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NON-EXPANSIVE MAPPINGS ON BANACH LATTICES 

AND RELATED TOPICS 

Jon. M. Bonvein and Brailey Sims 

ABSTRACT. We pve a new lattice theoretic criterion for a 
non-expmsive mapping defined on a weakly compact convex 
subset of a Ranach space to have a fixed point. Our condition 
allows us to show that a wide variety of Banach sequence spaces, 
inc1ud1r.g co(r)  and c(r). have the fixed point property. 

$ 1 .  Introduction. A self-mapping T of a closed convex subset C in a Banach 

space X is said t o  be iioil-expaizsive if llTx - Tyll < Ilx - yll for all x.y in C. 

We say X has the (weak)  f ixed p o i n t  p r o p e r t y  if every non-expansive mzpping 

defined on a non-emptl- weakly compact convex subset of X has a fixed point. 

Classical results of Browder [3 ] ,  Kirk [ l  l ]  and others 17, 9, 151 estab1isi:cd that 

every uniformly convex space and every space with "normal structure" has the fixcd 

point property. 

Until recently further positive results have been fragmentary. It  remained open 2s 

to  whether or not ever). Banach space possessed the fixed point property until Xlspach 

[ 1 1  gave an example of a fixed point free nonexpansive mapping on a weaki!; 

compact convex substi of 1: 1 [O, 1 ] (see also [18] ,  [20]  ). Shortly afterwards 5faure). 

[ 141, using ultrafilter methods, succeeded in showing that co(N) and reiiexi\.t. 

subspaces of L I [O, 1 1 do have the fixed point property. 

In this paper n-s simultaneously refine some of hlaurey's ideas and r e x x e  th? 

dependence on ultrafi!ters. In consequence we are able to  shov. that a largc \ I r i t ty  c f  

Banacll spaccs have the fixed point property. Our techniques are lattice thee;-:is in 

spirit and allow us to  g5\ e surprisingly general and simple criteria for a Banach s;xe to 

Ilavc the fixed point praperty. In particular we are abie to: 

t i )  charactcrlze order complete hi-spaces with the fixed point prop-rty; 

(ii) recover subjtzntially strengthened versions of examples used by K-r1oi.i;~ 

[ 101 and o then :  
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(iiij show that co( r )>  c ( r )  and COW) with Day's 1.u.c. norm [ 161 have the fixed 

point property. 

I t  is worth observing that a large number of the examples and counter-examples 

in non-expansive fixed point theory have had a lattice theoretic underpinning, but to  

the best of our knowledge, before Maurey's paper, this has remained largely implicit. 

5 2 .  Some basic constructions for nonexpansive mappings. Let C be a 

non-empty weakly compact convex subset of a Banach space X and let T :  C + C be a - - @; , non-expansive mapping. A standard application of Zorn's lemma ensures the existence 

of a ~ n i i z i m l  invariaizt subsel D from the class of non-empty weakly compact convex 

subsets of C which are invariant under T. 

Geometric properties of the space such as UCED or the Opial condition have 

been used t o  rule out  the existence of weakly compact convex diametral sets 

containing more than one point (normal structure). That such spaces have the fixed 

point property then follows from Proposition 2.2 below. 

LEMMA 2.1. If $: D + R is a weak-lower semi-continuous mapping with 

+(Tx) < $(x) for all x E D, fhen $ is coilstunt on D. 

PROOF. Let xo E D be such that $(xo) = inf $(D) and let E =  {x E D: 

+(x) = $(xo)] then E is a non-empty weakly compact convex set which is invariant 

under T and so by minimality E = D. 

PROPOSITION 2.2. [Kirk. 19651 D is diametral. 

PROOF. 

$(XI: = SupIllx- yII: y E D l  

= Sup{llx - Tyll: y E Dl 
- 

(as coT(D) = D by minimality) 

satisfits the conditions of Lemma 2.1. Thus $ is constant on D with value 

s u g  s u g x  - yll = diamiD) and so D is diametral. 
xE yE 

Applying the Banach contraction mapping principle to  the strict contraction 
1 1  f 1 - ,IT +;I yields a sequence ixn) oj' approxitnufe fixed poitlrs for T in 

C: IITxn - xnlI + 0. (Note, this does not require C t o  be weakly compact. only closed 

and convex.) 

I'ROPOSITION 2.3. [Ksrlovitz. 19761 If (xn) is J sequctlro o f  approsinzare 
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fixed poirzts for T irt tke  minimal invariant set D, then 

limi(x - xnll = diam(D), for all x ill D 
n 

PROOF. Let (yn)  be any sequence of approximate fixed points for T in D and 
- 

let $ ( X I  = l lm(lx- ynJ / .  Then J /  satisfies the assumptions of Lemma I and so $ is 
n W 

constant on D with value K say. Let (v ) be a subsequence with ynk + yo, then 
'"k 

K r j $ x  - 11 S ~ I I X  - y 11 > iix - y o .  
"k k "k 

;- 
, Thus K > Sup Ilx - yOll = diam(D) (by Proposition 2.2). 

