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Abstract. Let C be a bounded, closed, convex subset of a uniformly convex

Banach space X. We investigate the convergence of the generalized Krasnosel’skii-

Mann and Ishikawa iteration processes to common fixed points of pointwise

Lipschitzian semigroups of nonlinear mappings Tt : C → C. Each of Tt is

assumed to be pointwise Lipschitzian, that is, there exists a family of functions

αt : C → [0,∞) such that ‖Tt(x)− Tt(y)‖ ≤ αt(x)‖x− y‖ for x, y ∈ C.
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1. Introduction

Let C be a bounded, closed, convex subset of a Banach space X. Let us con-

sider a pointwise Lipschitzian semigroup of nonlinear mappings, that is, a fam-

ily of mappings Tt : C → C satisfying the following conditions: T0(x) = x,

Ts+t(x) = Ts(Tt(x)), t 7→ Tt(x) is strong continuous for each x ∈ C, and each Tt

is pointwise Lipschitzian. The latter means that there exists a family of functions

αt : C → [0,∞) such that ‖Tt(x)− Tt(y)‖ ≤ αt(x)‖x− y‖ for x, y ∈ C (see Def-

initions 2.1, 2.2, and 2.3 for more details). Such a situation is quite typical in

mathematics and applications. For instance, in the theory of dynamical systems,

the Banach space X would define the state space and the mapping (t, x)→ Tt(x)

would represent the evolution function of a dynamical system. Common fixed
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points of such a semigroup can be interpreted as points that are fixed during the

state space transformation Tt at any given point of time t. Our results cater for

both the continuous and the discrete time cases. In the setting of this paper, the

state space may be an infinite dimensional Banach space. Therefore, it is natu-

ral to apply these result not only to deterministic dynamical systems but also to

stochastic dynamical systems.

The existence of common fixed points for families of contractions and nonex-

pansive mappings have been investigated since the early 1960s, see e.g. DeMarr

[8], Browder [4], Belluce and Kirk [2, 3], Lim [22], Bruck [5, 6]. The asymptotic

approach for finding common fixed points of semigroups of Lipschitzian (but not

pointwise Lipschitzian) mappings has been also investigated for some time, see

e.g. Tan and Xu [33]. It is worthwhile mentioning the recent studies on the spe-

cial case, when the parameter set for the semigroup is equal to {0, 1, 2, 3, ...} and

Tn = T n, the n-th iterate of an asymptotic pointwise nonexpansive mapping, i.e.

such a T : C → C that there exists a sequence of functions αn : C → [0,∞) with

‖T n(x) − T n(y)‖ ≤ αn(x)‖x − y‖ and lim supn→∞ αn(x) ≤ 1. Kirk and Xu [17]

proved the existence of fixed points for asymptotic pointwise contractions and as-

ymptotic pointwise nonexpansive mappings in Banach spaces, while Hussain and

Khamsi extended this result to metric spaces [11], and Khamsi and Kozlowski

to modular function spaces [14], [15]. Recently, Kozlowski proved existence of

common fixed points for semigroups of nonlinear contractions and nonexpansive

mappings in modular functions spaces, [20].

Several authors studied the generalizations of known iterative fixed point con-

struction processes like the Mann process (see e.g. [23, 10]) or the Ishikawa

process (see e.g. [12]) to the case of asymptotic and pointwise asymptotic nonex-

pansive mappings. There exists an extensive literature on the subject of iterative

fixed point construction processes for asymptotically nonexpansive mappings in

Hilbert, Banach and metric spaces, see e.g. [1, 29, 27, 9, 30, 31, 32, 36, 37,

33, 34, 7, 35, 28, 25, 13, 11, 24] and the works referred there. Schu [31] proved

the weak convergence of the modified Mann iteration process to a fixed point of

asymptotic nonexpansive mappings in uniformly convex Banach spaces with the

Opial property, and the strong convergence for compact asymptotic nonexpansive

mappings in uniformly convex Banach spaces. Tan and Xu [35] proved the weak



SEMIGROUPS OF NONLINEAR MAPPINGS 3

convergence of the modified Mann and modified Ishikawa iteration processes for

asymptotic nonexpansive mappings in uniformly convex Banach spaces satisfy-

ing the Opial condition or possessing Fréchet differentiable norm. Kozlowski [18]

proved that - under some reasonable assumptions - the generalized Mann and

Ishikawa processes converge weakly to a fixed point of an asymptotic pointwise

nonexpansive mapping T : C → C, where C is a bounded, closed and convex

subset of a uniformly convex Banach space X which satisfies the Opial condition.

Let us note that the existence of common fixed points for asymptotic pointwise

nonexpansive semigroups has been recently proved by Kozlowski in [19]. However,

the proof of this result does not provide a constructive method of finding such

common fixed points. The aim of the current paper is to fill this gap. We prove

that - under some reasonable assumptions - the generalized Krasnosel’skii-Mann

and Ishikawa processes converge weakly, and - under additional assumptions -

strongly, to a common fixed point of the asymptotic pointwise nonexpansive semi-
groups.

The paper is organized as follows:

(a) Section 2 provides necessary preliminary material.

(b) Section 3 presents some technical results on approximate fixed point sequences.

(c) Section 4 is devoted to proving the Demiclosedness Principle in a version

relevant for this paper.

(d) Section 5 deals with the weak convergence of generalized Krasnosel’skii-Mann

iteration processes to common fixed points of asymptotic pointwise nonexpan-

sive semigroups.

(e) Section 6 deals with the weak convergence of generalized Ishikawa iteration

processes to common fixed points of asymptotic pointwise nonexpansive semi-
groups.

(f) Section 7 presents the strong convergence result for both Krasnosel’skii-Mann

and Ishikawa processes.

