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Abstract

The purpose of this paper is to provide fixed point theorems for asymptotically
nonexpansive type mappings in a Banach space with uniform normal structure.
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1 Introduction

Let C be a nonempty subset of a Banach space X and let T : C → C be a
mapping. Then T is said to be asymptotically nonexpansive [6] if there exists
a sequence (kn) of real numbers with lim

n→∞
kn = 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖ for x, y in C and n = 1, 2, ...

If this is valid for n = 1 with k1 = 1 (and hence kn = 1 for all n) then T is
said to be nonexpansive. If for each x in C, we have

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0,

then T is said to be of asymptotically nonexpansive type [8].
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In 1965, Kirk [7] proved that if C is a weakly compact convex subset of a
Banach space with normal structure, then every nonexpansive self-mapping
T of C has a fixed point. A nonempty convex subset C of a normed linear
space is said to have normal structure if each bounded convex subset K of
C consisting of more than one point contains a nondiametral point. That is,
a point x ∈ K such that sup{‖x − y‖ : y ∈ K} < sup{‖u − v‖ : u, v ∈
K} = diamK. Seven years later, in 1972, Goebel and Kirk [6] proved that if
the space X is assumed to be uniformly convex, then every asymptotically
nonexpansive self-mapping T of C has a fixed point. This was extended to
mappings of asymptotically nonexpansive type by Kirk in [8]. More recently
these results have been extended to wider classes of spaces, see for example [2],
[5], [9], [11] and [12]. In particular, Lim and Xu [12] and Kim and Xu [9] have
demonstrated the existence of fixed points for asymptotically nonexpansive
mappings in Banach spaces with uniform normal structure, see also [4] for
some related results. However, whether normal structure implies the existence
of fixed points for mappings of asymptotically nonexpansive type is a natural
question that remains open.

The present paper answers a question raised by Kim and Xu in [9]. It extends
results in their paper and [12] to mappings of asymptotically nonexpansive
type and so represents a further step toward a resolution of the question
raised above.

2 Main theorems

In this section, let X be a Banach space, let C be a nonempty bounded subset
of X and let T : C → C be a mapping of asymptotically nonexpansive type.
For each x ∈ C and n ≥ 1, put

rn(x) = sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ∨ 0

Then for each x ∈ C,

lim
n→∞

rn(x) = 0 (1)

Let E be a nonempty bounded closed convex subset of a Banach space X and
let d(E) = sup{‖x − y‖ : x, y ∈ E} be the diameter of E. For each x ∈ E,
let r(x,E) = sup{‖x − y‖ : y ∈ E} and let r(E) = inf{r(x,E) : x ∈ E}, the
Chebyshev radius of E relative to itself. The normal structure coefficient of X
is defined to be

Ñ(X) = sup{ r(E)

d(E)
: E is a bounded closed convex subset of X with d(E) > 0}.
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Note, the normal structure coefficient Ñ(X), introduced by Maluta [13], is the
reciprocal of N(X) defined by Bynum in [3]. A space X for which Ñ(X) < 1
is said to have uniform normal structure. It is know that a space with uniform
normal structure is reflexive and that all uniformly convex or uniformly smooth
Banach spaces have uniform normal structure.

Theorem 2.1 Suppose X is a Banach space with uniform normal structure,
C is a nonempty bounded subset of X, and T : C → C is an asymptotically
nonexpansive type mapping such that T is continuous on C. Further, suppose
that there exists a nonempty closed convex subset E of C with the following
property (P ):

x ∈ E implies ωw(x) ⊂ E,

where ωw(x) is the weak ω-limit set of T at x; that is, the set

{y ∈ X : y = weak − lim
i
T nix for some ni ↑ ∞}.

Then T has a fixed point in E.

To prove the theorem we use the following lemma from [14].

Lemma 1 Let C be a nonempty subset of a Banach space X and let T be
a mapping of asymptotically nonexpansive type C. Suppose there exists a
nonempty bounded closed convex subset E of C with the property (P ). Then
there is a closed convex nonempty subset K of C and a ρ ≥ 0 such that:

(i) if x ∈ K, then every weak limit point of (T nx)is contained in K;
(ii) ρx(y) = ρ for all x, y ∈ K, where ρx is the functional defined by

ρx(y) = lim sup
n→∞

‖T nx− y‖, y ∈ X.