XED 
Now taking (y,) to be any subsequence (xn ) of (xn) we therefore have 

- k 
l ~ m l x  - x 1 1  = diam(D) for all x in D and so 

k "k 

If (xni  is the orbit of a point xo under T:  xn = Tnxo, then replacing "lim sup" by 

a Banach limit Q in the above argument and using the translational invariance of Q t o  

esrablish $(Tx) < (dx) where $(x) = Q(llx - Tnxoll) we may conclude that 

O(iix - Tnxoll) = diam(D). Indeed replacing T by %fT + I) and using the asymptotic 

reqlar i ty  of the latter operator [8 ]  we may, without loss of generality, 

simultaneously assume that (x,) is both an orbit and a sequence of approximate fixed 

poinrs. 

We now devclop a basic construction which in part is motivated by the desire to  

ri .pi~ce sequences of approximate fixed points by fixed points in a related space. 
-2 + \l;iurey constructed such a space using an ultraproduct. We realize it as a quotient of 

a r ~ r o p r i a t c  substitution spaces. An analogy with the role of the Calkin algebra in 

opcralor thcorg may also be noted. 

Ilcno!c by P,IS) and c 0 ( N  the spaces obtained by substitution of the Banach 

s y ~ : ~ ,  S ii;ro P,( N) and co(K). 

Dt. ll:i c 
- 
lirn(X): = Pm(X)/co(XI - - 

a nc'. J tno tc  by [x,] or [;I the equivalence class x + co(X), where x = (xn)  E fm(X). 

Thr quot~cnl  norm is pven by 
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and with this norm K ( x )  is an order complete Banach lattice provided X is an ordrr  

complete Banach lattice. 
- 

Denote by J the cannonical embedding of X in to  lim(X); J (x) :  = [x,], where 

xn = x for all n. 

If C is a closed bounded convex subset o f  X and T :  C -+ C is a non-expansive 

mapping then it follows that 

[ C ]  : = n ~ = l ~ i c o ( ~ )  . 

m- is a closed bounded convex subset of =(X) and that  
- 

[TI  [GI : = [Tx,] where (xn) E [ x ]  and xn E C, 

is a we11 d e f i e d  non-expansive mapping o n  [C] .  

Of basic importance is the observation that (xn)  is a sequence of  approxinlate 

fixed points for T in C if and only  if (Txn - xn) E co(X), and so if and only  if [ x n ]  is 

fixed by  [ T I .  I n  particular then [ T I  always has fixed points in [ C ] .  

Before proceeding t o  the main result of the section let us recall tha t  r5c set  of 

quasi-midpoints for two  points x and y in a Banach space is 

Q(x.y) = i z :  IIx - z!I = IIy - zll = '/21lx - yll}. 

Qlx.1.) is a non-empty (?h(x + y) E Q(x,y)), closed and convex set. F u ~ h e r  if  .; and y 

are  lute fixed points of the non-expansive mapping T o n  the  closed convex s.:bsct C: 

r hen Q( x,y) n C is invariant under T. 

LEMM4 2.4. Let T be a non-expansive mapping o f  the  non-enlptjS o - rnv~pac- t  
'C 

:ii~:i,r.u set C illto itself: /issiime that C is a minimal in~,ilriarlt st-t for T ir.it11 0 E C.  

Slippose tllar (xn) and (yn )  are sequerlces o f  a p ~ ~ r o s i r n a f e  jircd p ; / f r~ t s  fiJr T in C 

v.!;!: 

limljxn - ynll = diam(C). 
n 

7 ; : ~  r :  ii:cre e.~lrrs a S P ~ I I C I I C P  (z,,') o f  approxitnate fixed poi~lrs Air T it! C 1r.i;;. 

Iim!ixn - z ! = limliy,, - z l l =  'i'llmllznli = Sidiam(C!. 
n n n - - 

PROOF. Since Q: = ( C ]  n Q ( [ x ] . [ y ] )  is a non-empty clossd con\.?\ subset 

\\l.i;h is inlariant undcr the non-expansive mapping [TI  we can construct 2 s t j u e n c e  - - 
[:"I of approximate fixed points for IT] in Q with /![TI [ t m ]  - [ t T n )  I ,  T1---! I.  Ler 
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( t r )  t [fm] with t; in C, t h e n % l l ~ t F  - tFl1 C 2 i m + ' )  and so for sufficiently large 
n 

n we have 

< 2-rn. IIT~; - tn  1 1  

Let d = diam(C) = diam[C], then from - - 
II[;] - E m ]  l l  = 11[71 - Em] I (  = %(I[x] - [y ]  : = '/id 

we have that 
- 
limllxn - tT11 =miyn - t F / /  = %d, 
n n 

but then 

whence 

%d < m l l x n  - tyll  < E l x n  - tFll  = ?lie 
n n 

and so 

A symmetric argument yields 

Thus there exists an increasing sequence N(m) such that. for r. 2 N(m) we hale 

I IIyn - t F l l -  %dl < 2-m 
% 

IlTt: - < 2-m. 