2. Preliminaries

Throughout this paper X will denote a Banach space, C a nonempty, bounded,

closed and convex subset of X, and J will be a fixed parameter semigroup of

nonnegative numbers, i.e. a subsemigroup of [0,∞) with normal addition. We

assume that 0 ∈ J and that there exists t > 0 such that t ∈ J . The latter
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assumption implies immediately that +∞ is a cluster point of J in the sense of

the natural topology inherited by J from [0,∞). Typical examples are: J = [0,∞)

and ideals of the form J = {nα : n = 0, 1, 2, 3, ...} for a given α > 0. The notation

t→∞ will mean that t tends to infinity over J .

Let us start with more formal definitions of pointwise Lipschitzian mappings

and pointwise Lipschitzian semigroups of mappings, and associated notational

conventions.

Definition 2.1. We say that T : C → C is a pointwise Lipschitzian mapping if

there exists a function α : C → [0,∞) such that

(2.1) ‖T (x)− T (y)‖ ≤ α(x)‖x− y‖ for all x, y ∈ C.

If the function α(x) < 1 for every x ∈ C, then we say that T is a pointwise

contraction. Similarly, if α(x) ≤ 1 for every x ∈ C, then T is said to be a

pointwise nonexpansive mapping.

Definition 2.2. A one-parameter family F = {Tt; t ∈ J} of mappings from C

into itself is said to be a pointwise Lipschitzian semigroup on C if F satisfies the

following conditions:

(i) T0(x) = x for x ∈ C;

(ii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s ∈ J ;

(iii) for each t ∈ J , Tt is a pointwise Lipschitzian mapping, i.e. there exists a

function αt : C → [0,∞) such that

(2.2) ‖Tt(x)− Tt(y)‖ ≤ αt(x)‖x− y‖ for all x, y ∈ C.

(iv) for each x ∈ C, the mapping t 7→ Tt(x) is strong continuous.

For each t ∈ J let F (Tt) denote the set of its fixed points. Note that if x ∈ F (Tt)

then x is a periodic point (with period t) for the semigroup F , i.e. Tkt(x) = x for

every natural k. Define then the set of all common set points for mappings from

F as the following intersection

F (F) =
⋂
t∈J

F (Tt).

The common fixed points are frequently interpreted as the stationary points of the

semigroup F .
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Definition 2.3. Let F be a pointwise Lipschitzian semigroup. F is said to be

asymptotic pointwise nonexpansive if lim supt→∞ αt(x) ≤ 1 for every x ∈ C.

Denoting a0 ≡ 1 and at(x) = max(αt(x), 1) for t > 0, we note that without

loss of generality we can assume that F is asymptotically nonexpansive if

(2.3) ‖Tt(x)− Tt(y)‖ ≤ at(x)‖x− y‖ for all x, y ∈ C, t ∈ J,

(2.4) lim
t→∞

at(x) = 1, at(x) ≥ 1 for all x ∈ C, and t ∈ J.

Define bt(x) = at(x)− 1. In view of (2.4), we have

(2.5) lim
t→∞

bt(x) = 0.

The above notation will be consistently used throughout this paper.

Definition 2.4. By S(C) we will denote the class of all asymptotic pointwise

nonexpansive semigroups on C such that

(2.6) Mt = sup{at(x) : x ∈ C} <∞, for every t ∈ J,

(2.7) lim sup
t→∞

Mt = 1.

Note that we do not assume that all functions at are bounded by a common con-

stant. Therefore, we do not assume that F is uniformly Lipschitzian.

Definition 2.5. We will say that a semigroup F ∈ S(C) is equicontinuous if the

family of mappings {t 7→ Tt(x) : x ∈ C} is equicontinuous at t = 0.

The following result of Kozlowski will be used in this paper to ensure existence

of common fixed points.

Theorem 2.1. [19] Assume X is uniformly convex. Let F be an asymptotically

nonexpansive pointwise Lipschitzian semigroup on C. Then F has a common

fixed point and the set F (F) of common fixed points is closed and convex.

The following elementary, easy to prove, lemma will be used in this paper.

Lemma 2.1. [7] Suppose {rk} is a bounded sequence of real numbers and {dk,n}
is a doubly-index sequence of real numbers which satisfy

lim sup
k→∞

lim sup
n→∞

dk,n ≤ 0, and rk+n ≤ rk + dk,n
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for each k, n ≥ 1. Then {rk} converges to an r ∈ R.

The notion of bounded away sequences of real numbers will be used extensively

throughout this paper.

Definition 2.6. A sequence {cn} ⊂ (0, 1) is called bounded away from 0 if there

exists 0 < a < 1 such that cn > a for every n ∈ N. Similarly, {cn} ⊂ (0, 1) is

called bounded away from 1 if there exists 0 < b < 1 such that cn < b for every

n ∈ N.

The following property of uniformly convex Banach spaces will play an impor-

tant role in this paper.

Lemma 2.2. [31, 38] Let X be a uniformly convex Banach space. Let {cn} ⊂
(0, 1) be bounded away from 0 and 1, and {un}, {vn} ⊂ X be such that

lim sup
n→∞

‖un‖ ≤ a, lim sup
n→∞

‖vn‖ ≤ a, lim
n→∞

‖cnun + (1− cn)vn‖ = a.

Then lim
n→∞

‖un − vn‖ = 0.

Using Kirk’s result [16] (Proposition 2.1), Kozlowski [19] proved the following

proposition.

Proposition 2.1. Let F be a semigroup on C. Assume that all mappings Tt ∈ F
are continuously Fréchet differentiable on an open convex set A containing C.

Then F is asymptotic pointwise nonexpansive on C if and only if for each x ∈ C

(2.8) lim sup
t→∞

‖(Tt)
′

x‖ ≤ 1.

This result, combined with Theorem 2.1, produces the following fixed point the-
orem.

Theorem 2.2. [19] (Theorem 3.5) Assume X is uniformly convex. Let F be a

pointwise Lipschitzian semigroup on C. Assume that all mappings Tt ∈ F are

continuously Fréchet differentiable on an open convex set A containing C and for

each x ∈ C

(2.9) lim sup
t→∞

‖(Tt)
′

x‖ ≤ 1.

