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Abstract 

Let X be a Banech space satisfying Opial's propaty, C a weakly 
compact convex subset of X ,  and T a locally almost noncxpansive self- 
mapping of C. We prove that I - T is demicloeed on C, and if T is 
weakly asymptotically regular a t  z E C (i.e., T"z - T + ' z  - 0 d y ) ,  
then every weak cluster point of ( F z )  is a M point of T. We also 
prove a fixed point theorem for multivalued locally almost nonntpanaive 
mappings. 
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1 Introduction 

Let X b a a  Banach space and C a nonempty closed bounded convex subset of X. Recall that a 

mapping T : C + X is nonezpamive if llTz - Tyl( 5 llz - yll for all z, y E C. In 1965, F.E. Browder 

[I.], D. Cohde [6] and W.A. Kirk [7] independently proved that if X is uniformly anvex, then ev 5 -  
nonexpansive self-mapping of C has a fixed point. In 1968, F.E. Browder 121 introduoed a wider class 
of mappings called semicontractive A mapping T : C + X is called semiwntmctive if there exists a 

mapping V : C x C + X such that (a) T z  = V(z, z )  for z E C; (b) for each fixed y E C, V(-, y) is a 
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nonexpansive map; and (c) given z E C and E > 0, there is a weak neighborhood N, of t in C such 
that for z, y E N,, IIV(z, y) - V(z, z)ll < E. Later in 1972, RD. Nussbaurn (91 proposed the cless of 
locally almast nonexpansive mappings. A mapping T : C -, X is called locally almost mneqm&ve 
(LANE for short) if for all z E C and E > 0, there exists a weak neighborhood N, = N(z, E) of z in 

C such that 

JITu - TvlJ 5 ((u - vll+ E, u, v E N,. 

Nussbaum 191 observed that a semicontractive mapping is LANE. He also observed that if TI : C -. X 
is nonexpansive, Ta : C -r X is completely continuous, and T3 : (TI + Ta)(C) -. X is nonexpansive, 
then T3(Tl + Ta) is LANE. 

One can use nets and sequences to characterize local almast nonexpansivity. The following lemma 
is not hard to prove. (Throughout this paper, '-' stands for weak convergence and I-.' for strong 

convergen-1 

Lemma 1.1. Let X be a Banach space and C a closed convex subset of X .  Then T : C -. X is 

LANE if and only if for all z E C, and neb ( z , ) , ~ ~  and (Y,),EA in C with z, - z and y, - z, it 
follows that 

limmp IlTzu - Tyall 5 limsup IIzu - pall- 
UEA a E A  

(1.1) 

If C is separable, then T is LANE if and only if for all z E C and sequences (zn) and (y,) in C both 
weakly converging to z ,  it follows that 

limmplITz, -Tynll IlimsupII%-~nII. 
n-w n-m 

In particular, if T is LANE and t, - z ,  then 

Iimaup JITz,, - Tzll 5 l i m p  112, - 211. 
n-m n-w 

Remark 1.2. In both (1.1) and (1.2), 'Iimsup' can be r e p l a d  with 'liminf'. 
As an immediate consequence of Lemma 1.1 we have 

Corollary 1.3. Let X and C be as in Lemma 1.1. 

1. T is LANE if it is weak-to-norm continuous on C (i.e, z E C, (z,) C C, za - z T(z,) - 
T(z)). 

2. If X is finite-dimensional, then T is LANE if d y  only if T is continuous on C. 

Corollary 1.3 points out a big differeno? between the cless of nonexpansive mappings and the 
class of I d l y  almost nonexpansive mappings. One thus concludes that many nice properties of 
nonexpansive mappings are not shared by the LANE mappings. We here indude one which is 
pertinent to Theorem 3.1, one of the main results of this paper. It is easily seen that if T : C -. C 
is nonexpadve and p is a fixed point, then lim IJT"z - pi1 exists for wery z E C. However, this is 
not true for LANE mappings. For example, let X be the real line, (2 = 1-1,1] and T : C -. C be 
given by T(z) = -z if -1 5 z 5 -; or 5 z 5 1, T ( i )  = f and T is linearly Bct&nded to the rest 
of C. Then 5 is the only fixed point of T. Since T"(1) = (-I)", lim IT"(1) - f 1 does not exist. 