Taking zn = t: for N m j  < n < N(m+l)  we conclude t t z t  (2,) is a sequence of 

approximate fixed points for T in C with 

To  complete ths proof it suffices t o  note that since 0 f C. by Proposit~on 2 3 uc 

In the fo l lo~i i lg  proof we indicate how it is always poi;!3i? to  constru:i a pzir of 
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sequences (xn)  and (yn)  satisfying the hypotheses of  Lemma 2.4. 

COROLLARY 2.5. For T atzd C as in Lemma 2.4, there exists fixed points [GI . - - - - - - 
Iyl  and [;I o f  [TI  it1 [Cl  with [;I E Q ( [ x I , [ y l )  and Ir[xl l l  = Il[yl l l  = ll[zl I l  = - - 
1 1  [ x ]  - [ y ]  l l  = diam(C). 

PROOF. Let (xn)  be any sequence of approximate fixed points for  T in C. By 

I'roposition 2.3. for each n, 

limllxn - xm/l = diam(C1, . I 
m 

so we may extract a subsequence ( x  ) such that  
"k 

- - 
The result now follows b y  taking x = (xn! y = ( x  ) and applying Lemma 2.4. 

"k 
53 .  M'eak orthogonality in Banach lattices. Let X be a Banach lattice. Given a 

sequence (xn)  weakly convergent t o  so we wil! say that (x,) is  weokly ortl~ogot~al if 

lim limll ixn - xO1 P, ixm - xOI I I  = 0. -- 
n m 

Every weakly convergent mono tone  sequence is weaklq- orthogonal 

A subset C of  X is a weakly or~llogonal set if every weakly convergent sequence 

of  points of  C is weakly orthogonal. 

Obviously, every compact subset of  a Banach lattice is ureakly orthogonal.  

We say X is rc.rok1~. urtlzogonal if ever); weakly compzct  convex subset of N is 

weakly orthogonal. 
1 

T o  obtain an easily verified sufficient condition for  a space t o  b e  ~~'cakl!. 

orthogonal we introduce the following. 

A Banach lattice X has the  Riesz .4ppro.~itnatiot1 Properry (R.A.P.) if there exists 

a family P of  linear projections with Pix/ = IPx,. for 211 P EP, which satisfy: 

( i )  PO;), t he  range of P. is a finite dimension21 ideal: 

(ii) for each x E X, inf IlPx - xll = 0. 
P ~ P  

THEOREM 3. 1 .  Let X be a Ba?idc/l idtrice ~vitll r/:r R.A.P., rll??i X is \i.cai:l~ 

orrhogonal. 

PROOF. I t  suffices t o  prove t11c stronger result: For any x in X the  nlapping 

y +-+ 1x1 * (yl  is weak t o  norm continuous a t  0. 
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Given x E X and E > 0: select P E P  such that  I \  1x1 - PIXI I I  < €12. Then,  if (y,) is 

any net  weakly convergent t o  zero, there is an  00 s.t. for  $ 2  a. 

That this is possible follows because P is weakly continuous with a finite dimensional 

range. Now, 

1x1 A Iy,I GPlxl /\ PIy,l + i x l  - Plxll A iy,.l + Plxl A i ly,I- Ply,li. 

Putting z = Plxl i; 1 ly,l- Plyall we see that  z lies in the  ideal P(X) and z >, 0. 

Thus,  0 G z = Pz = Pix1 A 1 Ply,l- PIy,I I = 0,  and so  z = 0.  

Hence 

1x1 A /yo( <PIXI A Ply,/ + 1x1 - Pix 11 iy,I 

and so? for  cx > (YO. 

i l  !xi I\ Iy,I I I  G lIPly,l I 1  + II 1x1 - Plxl l l  < E .  

Taking P t o  be the  standard bases projections we have for any  set r tha t  the  

spaces ~ ~ ( 1 ' )  and I p ( r )  ( I  G p < m) have the R.A.P. as does any  separable Orlicz space 

PM ( that  is t o  say, M satisfies the A2 condition) together with a variety o f  Lorentz 

spaces. \Ye also observe that R.A.P. is preserved under  Riesz isomorphisms. 