Then F has a common fixed point and the set F (F) of common fixed points is

closed convex.
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Because of the above, all the results of this paper can be applied to the semi-

groups of nonlinear mappings satisfying condition (2.9). This approach may be

very useful for applications provided the Fréchet derivatives can be estimated.

3. Approximate fixed point sequences

The technique of approximate fixed point sequences will play a critical role in

proving fixed convergence to common fixed points for semigroups of mappings. Let

us recall that given T : C → C, a sequence {xk} ⊂ C is called an approximate

fixed point sequence for T if ‖T (xk) − xk‖ → 0 as k → ∞. We will also use

extensively the following notion of a generating set.

Definition 3.1. A set A ⊂ J is called a generating set for the parameter semi-

group J if for every 0 < u ∈ J there exist m ∈ N, s ∈ A, t ∈ A such that

u = ms+ t.

Lemma 3.1. Let C be a nonempty, bounded, closed and convex subset of a

Banach space X. Let F ∈ S(C). If ‖Ts(xn)− xn‖ → 0 for an s ∈ J as n → ∞
then for any m ∈ N, ‖Tms(xn)− xn‖ → 0 as n→∞

Proof. It follows from the fact that every at is a bounded function that there

exists a finite constant M > 0 such that

(3.1)
m−1∑
j=1

sup{ajs(x);x ∈ C} ≤ M.

It follows from

‖Tms(xn)− xn‖ ≤
m−1∑
j=1

‖T(j+1)s(xn)− Tjs(xn)‖+ ‖Ts(xn)− xn‖

≤ ‖Ts(xn)− xn‖
(m−1∑

j=1

ajs(xn) + 1
)
≤ (M + 1)‖Ts(xn)− xn‖

(3.2)

that

(3.3) lim
n→∞

‖Tms(xn)− xn‖ = 0,

which completes the proof. �
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Lemma 3.2. Let C be a nonempty, bounded, closed and convex subset of a

Banach space X. Let F ∈ S(C). If {xk} ⊂ C is a approximate fixed point

sequence for Ts ∈ F for any s ∈ A where A is a generating set for J then {xk}
is a approximate fixed point sequence for Ts for any s ∈ J .

Proof. Let s, t ∈ A and m ∈ N. We need to show that ‖Tms+t(xn)− xn‖ → 0 as

n→∞. Indeed,

‖Tms+t(xn)− xn‖ ≤ ‖Tms+t(xn)− Tms(xn)‖+ ‖Tms(xn)− xn‖

≤ ams(xn)‖Tt(xn)− xn‖+ ‖Tms(xn)− xn‖,

which tends to zero by boundedness of the function ams and by Lemma 3.1. �

Lemma 3.3. Let F ∈ S(C) be equicontinuous and B = A ⊂ J . If {xk} ⊂ C

is an approximate fixed point sequence for Tt for every t ∈ B then {xk} is an

approximate fixed point sequence for Tt for every t ∈ A.

Proof. Let s ∈ A, then there exists a sequence {sn} ⊂ B such that sn → s. Note

that

‖Ts(xk)− xk‖ ≤ ‖Ts(xk)− Tsn(xk)‖+ ‖Tsn(xk)− xk‖

≤ sup
x∈C

amin(s,sn)(x) sup
x∈C
‖T|s−sn|(x)− x‖+ ‖Tsn(xk)− xk‖.

(3.4)

Fix ε > 0. By equicontinuity of F and by (2.6) there exists n0 ∈ N such that

(3.5) sup
x∈C

amin(s,sn0 )
(x) sup

x∈C
‖T|s−sn0 |(x)− x‖ < ε

2
.

Since {xk} is an approximate fixed point for Tsn0
we can find k0 ∈ N such that

for every natural k ≥ k0

(3.6) ‖Tsn0
(xk)− xk‖ <

ε

2
.

By substituting (3.5) and (3.6) into (3.4) we get ‖Ts(xk) − xk‖ < ε for large k.

Hence {xk} is an approximate fixed point for Ts as claimed. �
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4. The Demiclosedness Principle

The following version of the Demiclosedness Principle will be used in the proof

of our main convergence theorems. There exist several versions of the Demi-

closedness Principle for the case of asymptotic nonexpansive mappings, see e.g.

Li and Sims [21], Gornicki [9] or Xu [37]. Recently, Kozlowski [18] proved a ver-

sion of the Demiclosedness Principle for the asymptotic pointwise nonexpansive

mappings, using the ”parallelogram inequality” valid in the uniformly convex Ba-

nach spaces (Theorem 2 in [36]). For the completeness sake, we provide the proof

for asymptotic pointwise nonexpansive semigroups.

Let us recall the definition of the Opial property which will play an essential

role in this paper.

Definition 4.1. [26] A Banach space X is said to have the Opial property if for

each sequence {xn} ⊂ X weakly converging to a point x ∈ X (denoted as xn ⇀ x)

and for any y ∈ X such that y 6= x there holds

(4.1) lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

or equivalently

(4.2) lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

Theorem 4.1. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a nonempty, bounded, closed and convex subset of X, and let

F ∈ S(C). Assume that there exists w ∈ X and {xn} ⊂ C such that xn ⇀ w.

Assume that there exists an s ∈ J such that ‖Ts(xn)−xn‖ → 0 as n→∞. Then

w ∈ F (Tks) for any natural k.

Proof. Define a type ϕ(x) = lim sup
n→∞

‖xn−x‖ for x ∈ C. Let us fix m ∈ N, m > 2

and observe that

‖Tms(xn)− x‖ ≤
m∑
i=1

‖Tis(xn)− T(i−1)s(xn)‖+ ‖xn − x‖

≤ ‖Ts(xn)− xn‖
( m∑

i=2

a(i−1)s(xn) + 1
)

+ ‖xn − x‖.
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Since all functions ai are bounded and ‖Ts(xn)− xn‖ → 0, it follows that

lim sup
n→∞

‖Tms(xn)− x‖ ≤ lim sup
n→∞

‖xn − x‖ = ϕ(x).