N u s b a w n  191 proved that if X is reflexive and T : C 4 X is LANE, then T is a 1-set contraction. 
He further proved that i f  X is uniformly convex, then I - T (with I the identity) is d e m i c l d  on 
C and hence T has a fixed point provided T is a self-mapping of C. 

In the present paper we shall prove that if X satisfies Opial's property and T : C -r X is LANE, 
then I - T  is demiclosed on C and hence T admits a fixed point when T m a p  C into itself; morewer, 
if T is weakly esymptotically regular a t  z E C (i.c, w - lim,,,(T"z - 7"'+'z) = 0). then every 

weak cluster point of (7%) is a fixed point of T. We shall also prove a fixed point theorem for 

multivalued LANE mappings. 

2 Demiclosedness Principle 

Let X be rr Banach space, let C be a nonempty c l d  bounded convex subset of X ,  and let f : C -r X 
be a mapping. Recall that f is said to satisfy the demicbsednes principle or be dmzicbsed on C if ' 

for any sequence (z,,) in C, the ccmditions zn - z and f (2,) y imply that f (z) = y. lt is known 
(11 [lo] that if X is a uniformly convex Banach space or satisfies Opial's property and T : C -r X is 
nonexpansive, then I - T is demiclcsed on C. Recall that X is said to satisfy C)pia18s ppertg~ [lo] 
if given any sequence (2,) in X with zn - z,, we have 

Banach spaces having Opid's property include Hilbert spaces and the spaces P (1 _< p < 00). 

Fwther any separable Ban& spaoe can equivalently be renormed to have OpiaI's property 151. 
Nuasbum 191, in a uniformly convex Banach spaa setting, utended the demiclosedness principle 

from nonwrpansive mappings to locdly dm& nonexpansive rnappingb Below we make a similar 
uhcnsion in the &work of Bsnech spruxa with Opid's p r o m .  

Theorem 2.1. Assume that X is a B a n d  spaoe satisfying Opial's property, that C is a nonunpty 
closed convat subset of X ,  and that T : C -r X is LANE. Then I - T is demiclosed on C and hence 
( I  - T)(E) is c l o d  for every weakly compact subset E of C. 

Pnoof. h l m e  (2,) is a sequence in C such that zn - z and ( I  - T)z, -r y. If ( I  - T)z # y, then 
z # T z  + y. Hen= Opial's property for X and (1.3) of Lemma 1.1 imply that 

limsup llzn - zll < limsup)lzn - (Tz + y)ll 
n- w n-OD 

= lim SUP l(zn - TZ - ( I  - T)~n11 
n-OD 

= lim sup llTzn - Tzll 
n - o ~  

5 l i m ~ ~ p  - 
n-w 

This k e contradiction.'So we must have ( I  - T)z = y and I - T is demiclosed. Finally if E is a 
weakly conlpact subset of C, then the closedness of ( I  - T)(E) is an immediate consequence of the 
demidosednes of I - T and the weak compactness of C. 8 



Recall that the inward set to a clased convex set C at z E C is defined by 

Ic(z) := { z  + X(y - z )  : X 1 0, y E C). 

Let &(z) = IC(2), the dosun o f  I&). A map f : C -r X is said to satisfy the weak inwardness 

condition (or to be weakly inward) on C if f ( z )  E i c ( z )  for all z E C. In case the interior of C is 
nonempty, we say that f satisfics the Lay-Schauder condition if there exists a point z E int C such 
that 

f (z) # z + X(z - z )  for all X > 1 and z E BC. 

Note that in case int C # 0, the weak inwardnm condition irnplics the Leray-Srhauder condition. 

Corollary 2.2. Let X be a Banach space satisfying Opial's property, C a weskly compact convex 
subset of X ,  and T : C -+ X LANE. If T is weakly inward on C, or if, in case intC # 0, T satisfics 
the hay-Schauder condition, then T has a fixed point. 

Proof. Fix an z o  E C and define for each integer n 2 1 a map T, : c --, x by 

Then [9, Lanma 11 imlpies that each Tn is a ( 1  - ;f) - 7-contraction and hence in either the w d y  
inward czse or the Leray-Schauder case, Tn has a fixed point z, E C, see [3] (41. It is i s l y  seen 
that 

1 
ll(I - T)znll < ;diarn(C) -r O (n -+ 00). 