Proof of Theorem 1: Let K, ρx and ρ be as in lemma 1. Let x be any element
in K and let G be a sub-semigroup of N. That is, G = {in0 : i ∈ N} for some
n0 ∈ N. For each i ∈ G, consider the sequence (T jx)i≤j∈G. From the definition

of Ñ(X), we have a yi ∈ co{T jx : i ≤ j ∈ G} (here, co denotes the closed
convex hull) such that

lim sup
j∈G

‖T jx− yi‖ ≤ Ñ(X)A((T jx)i≤j∈G), (2)

where A(zn) is the asymptotic diameter of the sequence (zn); that is, the
number

lim
n

(sup{‖zi − zj‖ : i, j ≥ n}).
Since X is reflexive, (yi) admits a subsequence (yi′) converging weakly to some
x∗ ∈ X. From 2 and the w-l.s.c. of the functional lim sup

j∈G
‖T jx− y‖, it follows

that

lim sup
j∈G

‖T jx− x∗‖ ≤ Ñ(X)A((T jx)j∈G). (3)
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It is easily seen that x∗ ∈ ∩i∈Gco{T jx : i ≤ j ∈ G} and that

‖z − x∗‖ ≤ lim sup
j∈G

‖z − T jx‖ for all z ∈ X. (4)

Using property (P ) and the fact that ∩i∈Gco{T jx : i ≤ j ∈ G} = co ωw{T jx :
j ∈ G}, which is easy to prove by using the Separation Theorem (cf. [1]), we
get that x∗ actually lies in K. We claim that:

there exists x ∈ K such that ω(x) 6= ∅, where ω(x) is the strong ω-limit set
of T at x, and
ρ = 0.

To derive a contradiction, we suppose that (1) is not true. In particular then,
for any sub-semigroup G of N and for any x, y ∈ K, we have that D =
lim sup

j∈G
‖T jx − y‖ is strictly greater than zero. Let r0 be a positive number

chosen so that r = (2r0 + 1)Ñ(X) < 1, this is possible since by assumption
Ñ(X) < 1.

Now, take any x0 in K and put G0 = N, then from 3 and 4 there exists x1 ∈ K
with

0 < D0 = lim sup
j∈G0

‖T jx0 − x1‖ ≤ Ñ(X)A((T jx0)j∈G0)

and
‖z − x1‖ ≤ lim sup

j∈G0

‖z − T jx0‖, for all z ∈ X.

It then follows from 1 that there exists n0 ∈ N such that

rn(x1) < r0D0, for all n ≥ n0.

Put G1 = {in0 : i ∈ N}, it is a sub-semigroup of N. It follows that there exists
x2 ∈ K such that

0 < D1 = lim sup
j∈G1

‖T jx1 − x2‖ ≤ Ñ(X)A((T jx1)j∈G1)

and
‖z − x2‖ ≤ lim sup

j∈G1

‖z − T jx1‖, for all z ∈ X.

By 1 again, there exists n1 ∈ G1 such that

rn(x2) < r0D1, for all n ≥ n1.

Put G2 = {in1 : i ∈ N}, it is a sub-semigroup of G1. It follows that there
exists x3 ∈ K such that

0 < D2 = lim sup
j∈G2

‖T jx2 − x3‖ ≤ Ñ(X)A((T jx2)j∈G2)

and
‖z − x3‖ ≤ lim sup

j∈G2

‖z − T jx2‖, for all z ∈ X.
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We can repeat the above process to obtain a sequence (xn)∞n=1 in K and a
series of semigroups {Gn}∞1 with the properties:

(i) N = G0 A G1 A G2 A . . . . ;
(ii) Dn = lim sup

i∈Gn

‖T ixn − xn+1‖ ≤ Ñ(X)A((T ixn)i∈Gn);

(iii) ‖z − xn+1‖ ≤ lim sup
i∈Gn

‖z − T ixn‖, for all z ∈ X;

(iv) ri(xn+1) ≤ r0Dn, for all i ∈ Gn+1.

Now for i, j ∈ Gn with i > j, we have that i − j ∈ Gn ⊂ Gn−1 and from
(iii)− (iv) that

‖T ixn − T jxn‖ ≤ rj(xn) + ‖T i−jxn − xn‖
≤ rj(xn) + lim sup

m∈Gn−1

‖T i−jxn − Tmxn−1‖

≤ rj(xn) + ri−j(xn) + lim sup
m∈Gn−1

‖xn − Tmxn−1‖

≤ (2r0 + 1)Dn−1.