On the other hand, by Lemma 3.1, we have

ϕ(x) ≤ lim sup
n→∞

‖xn − Tms(xn)‖+ lim sup
n→∞

‖Tms(xn)− x‖ = lim sup
n→∞

‖Tms(xn)− x‖.

Hence,

(4.3) ϕ(x) = lim sup
n→∞

‖Tms(xn)− x‖.

Because F is asymptotic pointwise nonexpansive, it follows that ϕ
(
Tms(x)

)
≤

ams(x)ϕ(x) for every x ∈ C. Applying this to w and passing with m → ∞, we

obtain

(4.4) lim
m→∞

ϕ
(
Tms(w)

)
≤ ϕ(w).

Since xn ⇀ w, by the Opial property of X we have that for any x 6= w

ϕ(w) = lim sup
n→∞

‖xn − w‖ < lim sup
n→∞

‖xn − x‖ = ϕ(x),

which implies that ϕ(w) = inf{ϕ(x);x ∈ C}. This together with (4.4) gives us

(4.5) lim
m→∞

ϕ
(
Tms(w)

)
= ϕ(w).

By Proposition 3.4 in [17] (see also Theorem 2 in [36]) for each d > 0 there exists

a continuous function λ : [0,∞)→ [0,∞) such that λ(t) = 0⇔ t = 0, and

(4.6) ‖αx+ (1− α)y‖2 ≤ α‖x‖2 + (1− α)‖y‖2 − α(1− α)λ(‖x− y‖),

for any α ∈ [0, 1] and all x, y ∈ X such that ‖x‖ ≤ d and ‖y‖ ≤ d. Applying (4.6)

to x = xn − w, y = xn − Tms(w) and α = 1
2

we obtain the following inequality

‖xn−
1

2
(w+Tms(w))‖2 ≤ 1

2
‖xn−w‖2 +

1

2
‖xn−Tms(w)‖2− 1

4
λ
(
‖Tms(w)−w‖

)
.

Applying to both side lim sup
n→∞

and remembering that ϕ(w) = inf{ϕ(x);x ∈ C}

we have

ϕ(w)2 ≤ 1

2
ϕ(w)2 +

1

2
ϕ
(
Tms(w)

)2
− 1

4
λ
(
‖Tms(w)− w‖

)
,
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which implies

λ
(
‖Tms(w)− w‖

)
≤ 2ϕ

(
Tms(w)

)2
− 2ϕ(w)2.

Letting m→∞ and applying (4.5) we conclude that

lim
m→∞

λ
(
‖Tms(w)− w‖

)
= 0.

By the properties of λ, we have Tms(w)→ w. Fix any natural number k. Observe

that, using the same argument, we conclude that T(m+k)s(w)→ w. Note that

Tks(Tms(w)) = T(m+k)s(w)→ w

By the continuity of Tks,

Tks(Tms(w))→ Tks(w)

and finally Tks(w) = w as claimed. �

5. Weak convergence of generalized Krasnosel’skii-Mann
iteration processes

Let us start with the precise definition of the generalized Krasnosel’skii-Mann

iteration process for semigroups of nonlinear mappings.

Definition 5.1. Let F ∈ S(C), {tk} ⊂ J and {ck} ⊂ (0, 1). The general-

ized Krasnosel’skii-Mann iteration process gKM(F , {ck}, {tk}) generated by the

semigroup F , the sequences {ck} and {tk}, is defined by the following iterative

formula:

(5.1) xk+1 = ckTtk(xk) + (1− ck)xk, where x1 ∈ C is chosen arbitrarily,

and

(1) {ck} is bounded away from 0 and 1,

(2) limk→∞ tk =∞,

(3)
∑∞

n=1 btn(x) <∞ for every x ∈ C.

Definition 5.2. We say that a generalized Krasnosel’skii-Mann iteration process

gKM(F , {ck}, {tk}) is well defined if

(5.2) lim sup
k→∞

atk(xk) = 1.



12 W.M. KOZLOWSKI, BRAILEY SIMS

We will prove a series of lemmas necessary for the proof of the generalized

Krasnosel’skii-Mann process convergence theorems.

Lemma 5.1. Let C be a bounded, closed and convex subset of a Banach space X.

Let F ∈ S(C), w ∈ F (F), and let {xk} be a sequence generated by a generalized

Krasnosel’skii-Mann process gKM(F , {ck}, {tk}). Then there exists an r ∈ R
such that lim

k→∞
‖xk − w‖ = r.

Proof. Let w ∈ F (F). Since

‖xk+1 − w‖ ≤ ck‖Ttk(xk)− w‖+ (1− ck)‖xk − w‖

= ck‖Ttk(xk)− Ttk(w)‖+ (1− ck)‖xk − w‖

≤ ck(1 + btk(w))‖xk − w‖+ (1− ck)‖xk − w‖

≤ ckbtk(w)‖xk − w‖+ ‖xk − w‖

≤ btk(w)diam(C) + ‖xk − w‖,

it follows that for every n ∈ N,

(5.3) ‖xk+n − w‖ ≤ ‖xk − w‖+ diam(C)
k+n−1∑
i=k

bti(w).

Denote rp = ‖xp −w‖ for every p ∈ N and dk,n = diam(C)
k+n−1∑
i=k

bti(w). Observe

that lim sup
k→∞

lim sup
n→∞

dk,n = 0. By Lemma 2.1 then, there exists an r ∈ R such

that lim
k→∞
‖xk − w‖ = r. �

Lemma 5.2. Let C be a bounded, closed and convex subset of a uniformly convex

Banach space X. Let F ∈ S(C). Let {xk} be a sequence generated by a well

defined generalized Krasnosel’skii-Mann process gKM(F , {ck}, {tk}). Then

(5.4) lim
k→∞
‖Ttk(xk)− xk‖ = 0

and

(5.5) lim
k→∞
‖xk+1 − xk‖ = 0.