Since C is weakly compect, by Theorem 2.1, we - that every weak clusta point of (2,) is a fixed 
point o f  T .  # 

Remark 2.3. Nursbaum (9) praved that if X is a uniformly convex B a n d  space, if C is a 
closed bounded convex subset of X ,  and if T : C -r X is LANE, then T has a fixed point in C 
provided T satisfies the Rothe boundary condition; namely, T ( K )  C C. The above proof shws  
that Nussbaum's result is still valid if the Rothe boundary condition is relaxed to either the weak 
inwardne~s condition, or in case int C # 0, to the Leray-Srhauda condition. 

3 Weak Asymptotic Behavior 

Let X be a Bsnach space and let C be a closed convex subset of X .  Recall that a mapping T : C -- C 
is weukly mynaplotically regular at z E C if w - lim,,,,(T"z - T"+'z) = 0. Kuaumow [8] prwed 
that if X satisfies Opial's property and T : C -r C is nonexpansive, then the weak asymptotic 
regularity of T a t  z E C irnplics the weak convergence of the sequence (Pz) to a fixed point of T. 
We can not fully recover this result for a locally almost nonexpansive mapping T .  The difficulties lie 
in that the local almost nonexpansiveness of T at z only works for a sequence (z,) which is weakly 
convergent to z (see Lemma 1 . 1 )  and that for a fixed point p of T, the lim 117"~ - pII may fail to 
pxist (see the example in Section one). 



Theorem 3.1. Let X be a Banach space satisfying Opial's property, let C be a closed convex subset 
of X ,  and let T : C -, C be LANE. Then, if T is weakly asymptotically regular at z E C, we have 
that w w ( z )  c F(T), when ww(z) is the wedc w-limit set of T at z ;  i.e, 

If we assume, in addition, that the lim,,, 1JPz - pi) exists for all fixed points p of T ,  then ( P z )  
w d y  converges to a fixed point of T. 

Proof. Let p be a point in w,(z). Then we have a subsequence (q), ni -* W, such that P z  - p. 
By using the diagonal method and passing to a further subsequence if necessary we can assume for 
each intega m 2 0 that liii,, IJP'+mz - pll =: b,,, exists. Note that by the weak asymptotic 
regularity, we have for all m 2 0, P + m z  - p as i + w. It follows that 

a+, = ~ ~ w l l ~ + m + l ~ - ~ ~ l  
< l i i  sup ((T"'+m+lz - Tpll by Opial's property - 

8-m 

-< lim IIPCmz - pll by Lemma 1.1 
8- w 

= b",. 

H- (k) is a decreasing sequence. Put b := li-,, b,,, = inf{bm : m 2 0). We now claim that 
p is a fixed point of T .  

I f  b = 0, using Lemma 1.1 we get 

Hence Tp = p. Assume next b > 0. Consider the countable set G := { F + m z  : i 2 1, m 2 0) U @). 
Since the weak topology of X restricted to C satisfies the First Countable Axiom, we can find a 
countable weak neighborhoods (N,) of p in C such that ng, N, = (p) .  Now far each k 2 1 we select 

a sutsecpence (my)) of (my-'))-  satisfying for i >_ 1. 
i-1 

This is possible because for each m 2 0, T"'+mz - p as i -.r m and bk = limi-.- I~'.P'"'z - pII I 
liw,, IJT"'+'-'z - p(l = b k - ] .  Let mk = nf) + k - 1. Then we have for k 2 1, 



We therefore have if Tp # p, 

b < linl sup l17'"'h+Lz - pll 
t-m 

< lirn sup ]lT"h+'z - TpI( by Opial's property 
t-a) 

< lirnsupl(Tbz-p(l byLanma1.1 
t-m 

5 b. 

This is a contradiction. So we must have Tp = p and w,(z) C F(T). To finish the proof, assume in 
addition that lim,,,, l lPz  - yll exists for all fked points y of T. If p, q E w,(z), then P z  - p 
and F j z  - q foi some + ca and mj + ca. Since p, q E F(T), it follows that if p # q, 

lirn (17"' -p i (  = T i  l(7""z - pll 
n-w r-w 

< lirn JJT"'z - 911 by Opial's Property 
r- m 

= lirn II7'"'jz - 911 
1-00 

< ,lim ((T"'jz - P I I  b y  Opial's property 
1-a, 

= lirn 117"'~ - p(l,  
n- m 

which is a contradiction. 