The  spaces Cw(T), c(T) a n d P p [ O , l ]  (1 < p G m )  fail t o  have the R.A.P. and with 

the exception of  c(T) also fail t o  be weakly orthogonal. (In the  case of  d: spaces 
4 

P 
consider the sequences of  Rademacher functions.) T o  see tha t  c ( r )  is weakly 

w 
orthogonal.  let xn A 0 in c ( r )  then y n  = xn - Lim(xn)e defines a weak null sequence in 

c0(T) where Lim denotes  the norm. and hence weakly: continuous limit functional o n  

d r ) .  Thus, for  each n. lim l y n l  /> l y m l  = 0. but then, since \ x n ,  G l y n l  + ILim(xnjle. 
m- 

we have 

Ixni / lxmI < l y n l  4. i v m l  + l y n l  l l im(xm)le  + iLim(xn)!e lxmi 
- -  

and so l im lim lxnl p) lxml = 0 as ~ i m ( x " ~  A 0 .  
n- m- 

84. The  R i s z  angle of a Banach lattice. \Ye define tile h'ies; onglc of  a Banach 

lattice X t o  be 
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The Banach-Mazur distance of two Banach spaces X and Y is 

i; here the infimum is taken over all linear isomorphisms U of X onto Y. 

We similarly define the Riesz distance dR(X.Y) by restricting the infimum to 

~ n l y  Riesz isomorphisms. 

Observe that if II.I(l, and 1 1 . 1 1 2  are two equivalent Riesz norms for the Banach 

~st t ice X satisfying m( (x l1  < Ilxl12 G Mllxll1, then 

+$here X, denotes X with ( I - I I i  (i = 1,2). 

PROPOSITION 4.1. (a) For any Barloch lattice X w e  have 1 d a(X)  d 2. 

(b) a (X)  = 1 i f  and only i f  X is an M-spilce. 

(c) I f  X is an abstract L space (1 =Z p < m), rhctl a(X\) = 2 l ; ~ .  
P 

(d) I f  X is a full subsritutionspace or1 an index set I (and hence a Banaclz lattice 

.:i!ll respect t o  pointwise order) and (5) (i E I )  is a fanlily of Banach lattices, rhen for 

: h c  substitution space PX(Xi) wc have 

(e) For any pair o f  Banaclz lattices X and Y, a(Y) < dR(X.Y)CX(X). 

PROOF. (a)  follows immediately from the inequality 

llxll G I 1  hl v iyl 11  d 1 1  1x1 + lyl 11 G llxl: + Ilyi;. 
4 

(b) is immediate from the definition of an M-space. 

(c) By Bonhenblust's .theorem [ 12> Theorem 15.31 we msy assume that X is 

Lp(p) for some measure p. from which it follows that for 0 < x,?- we have 

Thus 

/IX v y11 < ~ l ~ p i ~ : x ~ i  v 1Iy;ij 

.:nd we have 

a h )  < :!I!p. 

laking lixii = liyii = 1 and x A y = 0 we have \ / x  v = 2 so & ( x i  > 211p 

( d )  Let (xi),!yi! E PX(XiI snd  1ct ui = a(XiI ,  then for cacli i :  
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< a(X)[Sup ai:l lI(xi)liX v IIyillX. 

(e) Let U: X -t Y be any Riesz isomorphism, then 

1 1  1x1 v I ~ I  I I Y  < I I U I I  1 1  1 ~ ~ x 1  I U - ' Y I  I I ~  

< IlUll llU1 Ilcr(X)llxlly Ilylly, 

wllence a(Y)< I!U(( I I U ' I I ~ ( X )  for all Riesz isomorphisms U of X onto Y and so 

a( Y) < dR(X,Y)a(X). 

We also note that for an Orlicz sequence lattice lM where M(1) = 1 we have 

d P M )  < l/.g-] ( !6)  where d t )  = ;2<1 M(tz)/M(z). In particular a(Phl) < 7 if 

Xf(z) < M(2z) for 0 < z < %. 

I To  see this. let a. = g (K), then for x,y with I\xllhl,i;y\lh? < 1 we have 

Z M(ao(lxil v lyil)) < g(ao)'P M(lxi; v lyili 

< I 
\s hence l l  Ixl v y 1 ( I M  < l / a g  

1 The final conclusion now foilows by observing that e(t) < t so 2 ?,:. 

The fundamental inequality involving the Riesz angle is: 

TI1EOREM 4.2. Suppose that X is a Banacl~ latrice htith Ries; a>lpir a.!N). T / I ~ ~ I  

..?v x, y, z in X wt' Iloi~e 

PROOF. 
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3 )  Riesz properties 

llzll G I I  Ix - zl v Iy - 21 1 1  + l l  lyl A 1x1 I I  

-::d so, by definition of  d X ) ,  

There seems to  be  only a tenuous connection between the geometry of a space 

::..ci its Kiesz angle. Every uniformly convex Banach lattice X has a Riesz angle 

X )  < 2. If this were not the case, for each n there would exist xn and yn with 
1 

-\,i~,llynii G 1 and 2 -, G 1 1  xnI  v iynl I / >  but  then 

so  by  the uniform convexity I Ix,l - y n l  1 1  + 0. In  which case, since 
- 

I . I I G I X ~ I  + 2 I - I n  I ,  we have i m  I v i l l  1 G 1 a 
n 

. -:itradiction. 