SEMIGROUPS OF NONLINEAR MAPPINGS 13

Proof. By Theorem 2.1, F (F) 6= ∅. Let us fix w ∈ F (F). By Lemma 5.1 there

exists an r ∈ R such that lim
k→∞
‖xk−w‖ = r. Because w ∈ F (F), and the process

is well defined, then there holds

lim sup
k→∞

‖Ttk(xk)− w‖ = lim sup
k→∞

‖Ttk(xk)− Ttk(w)‖

≤ lim sup
k→∞

atk(xk)‖xk − w‖ = r.

Observe that

lim
k→∞
‖ck(Ttk(xk)− w) + (1− ck)(xk − w)‖ = lim

k→∞
‖xk+1 − w‖ = r.

By Lemma 2.2 applied to uk = xk − w, vk = Ttk(xk)− w,

(5.6) lim
k→∞
‖Ttk(xk)− xk‖ = 0,

which by the construction of the sequence {xk} is equivalent to

(5.7) lim
k→∞
‖xk+1 − xk‖ = 0.

�

Let us prove an important technical result which demonstrates that under suit-

able assumption the sequence {xk} generated by the generalized Krasnosel’skii-

Mann iteration process becomes an approximate fixed point sequence, which will

provide a crucial step for proving the process convergence.

Lemma 5.3. Let C be a bounded, closed and convex subset of a uniformly convex

Banach space X. Let F ∈ S(C). Let the generalized Krasnosel’skii-Mann process

gKM(F , {ck}, {tk}) be well defined. Let A ⊂ J be such that to every s ∈ A

there exists a strictly increasing sequence of natural numbers {jk} satisfying the

following conditions:

(a) ‖xk − xjk‖ → 0 as k →∞,

(b) limk→∞ ‖Tdk(xjk)− xjk‖ = 0, where dk = |tjk+1
− tjk − s|.

Then {xk} is an approximate fixed point sequence for all mappings {Tms} where

s ∈ A and m ∈ N, that is

(5.8) lim
k→∞
‖Tms(xk)− xk‖ = 0
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for every s ∈ A and m ∈ N. If, in addition, A is a generating set for J then

(5.9) lim
k→∞
‖Tt(xk)− xk‖ = 0

for any t ∈ J .

Proof. In view of Lemma 3.1, it is enough to prove (5.8) for m = 1. To this end,

let us fix s ∈ A. Note that

(5.10) ‖xjk − xjk+1
‖ → 0 as k →∞.

Indeed,

(5.11) ‖xjk − xjk+1
‖ ≤ ‖xjk − xk‖+ ‖xk − xk+1‖+ ‖xk+1 − xjk+1

‖ → 0,

in view of the above assumption (a) and of (5.5) in Lemma 5.2.

Observe that

(5.12) ‖xjk − Ts(xjk)‖ → 0 as k →∞.

Indeed,

‖xjk − Ts(xjk)‖ ≤ ‖xjk − xjk+1
‖+ ‖xjk+1

− Ttjk+1
(xjk+1

)‖+ ‖Ttjk+1
(xjk+1

)− Ttjk+1
(xjk)‖

+‖Ttjk+1
(xjk)− Ts+tjk

(xjk)‖+ ‖Ts+tjk
(xjk)− Ts(xjk)‖

≤ ‖xjk − xjk+1
‖+ ‖xjk+1

− Ttjk+1
(xjk+1

)‖+ atjk+1
(xjk+1

)‖xjk+1
− xjk‖

+as+tjk
(xjk)‖Tdk(xjk)− xjk‖+ sup

x∈C
as(x)‖Ttjk (xjk)− xjk‖

which tends to the zero as k → ∞ because of (5.10), Lemma 5.2, the fact that

the process is well defined, assumptions (b) and (2.7), and the boundedness of

each function as.

On the other hand,

‖xk − Ts(xk)‖ ≤ ‖xk − xjk‖+ ‖xjk − Ttjk (xjk)‖+ ‖Ttjk (xjk)− Ts+tjk
(xjk)‖

+‖Ts+tjk
(xjk)− Ts(xjk)‖+ ‖Ts(xjk)− Ts(xk)‖

≤ ‖xk − xjk‖+ ‖xjk − Ttjk (xjk)‖+ atjk (xjk)‖xjk − Ts(xjk)‖

+as(xjk)‖Ttjk (xjk)− xjk‖+ as(xk)‖xjk − xk‖

which tends to the zero as k →∞ because of assumption (a), Lemma 5.2, the fact

that the process is well defined, and the fact that the semigroup is asymptotic

pointwise nonexpansive. If A is a generating set for J then by Lemma 3.2, {xk}
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is an approximate fixed point sequence for any Ts. This completes the proof of

the Lemma. �

We will prove next a generic version of the weak convergence theorem for the

sequences {xk} which are generated by the Krasnosel’skii-Mann iteration process

and are at the same time approximate fixed point sequences.

Theorem 5.1. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of a X. Let F ∈ S(C).

Assume that gKM(F , {ck}, {tk}) is a well defined Krasnosel’skii-Mann iteration

process. If the sequence {xk} generated by gKM(F , {ck}, {tk}) is an approximate

fixed point sequence for every s ∈ A ⊂ J where A is a generating set for J , then

{xk} converges weakly to a common fixed fixed point w ∈ F (F).

Proof. Consider y, z ∈ C, two weak cluster points of the sequence {xk}. Then

there exist two subsequences {yk} and {zk} of {xk} such that yk ⇀ y and zk ⇀ z.

Fix any s ∈ A. Since {xk} is an approximate fixed point sequence for s it follows

that

(5.13) lim
k→∞
‖Ts(xk)− xk‖ = 0.

It follows from the Demiclosedness Principle (Theorem 4.1) that Ts(y) = y and

Ts(z) = z. By Lemma 5.1 the following limits exist

(5.14) r1 = lim
k→∞
‖xk − y‖, r2 = lim

k→∞
‖xk − z‖.

