contain a copy of {e,], given {x,,] in H there exists e E (0, I), depending 
on {x,}, such that if {p,) is any sequence in H for which 

lirn sup xnPi - lim inf xnpj < ES({X, 1) for all j, 
n n 

then there exists z E n,,l - cov({xj : j 2 n]) for which 

lim sup sup Jxnp, - zpj  I i (1 - E)S({X, 1). 
i 

This prompts the following definition. We say that H has property (PC) if H does not contain 
a copy of {en} in the following uniform sense: there exists an E E (0, 1) such that, for a sequence 
{x,,] and a collection {pA}*,n of points in H with lim sup, x,,,, - lim inf, xnp, < E~({x,]) for 
all h, there exists z E n,,, - cov({xj : j 2 n]) satisfying 
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In proving the theorem of [12], Lim and Xu use property (P)  to construct a sequence {x,} in 
X satisfying for each integer j 2 0, 

lim supd(xj+l, Tnxj) c'6({TP1xj}), (5.2) 
n 

In the proof to follow, we shall construct such a sequence using property (P,). 
We first observe that if a hyperconvex space H has property (P), then it has property (PlI2). 

To see this we let { x ~ }  and {p,] be any sequences in H. Let z, E C({xj : j 2 n]). By property 
(P),  we can take a point z E nn,l - cov({zj : j 2 n } )  such that 

1 
limsup d(z,x,,) i limsup limsup d(zj,xrz) 5 26({xn}). 

n j n 

Clearly, 

1 
lim sup sup IxIlpj - zpj  I 5 lim sup d(xn, z) 5 p({x,}). 

j I1 

We do not know whether the converse is true, that is, whether property (PlI2) implies property 
(P). Indeed, if E/ < E then P, =+ PC', but we see no reason why the reverse implication should 
be true. 

Theorem 9. Let H be a bounded hyperconvex metric space which has property (P,) for E E 

(0, 11. Then every uniformly k-lipschitzian mapping T : H -t H with k < has afxed 
point. 

Proof. We embed H in &(X) as described above. Choose E' E (0, E) so that k < ,/A. 
Fix xo E H and consider the sequence {Tnxo]. Define sets A,, = { T ~ X O  : j > n] and 
C = {p  i H : limsup,, (TnxoJp - liminf, {TnxoJp < &6(Al)}. By (5.1) we see that with 
some z E nnZl COW,) ,  

limsup sup I{TnxoJP - zpl 5 (1 - ~)6(A1). 
n peC 

Thus, since 0 < E/ < E ,  for all large n, we have 

sup Izp - {TnxoJpl < (1 - &I)J(Ai). 
PC c 

Let p E C1, where C' is the complement of C. Write 

a = inf{Tnxo}p; b = lim i n f { T " ~ ~ } ~ :  
n 

Observe that we either have 

from which we respectively have 

[b, cl n [d - E ~ ( A I ) ,  a + E ~ ( A I ) I  # 0 or [b, cl n [a + E ~ ( A I ) ,  d - E ~ ( A I ) ]  # 0. 
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In either case, we can find a point w p  E [b,  c]  such that 

la - wpI I E S ( A ~ )  and Id - wpl I &S(A1) or 

la - wp I 5 (1 - E ) S ( A I )  and Id - w p  I i (1 - &)S(A1) .  

Let w = ( w ~ ) ~  where w p  = z p  for p E C. Finally, let xl = R(w) ,  the image of w under the 
retraction R. 

As E 5 i, we have E 5 (1 - E ) .  Thus 

So, for each j, 

Iwp - { ~ , j x o } ~ l  5 max - w p ,  wp  - inf{Tnxo}, 

and thus 

sup I wp - {TnxOIp 1 5 ( 1  - &)S(A1)  for each n. 
p € c 1  

Finally, (5.6) and (5.7) imply for j > n where n is sufficiently large, 

d(x1, ~ , j x o )  = sup 1 x 1 ~  - { T . ~ X O } ~ ~  i SUP Iwp - { ~ . ~ x o } ~ l  
P C H  PEH 

< (1 - E ' ) s ( A ~ ) .  - 

Consequently, 

limsup d(x1, Tnxo) I (1 - E ' ) S ( A ~ ) .  
n 

Consider a ball B ( y ,  ry (A,)) in H .  Since I w p  - yp I 5 ry (A,) for all p, bearing in mind that 
z E cov(A,,), we thus have 

This inequality holds for each y, therefore xl E n cov(A,), and so 

d(x1, y )  i limsup d(Tnxo ,  y )  for all y E H. 
n 

By induction we can obtain a sequence {x,} in H satisfying (5.2) and (5.3). The proof now 
can be completed as in the proof of Theorem 7 in [12]. 

Since hyperconvex spaces satisfy property (P1/2), we have the following. 

Corollary 10. Let H be a bounded hyperconvex space which has property ( P ) .  Then every 
uniformly k-lipschitzian mapping T : H -+ H with k < has afucedpoint. 

Corollary 11. Let T : H -+ H be a uniformly k-lipschitzian mapping. Suppose that each orbit 
{ T n x } ,  of T is not a copy of {en},  i.e., all orbits { { T n x } ,  : x E H }  satisfy (5.1) for some 

E E (0, I). I f  k < G, then T has afxedpoint. 
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Remark. In [7] it is shown that if M is bounded, hyperconvex, and satisfies property (P), then 
every left reversible totally ordered uniformly k-lipschitzian semigroup of self-mapping of M has 
a common fixed point fork < z/Z. Extensions of the results of LifSic and Lim-Xu to lipschitzian 
semigroups are given in [3]. 
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