It follows from (ii) that

Dn ≤ Ñ(X)(2r0 + 1)Dn−1 = rDn−1 ≤ . . . ≤ rn−1D1.

Therefore, for each i ∈ Gn and n ≥ 2, we have

‖xn+1 − xn‖ ≤ ‖xn+1 − T ixn‖+ ‖T ixn − xn‖
≤ ‖xn+1 − T ixn‖+ lim sup

m∈Gn−1

‖T ixn − Tmxn−1‖

≤ ‖xn+1 − T ixn‖+ ri(xn) + lim sup
m∈Gn−1

‖xn − Tmxn−1‖.

Consequently,

‖xn+1 − xn‖ ≤ Dn +Dn−1 ≤ (rn−1 + rn−2)D1.

That is, (xn) is a Cauchy sequence and there is x ∈ K such that xn → x
strongly as n→∞. Since

‖T jx− x‖ ≤ ‖T jx− T jxn‖+ ‖T jxn − xn+1‖+ ‖xn+1 − x‖
≤ rj(x) + ‖x− xn‖+ ‖x− xn+1‖+ ‖T jxn − xn+1‖,

we have

lim inf
j→∞

‖T jx− x‖ ≤ ‖x− xn‖+ ‖x− xn+1‖+ lim inf
j→∞

‖T jxn − xn+1‖

≤ ‖x− xn‖+ ‖x− xn+1‖+ lim sup
j∈Gn

‖T jxn − xn+1‖

= ‖x− xn‖+ ‖x− xn+1‖+Dn.
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Taking n→∞, we get
lim inf
j→∞

‖T jx− x‖ = 0.

This is a contradiction.

To prove (2), by Lemma 1, it is enough to show that if ρ > 0 then there exist
z, y ∈ K such that ρy(z) = lim supn→∞ ‖z − T ny‖ < ρ. To this end, by (1),
there exists x ∈ K such that ω(x) 6= ∅. Let y = lim

i
T nix for some ni ↑ ∞. It

is easily seen that {T ny : n ≥ 1} ⊂ K. Put

ρ0 = diam(co{T ny : n ≥ 1}) = diam({T ny : n ≥ 1}).

Since

‖T ny − Tmy‖= lim
i→∞
‖T n+nix− Tmy‖

≤ lim sup
i→∞

‖T ix− Tmy‖
= ρ,

we have ρ0 ≤ ρ. Since K has normal structure, there exists z ∈ co{T ny : n ≥
1} such that

sup
n≥1
‖z − T ny‖ < diam(co{T ny : n ≥ 1}) ≤ ρ.

This proves (2).

By (2), K = {x} and T nx→ x strongly as n→∞. Therefore, Tx = x by the
continuity of T .

Corollary 1 Let C and X be as in Theorem 1 and let T : C → C be
an asymptotically nonexpansive mappings. Suppose there exists a nonempty
bounded closed convex subset E of C with the property (P ). Then T has a
fixed point.

Proof: This follows since an asymptotically nonexpansive mapping is of asymp-
totically nonexpansive type.

From Theorem 1 we readily capture the following result announced by Taehwa
Kim, who also gives an alternative proof [10].

Corollary 2 Let X be a Banach space with uniform normal structure, let C be
a bounded closed convex subset of X, and suppose T : C → C is a continuous
mapping of asymptotically nonexpansive type. Then T has a fixed point.

We conclude the paper by stating the semigroup version of Theorem 1. The
proof is similar to that of Theorem 1 and is therefore omitted.

Theorem 2.2 Suppose X is a Banach space with uniform normal structure,
C is a nonempty bounded subset of X, and = = {T (t) : t ≥ 0} is a semigroup of
asymptotically nonexpansive type mappings on C such that T (t) is continuous
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on C for each t ≥ 0. Suppose also that there exists a nonempty bounded closed
convex subset E of C with the following property (P ):

x ∈ E implies ωw(x) ⊂ E,

where ωw(x) is the weak ω-limit set of {T (t)x} , i.e. the set

{y ∈ X : y = weak − lim
i
T (ti)x for some ti ↑ ∞}.

Then = has a common fixed point in E, i.e. there exists a z ∈ E for which
T (t)z = z for all t ≥ 0.
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