We claim that y = z. Indeed, assume to the contrary that y 6= z. By the Opial

property we have

r1 = lim inf
k→∞

‖yk − y‖ < lim inf
k→∞

‖yk − z‖ = r2

= lim inf
k→∞

‖zk − z‖ < lim inf
k→∞

‖zk − y‖ = r1.
(5.15)

The contradiction implies y = z which means that the sequence {xk} has at most

one weak cluster point. Since C is weakly sequentially compact, we deduce that

the sequence {xk} has exactly one weak cluster point w ∈ C, which means that

xk ⇀ w. Applying the Demiclosedness Principle again, we get Ts(w) = w. Since

s ∈ A was chosen arbitrarily and the construction of w did not depend on the
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selection of s, and A is a generating set for J , we conclude that Tt(w) = w for

any t ∈ J , as claimed. �

Let us apply the above result to some more specific situations. Let us start with

a discrete case. First, we need to recall the following notions.

Definition 5.3. A strictly increasing sequence {ni} ⊂ N is called quasi-periodic

if the sequence {ni+1 − ni} is bounded, or equivalently if there exists a number

p ∈ N such that any block of p consecutive natural numbers must contain a term

of the sequence {ni}. The smallest of such numbers p will be called a quasi-period

of {ni}.

Theorem 5.2. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of a X. Let F ∈ S(C)

be a semigroup with a discrete generating set A = {α1, α2, α3...}. Assume that

gKM(F , {ck}, {tk}) is a well defined Krasnosel’skii-Mann iteration process. As-

sume that for every m ∈ N with m ≤ card(A), there exists a strictly increasing,

quasi-periodic sequence of natural numbers {jk(m)}, with a quasi-period pm, such

that for every k ∈ N, tjk+1(m) = αm + tjk(m). Then the sequence {xk} generated

by gKM(F , {ck}, {tk}) converges weakly to a common fixed point w ∈ F (F).

Proof. We will apply Lemma 5.3. Note that the assumption (b) of Lemma 5.3 is

trivially satisfied since tjk+1(m) − tjk(m) − αm = 0. To prove (a), observe that by

the quasi-periodicity of {jk(m)}, to every positive integer k there exists jk(m)

such that |k− jk(m)| ≤ pm. Assume that k− pm ≤ jk(m) ≤ k (the proof for the

other case is identical). Fix ε > 0. Note that by Lemma 5.2, ‖xk+1 − xk‖ <
ε

pm

for k sufficiently large. Hence for k sufficiently large there holds

(5.16) ‖xk − xjk‖ ≤ ‖xk − xk−1‖+ ...+ ‖xjk(m)+1 − xjk(m)‖ ≤ pm
ε

pm
= ε.

This proves that (a) is also satisfied. Therefore, by Lemma 5.3 {xk} is an ap-

proximate fixed point sequence for every Ts where s ∈ J . By Theorem 5.1, {xk}
converges weakly to a common fixed fixed point w ∈ F (F). �

Remark 5.1. Note that Theorem 4.1 in [18] is actually a special case of Theorem

5.2 with A = {1}.
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Remark 5.2. It is easy to see that we can always construct a sequence {tk} with

the properties specified in the assumptions of Theorem 5.2. When constructing

concrete implementations of this algorithm, the difficulty will be to ensure that the

constructed sequence {tk} is not ”too sparse” in the sense that the Krasnosel’skii-

Mann process gKM(F , {ck}, {tk}) remains well defined (see Definition 5.2).

The following theorem is an immediate consequence of Theorem 5.1 and Lem-

mas 3.2, 5.3, and 3.3.

Theorem 5.3. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of X. Let F ∈ S(C)

be equicontinuous and B ⊂ B = A ⊂ J where A is a generating set for J .

Let {xk} be generated by a well defined Krasnosel’skii-Mann iteration process

gKM(F , {ck}, {tk}). If to every s ∈ B there exists a strictly increasing sequence

of natural numbers {jk} satisfying the following conditions:

(a) tjk+1
− tjk → s as k →∞,

(b) ‖xk − xjk‖ → 0 as k →∞,

then the sequence {xk} converges weakly to a common fixed point w ∈ F (F).

Remark 5.3. Observe that the set B in Theorem 5.3 can be made countable.

Hence by Remark 5.2 a sequence {tk} satisfying assumptions of Theorem 5.3

can be always constructed. Again, the main difficulty is in ensuring that the

corresponding process gKM(F , {ck}, {tk}) is well defined.

6. Weak convergence of generalized Ishikawa iteration processes

The two-step Ishikawa iteration process is a generalization of the one-step

Krasnosel’skii-Mann process. The Ishikawa iteration process provides more flexi-

bility in defining the algorithm parameters which is important from the numerical

implementation perspective.

Definition 6.1. Let F ∈ S(C), {tk} ⊂ J . Let {ck} ⊂ (0, 1), and {dk} ⊂ (0, 1).

The generalized Ishikawa iteration process gI(F , {ck}, {dk}, {tk}) generated by

the semigroup F , the sequences {ck}, {dk} and {tk}, is defined by the following
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iterative formula:

(6.1) xk+1 = ckTtk(dkTtk(xk) + (1− dk)xk) + (1− ck)xk,

where x1 ∈ C is chosen arbitrarily, and

(1) {ck}, {dk} are bounded away from 0 and 1,

(2) limk→∞ tk =∞,

(3)
∑∞

n=1 btn(x) <∞ for every x ∈ C.

Definition 6.2. We say that a generalized Ishikawa iteration process gI(F , {ck}, {dk}, {tk})
is well defined if

(6.2) lim sup
k→∞

atk(xk) = 1.

Lemma 6.1. Let C be a bounded, closed and convex subset of a Banach space

X. Let F ∈ S(C), w ∈ F (F), and let gI(F , {ck}, {dk}, {tk}) be a generalized

Ishikawa process. Then there exists an r ∈ R such that lim
k→∞
‖xk − w‖ = r.

