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We extend Maurey's theorem on the existence of a fixed point for an isometry of 
a nonempty closed bounded convex subset of a superreflexive space to obtain the 
existence of common fixed points for countable families of commuting isometries. 
Q 1996 Academic Press. lnc. 

Using ideas developed in [7], B. Maurey proved in 1981 that any 
nonlinear isometry which maps a bounded closed convex subset of a 
superreflexive Banach space into itself has a nonempty fixed point set. 
(For an explicit proof of this fact, see [4] or [I].) In this paper we use a 
retraction theorem due to R. E. Bruck [2] and an iteration process of 
Ishikawa to prove the following extension of Maurey's result. 

THEOREM 1. Let X be a superreflexwe Banach space and let K be a 
nonempty bounded closed convex subset of X.  Then any countable family of 
commuting nonlinear isometies of K into K has a nonempty common fuced 
point set. 
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Our proof is based on several facts, the first of which is a refinement of 
a theorem of Bruck [2]. To formulate this result we need the following 
definition. Let C be a closed convex subset of a Banach space X. A family 
F of mappings of C into C is said to satisfy the conditional fied point 
property (CFP) if the common fixed point set fix(9) of F is either empty or 
if f d F )  intersects every nonempty bounded closed convex set which is left 
invariant by each mapping T E 9l 

THEOREM 2. If C is locally weakly compact, if F i s  a family of n o n q a n -  
sive mappings each of which maps C into C, and if Fsatisfies (CFP), then 
F ( F )  := fix(F) is a nonqanswe retract of C. 

Proof. A detailed proof may be found in [6]. However, for complete- 
ness we note here that the only modifications needed are the following 
changes to the proof of Theorem 2 of Bruck [2]. Replace T by F in the 
statement of that theorem and throughout its proof. The proof is then 
identical except for the concluding three sentences which should now read 
as follows. Since T 0 f E N(F(F)) whenever f E N(F(F)) and T is in 
we also have T(K) G K for each T E 9l But F satisfies (CFP), has a 
nonempty common fixed point set, and leaves K invariant; therefore 9 
has a common fixed point in K. That is, there exists h E N(F(F)) with 
h(z) in F(F).  Since this is so for each z in C the conclusion now follows 
from Theorem 1 of [21. 1 

We also need the following result of S. Ishikawa [5]. 

LEMMA 3. Let D be a bounded convex subset of a Banach space and let R 
be a nonexpanswe retraction of D into a subset of D which is left invariant 
under a nonexpanswe mapping G: D + D. Let yo be any point in D and let 
,a E (0,l). Then the sequences (y, - Gy,) and (y, - Ry,) respectively con- 
verge to 0, where (y,) is defined by 

Note that as an immediate consequence of the above one may conclude 
that there is a sequence (x,) in R(D) such that (x, - Gx,) converges to 0. 
We shall call such a sequence an approximatejixed point sequence (a.f.p.s.) 
for G. It is the existence of such sequences in the above setting that we 
use in Step 2 of the proof for Theorem 1 given below. 

A crucial key to the proof of Theorem 1 is the following fact which we 
extract from the proof of the Theorem F given in [4]. This requires some 
preliminary explanation. In the proof of Theorem F a function 4: K + Rf 
is constructed as follows: Let 2 be the Banach space ultrapower of X 
with respect to some nontrivial ultrafilter U over N, and let jf be the 
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subset of A? defined by 

Given f E K, 4 is the supremum of the "girths" of "configurations" in K 
built between points y E K, identified with their natural embedding into 
k, and f .  Such a function 4 always satisfies (i) of the lemma below, and it 
satisfies (ii) for any isometry f that fixes f .  

LEMMA 4. Let K be a bounded closed conuex subset of a superreflexiue 
Banuch space X and let T :  K -+ K be an isometry. Then corresponding to 
each approximate jixed point sequence of T there exists a bounded function 
4: K -+ R+ such that 

Note the passage to a minimal invariant set K in the proof of Elton et 
al. in [4] is not required for the construction of 4. Further, Maurey's result 
also may be derived from the above lemma without passing to a minimal 
set by using the following lemma. 

LEMMA 5. Let K be a nonempty closed bounded conuex set in a Banach 
space X and let T :  K -+ K be a continuous map for which there exists a 
bounded function 4: K -+ R+ satisfiing (i) and (ii) of Lemma 4. Then T has 
a jixed point in K. 

Proof: Let M = sup 4(K)  and for each n E N define K, = { x  E 

K : 4(x) 2 M - l /n ) .  Then each K, is nonempty and, by (ii) of Lemma 4, 
T(K,) K,. Hence En is also invariant under T. Further, by (i) of 
Lemma 4, for x, y E K, 

and so diam(R) 2 2/ 6. 
Thus, by Cantor's intersection theorem, there exists x,  E K with 

but then Tx, E En,  for all n ,  and so Tx, = x,. 1 
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We now proceed to the proof of our main theorem. 

Proof of Theorem 1. 

STEP 1. If T: K -+ K is an isometry then fix(T) is a nonexpansive 
retract of K. 

Proof: Note that by Maurey's Theorem T satisfies (CFP) on K. Step 1 
is then immediate from Theorem 2 for the case 9 consists of a single 
mapping. 

STEP 2. NOW suppose T, G are two commuting isometries of K into K. 
Then fix(T) n fix(G) # 0. 

Proof: By Step 1 there exists a retraction R: K + fix(T) and, since T 
and G commute, G: f i T )  + fix(T). Thus by Lemma 3, G has an a.f.p.s. in 
fix(T) which is also (trivially) an a.f.p.s. for T. Now let 4 be the function of 
Lemma 4 corresponding to this a.f.p.s. Then by Lemma 5 this 4 yields a 
fixed point of both T and G. 

STEP 3. Under the assumptions of Step 2, fix(T) n fix(G) is a nonex- 
pansive retract of K. 

Proof: If H is a bounded closed convex subset of K which is invariant 
under both T and G, then by Step 2 (applied to H )  we have fix(T) n 
fix(G) n H # 0. Thus the family 9 : =  {T, G) satisfies (CFP) on K, so Step 
3 also follows from Theorem 2. 

STEP 4. Theorem 1 holds for finite families. 

Proof: This follows from Step 3 and a routine induction argument. 

Proof of Theorem 1 Completed. Now let 9 = {TI, T,, . . . 1 be a countable 
family of commuting isometries each of which maps K into K. By Step 4 
each of the sets 

is nonempty. Select x, E F, for n = 1,2,. . . . Note that (x,) is an a.f.p.s. 
for each T,, i = 1,2,. . . . Let 4 be the function of Lemma 4 corresponding 
to this (x,). By Lemma 5 this 4 yields a unique point which is fixed under 
each of the mappings T,, i = 1,2,. . . . This completes the proof. 1 

Remark. It remains unknown whether nonempty closed bounded con- 
vex subsets of superreflexive spaces have the fixed point property for 
nonexpansive self mappings. Of course should this happen to be true 
Theorem 1 (even for uncountable families 9 )  would follow from Bruck's 
result of [31. 
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Note Added in Proof: M. A. Khamsi has observed (personal communi- 
cation, 1995) that, in fact, Theorem 1 holds for arbitrary families. In 
particular, he notes that if {T,: a E T) is an arbitrary family of nonlinear 
isometries of K into K, then one may replace the ultrapower 2 of X over 
N with an ultrapower (X), of X over %, where % is an ultrafilter 
containing the filter generated by I := {i E T:I is finite). 
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