4 Multivalued Extension 

This section is devoted to a multivalued extension of the concept d locally dm& nonexpansive 
mappings. For a nonempty Jd amvex subset C of a Ban& spcur X,  we demote by K(C) (resp. 
KC(C)) the family of nonempty awnpact (resp. compact conva) subsets of C. Let H be the 

H d o d  dirrtance induced by the norm of X; thus we have for A, B E K(C), 

where d(z, K )  := inf{)(z  - yl( : y E K )  is the distance kom s point z E X to a subset K C X. 

Definition 4.1. A multivalued map T : C + K ( X )  is said to be l o d l 9  h s i  noneapawive (LANE 
for short) if for every z E C and E > 0, there exists a wcsk neighborhood N, in C of z such that 

H(Tu, Tv)  5 I(u - vll + E, u, v E N r .  

Note that a LANE multivalued map T is continuous with respect to the Hausdorff distance and 
hence it is both upper and lower semicontinuous. 

Recall that the Hausdorff measure of a bounded subset B of a Banach space X is defined by 

P(B) := inf{r > 0 : B can be covered by a finite family 

of balls each with radius fess than r) .  

A multivalued map T : C -+ K(X)  is called a 1-p-contmction if P(T(B)) 5 P(B) for all bounded 
subsets B of C. Here T(B)  = U{Tz : z E B). 

* 



Lemma 4.2. Let C be a weakly compact convex subset of a Banach space X and let T : C -+ K ( X )  
be LANE. Then T is a 1-f3-contraction. 

h o f .  We need to prove 

P(T(B)) 5 P(B) VB C C. 

For any E > 0, by weak compactness, C can be cavered by finitely many subsets of C, N1, Nz, - , N,, 
such that 

H(Tu ,Tv) I I lu -v l l+~ ,  u ,v€Ni ,  1 S i I m .  

Repeat the argument of X i n g  14, p. 1131 to get P(T(Ni)) 5 P(N,) + E for 1 5 i 5 m. Now for a 
subset B of C, we have B = q,lB n Ni, and m 

P(T(B)) = lgymP(T(B n Nil) I g y r n B ( B  n Ni) + E 5 B(B) + E. 

- 
But, E > 0 is arbitrary, we get B(T(B)) I B(B). 

Theorem 4.3. Let X be a Banach space satisfying Opial's property, let C be a weakly compact 
convex subset of X, and let T : C + KC(X) be LANE. Assume that 

or in case int C # 0, that the Leray-Schauda condition holds; that is, t hae  is some z E int C for 
which 

z+A(z-z )#Tz  f o r a l l A > l a n d z ~ X .  

Then T hss a fixed point. 

Proof. Take a fixed a E C and define for each integer n > 1 a mapping Tn : C + KC(X) by 

Then by Lemma 4.2, T, is a (1 - i) - B-contraction. It is eesily seen that T, satisfies the same 
boundary condition ss T das.  Hence by Theorems 11.5 and 11.6 of D e i i ~ l g  141, Tn has a fixed 
point z, E C; i.a, z, E C is a solution to the inclusion 

Since C is weakly compact, we can assume that (z,) is weakly mnvagent. Let z = UJ - lirn z,. Take 

Vn E Tzn such that 112, - ~ n l l  = d(zn, Tzn) idiam(C) by (4.1). We also have z, E Tz for which 
llvn - = d(&, Tz). By the compactness of Tz, we can assume that z, -., f E Tz. Now since T 
is LANE, given any E > 0, we have a weak neighborhood N, of z such that 

As z, - z, we have for all?arge n, 



It follows that 

lim sup )lz, - 21) = lim sup - &(( 
n-aa n-m 

= lim sup d ( h ,  Tz) 
n-m 

< lim sup H(Tz,, Tz) - 
n-m 

I lim sup (lz, - 211 + E. 
n-m 

Since E > 0 is arbitrary, we get limsupn,, (lz, - fll I lirnsup,,, llz, - 211. Opial's property of 
X then yidds that L = z E Tz. 
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