Proof. Define Gk : C → C by

(6.3) Gk(x) = ckTtk

(
dkTtk(x) + (1− dk)x

)
+ (1− ck)x, x ∈ C.

It is easy to see that xk+1 = Gk(xk) and that F (F) ⊂ F (Gk) for every k ≥ 1.

Moreover, a straight calculation shows that each Gk satisfies

(6.4) ‖Gk(x)−Gk(y)‖ ≤ Ak(x)‖x− y‖,

where

(6.5) Ak(x) = 1 + ckatk

(
dkTtk(x) + (1− dk)x

)
(1 + dkatk(x)− dk)− ck.

Note that Ak(x) ≥ 1 which follows directly from the fact that atk(z) ≥ 1 for any

z ∈ C. Using (6.5) and remembering that w ∈ F (F) we have

(6.6) Bk(w) = Ak(w)− 1 = ck(1 + dkatk(w))(atk(w)− 1) ≤ (1 + atk(w))btk(w).

Fix any M > 1. Since lim
k→∞

atk(w) = 1, it follows that there exists a k0 ≥ 1 such

that for k > k0, atk(w) ≤M . Therefore, using the same argument as in the proof
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of Lemma 5.1, we deduce that for k > k0 and n > 1

‖xk+n − w‖ ≤ ‖xk − w‖+ diam(C)
k+n−1∑
i=k

Bti(w)

≤ ‖xk − w‖+ diam(C)(1 +M)
k+n−1∑
i=k

bti(w).

(6.7)

Arguing like in the proof of Lemma 5.1, we conclude that there exists an r ∈ R
such that lim

k→∞
‖xk − w‖ = r. �

Lemma 6.2. Let C be a bounded, closed and convex subset of a uniformly convex

Banach space X. Let F ∈ S(C). Let gI(F , {ck}, {dk}, {tk}) be a well defined

generalized Ishikawa iteration process. Then

(6.8) lim
k→∞
‖Ttk(xk)− xk‖ = 0

and

(6.9) lim
k→∞
‖xk+1 − xk‖ = 0.

Proof. By Theorem 2.1, F (F) 6= ∅. Let us fix w ∈ F (F). By Lemma 6.1,

lim
k→∞
‖xk − w‖ exists. Let us denote it by r. Let us define

(6.10) yk = dkTtk(xk) + (1− dk)xk.

Since w ∈ F (F), F ∈ S(C), and lim
k→∞
‖xk − w‖ = r, we have the following

lim sup
k→∞

‖Ttk(yk)− w‖ = lim sup
k→∞

‖Ttk(yk)− Ttk(w)‖

≤ lim sup
k→∞

atk(w)‖yk − w‖ = lim sup
k→∞

atk(w)‖dkTtk(xk) + (1− dk)xk − w‖

≤ lim sup
k→∞

(
dkatk(w)‖Ttk(xk)− w‖+ (1− dk)atk(w)‖xk − w‖

)
≤ lim

k→∞

(
dka

2
tk

(w)‖xk − w‖+ (1− dk)atk(w)‖xk − w‖
)
≤ r.

(6.11)

Note that

lim
k→∞
‖dk(Ttk(yk)− w) + (1− dk)(xk − w)‖

= lim
k→∞
‖dkTtk(yk) + (1− dk)xk − w‖ = lim

k→∞
‖xk+1 − w‖ = r.

(6.12)
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Applying Lemma 2.2 with uk = Ttk(yk) − w and vk = xk − w, we obtain the

equality lim
k→∞
‖Ttk(yk) − xk‖ = 0. This fact, combined with the construction

formulas for xk+1 and yk, proves (6.9).

Since

‖Ttk(xk)− xk‖ ≤ ‖Ttk(xk)− Ttk(yk)‖+ ‖Ttk(yk)− xk‖

≤ atk(xk)‖xk − yk‖+ ‖Ttk(yk)− xk‖

= dkatk(xk)‖Ttk(xk)− xk‖+ ‖Ttk(yk)− xk‖,

(6.13)

it follows that

(6.14) ‖Ttk(xk)− xk‖ ≤ (1− dkatk(xk))−1‖Ttk(yk)− xk‖.

The right-hand side of this inequality tends to zero because ‖Ttk(yk)− xk‖ → 0,

lim sup
k→∞

atk(xk) = 1 by the fact that the Ishikawa process is well defined, and

{dk} ⊂ (0, 1) is bounded away from 1. �

We need the following technical result being the Ishikawa version of Lemma

5.3.

Lemma 6.3. Let C be a bounded, closed and convex subset of a uniformly

convex Banach space X. Let F ∈ S(C). Let the generalized Ishikawa process

gI(F , {ck}, {dk}, {tk}) be well defined. Let A ⊂ J be such that to every s ∈ A

there exists a strictly increasing sequence of natural numbers {jk} satisfying the

following conditions:

(a) ‖xk − xjk‖ → 0 as k →∞,

(b) limk→∞ ‖Tek(xjk)− xjk‖ = 0, where ek = |tjk+1
− tjk − s|.

Then {xk} is an approximate fixed point sequence for all mappings {Tms} where

s ∈ A and m ∈ N, that is

(6.15) lim
k→∞
‖Tms(xk)− xk‖ = 0

for every s ∈ A and m ∈ N. If, in addition, A is a generating set for J then

(6.16) lim
k→∞
‖Tt(xk)− xk‖ = 0

for any t ∈ J .
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Proof. The proof is analogous to that of Lemma 5.3 with Lemma 5.1 replaced by

Lemma 6.1, and Lemma 5.2 replaced by Lemma 6.2. �

We are now ready to provide the weak convergence results for the Ishikawa

iteration processes.

Theorem 6.1. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of a X. Let F ∈ S(C).

Assume that gI(F , {ck}, {dk}, {tk}) is a well defined Ishikawa iteration process.