O n  the other hand, Davis. Ghoussoub and Lindenstrauss (61 have constructed a n  

:.;divalent locally uniform convex Riesz norm for 6: [0 ,1 ] .  Equipped with this norm 

L , i 0 , l  ] retains a Riesz angle of 2. Indeed we know of n o  way of equivalently 

::normifig a space t o  effect a reduction in the  Riesz angle. 

85. (Weak) fixed point results. 

I THEOREM 5.1. A Banach space X has the fixed point propertv i f  thew exists a 

...L,~kl?. orthogotla1 Banach lattice Y such that 

(5. ! ) d(X:Y)a(Y,! < 2: 

PROOF.  Let T be a nortexpansive mzpping on a non-empty weakly compact 

.,znvex sei C and.let D be a minimal invariant subset for T. Select a svquence ( x n )  of  

:?proxin-late fixed points for T in D. By the extraction of  a subsequence and a 
W 

::dnslation we may assume thzt xn + 0 (in particular, then 0 E D). 

KOH. let U be a linear isomorphism from X o n t o  Y with IiUIi I I U - l  lia(Y) < 2:  the 

~ x i s t e n c e  of  such a U is ensured by (5.1 ). 

By the wcak orthogonality of Y: for  each k in N there exists nk in N such that 
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1 
limll IUx I A IUxml I I  G i  - m "li 

.:me by Proposition 2.3, l im/(x  - s,ll = diamiD) we may Gnd m k  > n k  such that 
m nk 

1 
IIxnk - x I l  > diam(Dj - - 

mk k 

2nd 

1 
i5 .2)  l l lx "1; I A I X  rnk I I I G ~  

.Applying Lemma 2.4 we obtain a iurther sequence of approximate fixed points ( zk )  

5.1sh that 

limllzkll = diam(D) 
k 

~ n d  

(5.3) limlix - zkll = limilx - zkll = %diam(D). 
k "k k mk 

Tileorem 1 . 2  shows that 

+ limll IUkn I v lUxmLl ( I .  
k 6 

i h e n  15.2). (5.31 and 15.4) combine t o  show that 
- - 

2 diarn(l31 = 2 l ~ m l ~ z ~ l l  < ~ I / U ~ I I  IiLTIldY) lim(lIxnk - zk!1 v xmk - Zk 1 
k k 

,. . 
h!nce 3 > I U '  !/ / jU/ la(Yj  it follo~vs that diarn(D) = 0 and D is the singleton (01. Ti.;s 
-. 
I has a fixed point in C. 

COROLLARY 5.2. Let X be a weakly orfhogor~al lirfrice such fI?ar @(XI < 2 .  

7 1 1 s ~  X 11a.c the weak .fiscd po:nf properr!'. 

Before listing 2 further immediate coiollaries we rema-i: that the a t s - . ?  

r g u m e n t s  estab!ish the fixed point property for a Banach !sttice :i pro\.idcd a{?, . !i 

::ss than 2 and  any weakly convergent sequence which is d i s m e i e z i n g  for a r\eiI:i>. 

~ o m p a c t  convex set (,in particu!ar, any weakly convergent sequ.;r:ce of a r p r o x i r r ; e  

!i\ed points in a minimal invariant set for a non-expansi~e  map) i5 s. cakl! c;thogor = I .  

3 c Indecd fo r  such a sc.quence we oilly require that lim lim I' 11, - j : ~ :  A X m  - XO .. 
n m 
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: -.'.-:cntly small. 

C OROLLARY 5.3. A B a m c h  space X has f he  fixed poiizt properr) if for some  r 
-. ; 1 < p < m w e  have 

1 1  
d(X,Pp(T)) < 2 l I q  (- + -= 1 ). 

P 4 

COROLLARY 5.4. A Barrach space X has t h e  weak f ixed poi~z t  properry if 

r .: ' :tr 

( i )  d(X,c(r)) < 2;  

(a) d(X,cg(r)) < 2. 

EXAhlPLES 5.5. (Gtneralized Karlovitz norms) (a) Let 1 < p < r < m and let 

3 0. Consider X f r  as Ep(r) renormed by I( ( I A  = (XI1 \Ip) v I I  \ I r  For p = 2 ;  r = " 
.:-.;.it norms were studied in [ l o ,  2 and 41. I t  is immediate that ST;' is a weak!y 

:riiogonal lattice. Moreover, by Proposition 4.1 

o(XfP)  < max {o(X;.ilp), a(11*1lr)1 = 2 l i p  < 2. 

-. 
. r;ls Corollary 5.2 apptirs and X q r  has the weak fixed point property. Now for p = 2, 

- = = Baillon and Schonbrrg 12) showed that has normal sirurivre if and only if 

'. i 1 1 0  while asj8mproric normal siructure [4]  obtains for  X > I!?. Their paper 

':-.us establishes the existence of fixed points only for X > 112, while oc: lattice 

::,.uments work equally easily for all X > 0 and for general p and r. 

