
More on the Overhang Problem 
Brailey Sims 
University of New England 
Armidale. Australia 

Editor's Note: In the May. 1977 issue of the Bulletin, Ian McGee described the 
"overhang" problem. SpeciJically, how much overhang is possible with a pile of blocks. 
cards, bricks, etc. sitting as in the jgure below. 

He showed that, in general, if the blocks are arranged so that the combined centre of 
gravity of a pile of n - 1  blocks is directly above the edge of the bottom ( n '  th ) block. 

1 1  
then an overhang of - 1 + - + - + . . . + - 

2 I /  2 3 
is possible. Brailey Sims 

(n  -1) 
extends this example, and ,'in doing so, introduces Euler's constant and solves one of the 
questions posed in the 1977 article. 

T o  answer the question of how large an overhang is possible, we need to find how 
large the sum 
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This is just , the sum of the harmonic series, which is known to diverge. However, we 
L 

1 1  
can illustrate this divergence by considering 1 + - + - + . . . as an area, as follows, 

2 3 



1 
and note that the sum is greater than the area under the curve y = - between x = 1 and 

X 

We then have 

Since In n + a as n + we conclude that the overhang can be as large as we like. 

This fact has been employed in the construction of certain bridges (not always 
successfully - witness the tragic collapse of a partly completed bridge in Victoria, Australia 
a few years ago). Stacks are built up from each side to meet in the middle. (Usually the 
higher blocks in the stack are lighter, allowing a larger overhang to be achieved with fewer 
"blocks". (See the article by Ian McGee in the Bulletin, May, 1977 - Problem 4 )  To keep 
our problem simpler we will continue to assume all our blocks are identical.) 

In the bridge problem the desired overhang is known. Since we start building from 
the bottom, the number of blocks n needed to achieve this overhang must be determined 
before construction can commence (the second block must be placed with an overhang of 

I on the top of the first, etc.). Our problem is therefore to determine the minimum 
2(n - 1) 

number of blocks n which need to be stacked to achieve an overhang of at least m.  (Here 
m is a given number which we will assume is integral.) 

That is, we wish to  determine the smallest whole number n for which 

It  is convenient to  rephrase this as: Find the smallest whole number n for which 

(then our answer is the value of n corresponding to M = 2m). As a little trial calculation 
1 1  will demonstrate, any attempt to answer this by summing 1 + - + - + . . . 
2 3 

until the 

sum first exceeds M is extremely tedious even for moderate values of M and impossible for 
larger values. [It took 1 hour 33 minutes on a Tandy TRS-80 using a reasonably efficient 
Basic I1 programme to  determine the number of blocks for an  overhang of 6 ( M  = 12) - 
the problem of determining n for an overhang of 6 was recently posed in Parabola with the 
answer being given for overhangs of 1 to  5.1 

Clearly some other approach is needed. It is a t  this point that the constant 

y = 0.577215664901532860606512090082 ...., 

known as Euler's Constant, comes to  the rescue. 

The Swiss mathematician, Leonard Euler (1707-1783) discovered in 1744 that 



tends to a limit as n + a. Euler determined the value of this limit to 16 decimal places 
and christened the limiting value y. (Much of our modern mathematical notation is due to 
Euler, for example; he consolidated the use of the symbol x and introduced e to stand for 
the base of the natural logarithms. His written works (approximately 886 in number) were 
prolific and far exceed those of any other mathematician.) 

Later the value of y was determined by Mascheroni to 32 decimal places with an 
error in the 20th. The error was corrected by Gauss and Nicolai. Adams determined the 
value to 260 places in 1878 and today, using computers, its value is known to over 7000 
places (Beyer and Waterman, 1974).t 

y as an Area 
From what has been said 

y = lim yn 
n+- 

1 where y, = 1 + - + . . . + - -  I In n. Now, we also have 
2 n -1 

1 2 n -1 1 2 3  n - 1  
In- + In- + . . . 
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+ I n - = I n - X - X - X  . . .  X- 

2 n 2 3 4 n 

Further we can note that 

k k + l  1 
In- = Ink - I n ( k + I )  = - I ydx k + l  k 

while 

1 
So, the k'th term in the last expression for y,, - + In - 

k 
, may be expressed as 

k + I  

I k + l  ( k + l )  - x  dx 
X 

2 
k 

1 
corresponding to the following area, which we readily see is less than - 

2k2 ' 

The constant y has intrigued mathematicians even since the time of Euler. Other famous constants 
such as u and e have been shown to be transcendental. That is, numbers which are not roots of any poly- 
nomial with integer coefficients. Consequently they are certainly not rational numbers. Any rational 
number is the root of qx - p = 0. (proof of the transcendence of u answered, in the negative, the 

long stanhing question of whether it was possible to "square the circle".) y is conjectured to be 
transcendental, but as yet, even its irrationality remains unproved. 



Now, 

is the following area, and y corresponds to the area of the "saw-toothed" region obtained 

by extending the above picture indefinitely to the right. From this we readily see that the 
"error" between y and y,, is the area of the "saw-toothed" region from n onwards. That is 

and so 

or, substituting for y,, 

Using a by now familiar trick, we see that 



and so we have 

1 Using this we may readily find the value of n for 1 + - + . . . 
2 

+-  I to have any 
n-l  

given value. 

For example: to find n for an overhang of 6, we need the smallest n for which 

' and use exceeds 12. Since n will be large, we start by neglecting --- 
2(n -I) 

I I 1 + - +  . . .  
2 

+ -  % y + Inn to determine a value of n for which y + Inn = 12, 
n -1 

that is 

n = e1*-7 91380.227 (by calculator). 

Since for this value of n, y + Inn = 12 and y + Inn is greater than the sum 

we see that n = 91380 is too small, so we try n = 91381; for this value we have 

1 1 1 y + Inn - -% 12.000003 < 1 + - +  . . .  + - 
2(n -1) 2 n -1 

and so we conclude the number of blocks necessary to achieve an overhang of 6 is 91,381! 

A Problem with Blocks - Exercises 

1. Determine the minimum number of blocks which need to be stacked to achieve an 
overhang of at least one. [Do the calculations by hand.] Draw an accurate picture of 
the stack. 



2. Write a computer programme to determine the minimum number of blocks which 
need to be stacked to achieve an overhang of at least m. That is, a programme which 
will determine the smallest value of n for which 

If possible run your programme to determine the answers for m = 2, 3, 4 and 5. 
Take note of the time needed for these calculations.] 

3. Using a calculator, and the inequalities 

1 < I + - +  . . .  + -  y + Inn - ---- 
2 

< y + ~ n n  
2(n - I )  n -1 

follow the method outlined to determine the number of blocks for which an overhang 
of 7 can be achieved. [TJse y z 0.57721 56651 

4. If nm is the minimum rlumber of blocks necessary to achieve an overhang of m, use 
the approximation 

to show that 

Hence conclude that nm + I ,  is related to nm by 

nm+l (e2)nm. 

That is, we need approximately 7.39 ore blocks to increase the overhang by the 
length of one block. -K,<, \ - d ,, 

*-:', 
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In the last issue of the Bulletin we referred to an article by Richard Clausi and Brian 
Hahn which discussed the use of micro computers to calculate mortgages. Several readers 
discovered that no such article could be found in that issue of the Bulletin. 
Unfortunately, there was a slip-up on our part as the Bulletin was being prepared for the 
presses, and that article was overlooked. Please accept our apologies, and do look at that 
article which is iicluded in this present issue. Would any of our readers like to rewrite 
that program, and enhance it, to run on the PET? 