If the sequence {xk} generated by gI(F , {ck}, {dk}, {tk}) is an approximate fixed

point sequence for every s ∈ A ⊂ J where A is a generating set for J , then {xk}
converges weakly to a common fixed fixed point w ∈ F (F).

Proof. The proof is analogous to that of Theorem 5.1 with Lemma 5.3 replaced

by Lemma 6.3, and Lemma 5.1 replaced by Lemma 6.1. �

Similarly, it is easy to modify the proof of Theorems 5.2 and 5.3 to obtain the

next two results.

Theorem 6.2. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of a X. Let F ∈ S(C)

be a semigroup with a discrete generating set A = {α1, α2, α3...}. Assume that

gI(F , {ck}, {dk}, {tk}) is a well defined Ishikawa iteration process. Assume that

for every m ∈ N there exists a strictly increasing, quasi-periodic sequence of natu-

ral numbers {jk(m)}, with a quasi-period pm, such that for every k ∈ N, tjk+1(m) =

αm + tjk(m). Then the sequence {xk} generated by gI(F , {ck}, {dk}, {tk}) con-

verges weakly to a common fixed point w ∈ F (F).

Theorem 6.3. Let X be a uniformly convex Banach space X with the Opial

property. Let C be a bounded, closed and convex subset of X. Let F ∈ S(C) be

equicontinuous and B ⊂ B = A ⊂ J where A is a generating set for J . Let {xk}
be generated by a well defined Ishikawa iteration process gI(F , {ck}, {dk}, {tk}).

If to every s ∈ B there exists a strictly increasing sequence of natural numbers

{jk} satisfying the following conditions:

(a) tjk+1
− tjk → s as k →∞,

(b) ‖xk − xjk‖ → 0 as k →∞,

then the sequence {xk} converges weakly to a common fixed point w ∈ F (F).
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7. Strong convergence of generalized Krasnosel’skii-Mann and
Ishikawa iteration processes

Lemma 7.1. Let C be a compact subset of a Banach space X. Let F ∈ S(C)

and {sn} ⊂ J . If sn → 0 as n→∞ then F is equicontinuous, that is

(7.1) lim
n→∞

sup
x∈C
‖Tsn(x)− x‖ = 0.

Proof. Assume to the contrary that (7.1) does not hold. Then there exist {wk}
a subsequence of {sn}, a sequence {yk} ⊂ C and η > 0 such that for every k ∈ N
there holds

(7.2) ‖Twk
(yk)− yk‖ > η > 0.

Using compactness of C and passing to a subsequence of {yk} if necessary we

can assume that there exists w ∈ C such that ‖yk − w‖ → 0 as k →∞.

0 < η ≤ lim sup
k→∞

‖Twk
(yk)− yk‖

≤ lim sup
k→∞

(‖Twk
(yk)− Twk

(w)‖+ ‖Twk
(w)− w‖+ ‖w − yk‖)

≤ lim sup
k→∞

(awk
(w)‖yk − w‖+ ‖Twk

(w)− w‖+ ‖w − yk‖) = 0

(7.3)

since lim supk→∞ awk
(w) ≤ 1 and t 7→ Tt(w) is continuous. Contradiction. �

Theorem 7.1. Let C be a compact, convex subset of a uniformly convex Banach

space X. Let F ∈ S(C) and B ⊂ B = A ⊂ J where A is a generating set for

J . Let {xk} be generated by a well defined Krasnosel’skii-Mann iteration process

gKM(F , {ck}, {tk}) (resp. generalized Ishikawa process gI(F , {ck}, {dk}, {tk})).

If to every s ∈ B there exists a strictly increasing sequence of natural numbers

{jk} satisfying the following conditions:

(a) tjk+1
− tjk → s as k →∞,

(b) ‖xk − xjk‖ → 0 as k →∞,

then the sequence {xk} converges strongly to a common fixed point x ∈ F (F).

Proof. We apply Lemma 5.3 (resp. Lemma 6.3) for the parameter set B. Note

that condition (a) of Lemma 5.3 (resp. Lemma 6.3) is assumed. By Lemma 7.1

the semigroup F is equicontinuous and hence the assumption (b) of Lemma 5.3

(resp. Lemma 6.3) is satisfied. By Lemma 5.3 (resp. Lemma 6.3) then {xk} is
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an approximate fixed point sequence for any Tt where t ∈ B. By Lemma 3.3

{xk} is an approximate fixed point sequence for any Tt where t ∈ A. Since A is a

generating set for J , it follows that {xk} is an approximate fixed point sequence

for any Tt where t ∈ J (again, by Lemma 5.3 or respectively Lemma 6.3 for the

Ishikawa case). Hence for every t ∈ J

(7.4) ‖Tt(xk)− xk‖ → 0 as k →∞.

Since C is compact there exist a subsequence {xpk} of {xk}, and x ∈ C such that

(7.5) ‖Tt(xpk)− x‖ → 0 as k →∞.

Observe that

(7.6) ‖xpk − x‖ ≤ ‖xpk − Tt(xpk)‖+ ‖Tt(xpk)− x‖,

which tends to zero as k →∞ by (7.4) and (7.5). Hence

(7.7) lim
k→∞
‖xpk − x‖ = 0.

Finally

‖Tt(x)− x‖ ≤ ‖Tt(x)− Tt(xpk)‖+ ‖Tt(xpk)− xpk‖+ ‖xpk − x‖

≤ at(x)‖xpk − x‖+ ‖Tt(xpk)− xpk‖+ ‖xpk − x‖,
(7.8)

which tends to zero as k →∞ by boundedness of the function at, by (7.7), and

(7.4). Therefore, Tt(x) = x for every t ∈ J , that is x is a common fixed point

for the semigroup F . By Lemma 5.1 (resp. Lemma 6.1), limk→∞ ‖xk − x‖ exists

which, via (7.7) implies that

(7.9) lim
k→∞
‖xk − x‖ = 0

completing the proof of the theorem. �
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