(b) Consider 

N: = { x ( d ( x , x f m )  < I!'~). 

1; 
:: follows from Theorem 5.1 and o ( x i r n )  < 2" that all Banach s:a;es in \ have :he 

-:A fixed point property. In particular N contains spaces whkh are uniformly 

.::lvex, spaces with ncrmal structure and without uniform coni-esity, s p c e s  with 

:.i>. asymptotic normal structure and spaces without asymptotic norma: srruc:ure. 

:-is emphasizes the f32t that our  results allow one t o  move  entire':^ 3 ~ 2 1 .  from the 

.:issical geometric conditions by studl-ing both lattice and isomorpF2: cond!rions. 
d (c) Let co( r )  denote c0(T) with Day's equivalent (1.u.c.) no,= (161. I t  fo!lows 

d .  d ~,-ji ly that d(cg(r),co( r!,l <,,r772 < 2 and Corollary 5.4(ii) impliei :hat cg' T) h z  the 

: j \ed point property. Ir. fact with a liitir effort it can be seen !h2: c&T1 :i 2 B ~ n a c h  
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. - .  .: n:ih R.A.P. and so Corollary 5.2 also applies (in conjunction with Proposition 
d - r note in passing that cy!c0(T)) > 1. 

t d) I t  is known that d(co(T),c(T)) = 3 [ 5 ] .  It  follows that one can not deduce 

r -'!lary 5.4!i) from Corollary 5.4(ii) nor conversely. 

1 e )  In [ 6 ]  it is shown that order continuous Banach lattices are exactly those 

.-cssing equivalent (1.u.c.) lattice renorms. I t  follows from this and standard 

-:- :ming techniques that a wide variety of spaces wiih the weak fixed point property 

1-2) be given an equivalent (1.u.c.) renorm with the weak fixed point property. 

( fl Since R A Y .  is presenred under substitution into a space with R.A.P.it follows 

- . - i  one can establish the fmed point property for a profusion of spaces. In particular 

-.;-:ding the space X = ( f2  E. Q3 @ .- -)Z as the substitution of countably many copies 

<$ together with the spaces Q3,P4,... into P2(N) it follows from Proposition 4.1 that 

X I  < 21/2.21i3 < 2 and so X has the weak fixed point property. Similarly 

T I  X E2(T) has the fxed  point property in the maximum norm Il(x:y)il: 

= " 13 \, iIy1l2. 

cg) Bynum [ 4 ]  has shown that the fixed point property is inherited by Banach 

:-::rs whose distance from a uniformly convex space is not too large. In particular, he 

. .rs that if d(fp(r) ,X) < Z ' /P  ( I  < p < m) then X has the weak fixed point 

: - :?erty. For p > 2 this is weaker than our Corollary 5.3, but for p O 2 Bynum's 

-:,:It is stronger. He also points ou t  that the space Pp,,(r) (which is I! (T) renorned 
P 

- = ixiip Y ( (x - !  ) does not have asymptotically normal structure b r t  has 
P 

. .  :. fixed point property. Our results as given do not recapture this for p G 2. 
, ' .. ):cover, I! ,(T) is not a Banach lattice. This presents no obstacle for p > 2 the P> 

-:lowing results shows. 

COROLLARY 5.6. Ler X be a weakly orrhogonal Banach lattice and let Y be X 

21: equivolenr nlonororze hrrice norm. Suppose tho: a(Y) < 2. Then Y has rhc r8. - a k  

: c-3' point propert)'. 

PROOF. Since X is weakly orthogonal it follows that lim Iy,i A iy, = 0 
n- 

-!::never y n  -+ 0 weakly ir, Y. The result now follows from Theorem 5.1 because only 

:.:_.notonicity of the norm is required in the proof of Theorem 4.2. 

To  recapture Bynum's result for p > 2 it remains to  verify that a!Sp,,irrr < 
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. . 
- - < I whenever p > 2. 

$ 6 .  F h e d  point theorems in M-spaces. 

THEOREM 6.1. Let X be a countably order complete M-space. Tile following 

- .. : . !~i i~aient .  

( i') X has the fixed point propcrtjl. 

t ii) X is isometric iind lattice isonlorphic to c o ( r )  for sonte index set T. 

I i i i )  X is order cor~tinuots. 

I iv) X has ~ leak ly  compacf order intervals. 

( v  I X conrairls rlo (Lattice, or norm) copy of P,(N). (See [ 171 for otllcr 

equii~alei~ces.) 

I i.i.1 X contains ria isomefric copjx of L [O: I 1 .  
PKOOF. (iv) and (iii) coincide for any countably order complete Banach lattice. 

.- . Ando's Theorem 1 1  2 .  Theorem 16.21 it follows that (iii) and (ii) coincide and  

:.):ern 5.1 now shows that X has the weak fixed point property.  Alspach's example 

ihows that ( i )  implies (vi). Since (vi) implies X contains n o  norm copy of V,(N') it 

- -  Lsitainly not  contain a lattice copy. Since this more  restrictive form oP (v) is 

.. -:; alent t o  (iv), the equivalences are established. 

EXAMPLE 6.2. (a)  The  theorem is manifoldly false wi thout  the hypothesis o f  

-:.r completeness as is best seen by considering c ( r ) .  Indeed c ( r )  satisfies only (i). 

2nd (vi). 
- 

r bi The  space lim R = P,(N)/cO(N) = Cw(N*) with t h e  induced lattice structure 

:: order complete hi-space. Since [ e l  is an  order unit for lim R it can nor  satisfy (ill 

- -  : hence fails t o  have weak fixed point property.  

COROLLARY 6.3. .4 n absfruct L ypace ( 1 < p < w )  X has file fixed point 
P ' 

- - :.c r r ! .  i fand orllj7 if  X contai?ls no isometric cop)' o f  6 1 [0.1 1. 

PROOF. For  p = w this is covered by Theorem 6.1 .  Fo r  I < p < m L is 
J' 

- f-rmly convex and so has the fixed point property. 

For p = I we use the  fact that  any abstract L l  space either ( i )  contains a cop!; of 

- : L;. 1 ] or  (ii) is purcly atomic [ 17, page 1 3 6 ) .  In the later case X is P ( I ' )  o n  some 

- ::\ scr and has thc  weak fixed point property. This is an  immediate consequence of 

.. : Opial condition 191 and the  Shur  property. 
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These last t w o  results and the  scope of  ou r  main theorems suggest the conjecture 

I Corollary 6.3 holds for arbitrary Banach spaces. This is further reinforced by 

'.I2 ~ r c y ' s  result [ 141 that reflexive subspaces of  I [0 ,  I ] have the weak fixed point 

- >perty. 

This result of Maurey's may be combined with Alspach's sxample to  show the  

:!"wing: 

EXAMPLE 6.4. T h e  closed convex hull of an orbit of a :onexpansive mapping 

a weakly compact convex set need no t  be invariant. Specifically consider T as in 

'.. ,pacli's paper and xo: = I .  I t  is easily calculated that r,: = T n ( l )  is the n ' th - ~ ~ i e m a c l i e r  function. Now define D to  be  E i T n ( l ) :  n E N',. Since the  closed linear 

.:!I of the  Rademacher functions is isomorphic to  2[0 ,  1 ] [ ! 3 :  page 133 1 .  D can 

: be invariant. Indeed, were it invariant Maurey's resu!: would imp]!. tha t  T 
- >szssed a fixed point on D and, a fortiori, o n  C. 

K e  next turn to  a theorem o n  wealcly compact weakly orthogonal scbr-ts of  a 

: . - ~ c h  lattice. 

THEOREM 6.5. Let C hc a weaklj, curnl~act con~?ex wcal!j- orrllogotzal slihsct o f  

- .:j3~1arI1 lattice X suc i~  that a (X )  < 7,. T iwn every non-expor:s:r.e mopping leol.ing C 

. ~riarit  i7m a fixed poirit. 

PROOF. We merely observe that the proof of Theorem 5.1, when Y = S. needs 

:n be weakly orthogonal. 

COROLLARY 6.6. Let C be a weak l j~  compact cor7i!ex subset oJa Bat~ac;i spare 

'1. .Cuppose tllar tlie isometric image o f  C irz arly P,(r) is I ~ - c J X - ~ J .  orthop;.r;a! t l~ell  

r l .  t~on-exparlsive nupping leai~ii~g C it~variant has a fixed poi7:r. 

PROOF. \Ve use the isometry t o  lift the problem frorr. X t o  en \ f - sy~ce .  T h e  

-...]I! now follows from Theorem 6.5. 

Every Banach space X isometrical!y embeds in some &;I-!. T h v l i  on- j:.-s t l ~ a t  

. :. may establish the (weak) fixed point property for  X reflez:i;.e, re,-zctivel; 

.;~t'rretlexive, by showing that all weaiily compact subsets c: E,fI', whrs- spsn 15 

- . :!~xive> respectively superreflexive, are weakly orthogonal in C,(T'). Is ::-.is t n l e i  

: :;> ambitiously,  is it t rue  for separabie rsflexive subspaces of I,cN). T% u~oul;! 

- ' : ~ l u ,  one  t o  recapture hfaurey's result. 
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EXAMPLE 6.6. Alspach's example and Corollary 6.5 show that the isometric 

:ice of the unit interval in f l (O, l )  is not weakly orthogonal. 

$ 7 .  Miscellaneous. A complementary question t o  those considered so far is 

-:.:[her or not every non-expansive mapping on a weak compact order interval has a , 
.71.td point. By a slight modification of Alspach's example: Robert Sine 1701 obtains 

I-. sxample o f  a f i e d  point free non-expansive map on the order interval 0 < f < 2 in 

- . ,0.1]. In  the positive direction we show that a ,non-expan<:; r map on an order 

. ::,plete interval of any abstract M-space has a fixed poiat.  This n a y  be seen as a mild 

. .:i-nsion of an earlier result of  Sine's [ 191 that a non-expansive map on an order 

- :tn.al in L,(p) has a fixed point. 

THEOREM 7.1. Let I be an order complete order itrterval in all hf-space X with a 

:..: e.  and let T: I + I be non-expansive, then T has a fixed poirzr it1 1. 

PROOF. We first establish the existence of a minimal inveriant order intenal  in 

: 7.15 will follows from Zorn's lemma provided we show that for any decreasing chain 

, nf non-empty intervals in I the intersection I, = naI, is itself a non-empty 

- ::? al.  To  see this note that a,= sup inf(1,) and b, = inf sup(1,) exist in I by order 
(Y c? 

. :n?leteness and that therefore [a,b,] = I,. 

Xow, let IO be a minimal invariant interval in I and set a0 = inf 10: bo = sup IO 

- - 2  m = %(bO - ao). Define N = { x  E 10: Sup J /x - yiJ < !;mli}, cisarly S Q(ao>bo). 

: r x E Q(ao,bo) n I we also have y a o  

- -:rc d = diamQ0) = 2limlI. 

Consequently for a0 < y < bo we have 

- .  - i si. i,y - X I  < I/ml or x E N. 

Thus N = Q(ao,bo) and so N is invariant under 1.. T.he proof is completed by 

;Ling that Ic' is in fact an order interval and therefore eq.;al t o  IO. This is an 
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..:'.ility unless l o  is a singleton. 

- r 7, the definition of M we know that 

- llmlle + y < x < llmlle + y 

;. E l o  if and only if x E N. As a result for every y E lo we have 

- Imle  + y =Z inf N < Sup N < llmlle + y 

.::f %.Sup N] = N as required. 

-\:.:is there are several geometric conditions known to imply the (weak) fixed 

- - ' 1-raperty, many are little removed from the notion of diametrality and with the 

.. ;.ception of uniform convexity most are difficult t o  verify. 
-. . uniformly convex spaces have the (weak) fixed point property is a simple 

.:c-.:nce of Corollary 2.5 translated "approximately back" into the space X. 

> !nc further results in this direction are discussed below. however we omit the 

. - .  

' b \ -  note that if, for any Banach space X we define. Px(t) = 1 - lim inf hX(s),  
S-'t . . L - . . S ( ~ )  is the modulus of coilvexity forX,  and let X X  = S u p i t  E [O.?): hX(t) = 0 3 

. - :! follows from Lemma 2.4 that X has the (weak) fixed point property if 
.? 

\; 1 -  < fix(%). That the inequality holds locally among Banach spaces follows 

- - :::e inequality 

py[t) < d(X.Y)PX( t/d(X.Y)). 

. ' .~u ld  also be observed that by the Day-Norlander theorem EX(%) > G I 4  and so 

- I :-:quality ( I - XX)' < PX(:/:) is only feasible for A X  < 1 - ? / 2 4 m  a smaU and 

- :eresting number. 
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-:llty unless lo is a singleton. 

From the definition of M we know that 

- -:: )I E lo if and only if x E N. As a result for every y E lo we have 

- llmlle + y < inf N <Sup N < llmlle + y 

.:.: \.Sup N] = N as required. 

h'hile there are several geometric conditions known to imply the (weak) fixed 

- .I: property, many are little removed from the notion of diametrality and with the 

:>:hie exception of uniform convexity most are difficult t o  verify. 

That uniformly convex spaces have the (weak) fixed point property is a simple 

equence of Corollary 2.5 translated "approximately back" into the space X. 

Some further results in this direction are discussed below. however we omit the 

. : . . 
Ur note that if, for any Banach space X we define, fiX(t) = 1 - lim inf dx(s),  

S't 
. r-; hX\;!s)is the modulus of convexity for X, and let AX = S u p l t  E [O,?): tiX(t) = 0 3 

. -  i r  follows from Lemma 2.4 that X has the (weak') fixed point property if 
1 

' a 1 . i ' -  < PX(%). That the inequality holds locally among Banach spaces follows 

- t!le inequality 

Oy(t) < d(X.Y)fi~(t/d(X,Y)l.  

-. ~ u l d  also be observed that by the Day-Norlsnder theorem ox(%) Z , T / 4  and so 

- . -.-quality (1 - AX)' < PX(%) is only feasible for AX < 1 - !h4m a small and 

- - -.:-resting number 
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