PROPERTY (A_2^{ε}) IN ORLICZ SEQUENCE SPACES

YUNAN CUI⁽¹⁾, HENRYK HUDZIK, AND BRAILEY SIMS

ABSTRACT. In this paper, we introduce a new geometric property $(A_2^{\varepsilon})^*$ and we show that if a separable Banach space has property $(A_2^{\varepsilon})^*$ then both X and its dual X^* have the weak fixed point property. Criteria for Orlicz spaces to have the properties (A_2^{ε}) , $(A_2^{\varepsilon})^*$ and (NUS^*) are given.

Keywords and Phrases. Orlicz space; Property (A_2^{ε}) ; Fixed point property, The weak Banach-saks property.

Classification. 46B20, 46E30, 47H09

§ 1. INTRODUCTIONS

Let X be a *Banach space* and let S(X) and B(X) denote the unit sphere and the unit ball of X, respectively.

Given any element $x \in S(X)$ and any positive number δ , we define

$$S^*(x,\delta) = \{x^* \in B(X^*) : x^*(x) \ge 1 - \delta\}.$$

Let A be a bounded subset of X. Its Kuratowski measure of noncompactness $\alpha(A)$ is defined as the infimum of all numbers d > 0 such that A may be covered by a finite family of sets of diameters smaller than d.

A Banach space X is said to be NUS^* provided that for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in S(X)$, then $\alpha(S^*(x, \delta)) \leq \varepsilon$.

A Banach space X is said to have the weak Banach-Saks property whenever given any weakly null sequence $\{x_n\}$ in X there exists a subsequence $\{z_n\}$ of $\{x_n\}$ such that the sequence $\{\frac{1}{k}(z_1 + z_2 + \cdots + z_k)\}$ converges to zero strongly.

A Banach space X is said to have property (A_2) if there exists a number $\Theta \in (0,2)$ such that for each weakly null sequence $\{x_n\}$ in S(X), there are $n_1, n_2 \in \mathcal{N}$ satisfying $||x_{n_1} + x_{n_2}|| < \Theta$. It is well known that if X has property (A_2) then X has the weak Banach-Saks property (see [3]).

A Banach space X is said to have property (A_2^{ε}) if for any $\varepsilon > 0$ there exists a number $\delta > 0$ such that for any $t \in (0, \delta)$ and each weakly null sequence $\{x_n\}$ in S(X), there is $k \in \mathcal{N}$ satisfying $||x_1 + tx_k|| < 1 + t\varepsilon$ (see [10]).

Now, we introduce the notions of (UA_2^{ε}) and $(A_2^{\varepsilon})^*$ -properties.

⁽¹⁾ Supported by Chinese National Science Foundation Grant.

A Banach space X is said to have property (UA_2^{ε}) if for any $\varepsilon > 0$ there exists a number $\delta > 0$ such that for each weakly null sequence $\{x_n\}$ in S(X), there is $k \in \mathcal{N}$ satisfying $||x_1 + tx_k|| < 1 + t\varepsilon$ for all $t \in (0, \delta)$.

The dual space X^* of a Banach space X is said to have property $(A_2^{\varepsilon})^*$ if for any $\varepsilon > 0$ there exists a number $\delta > 0$ such that if $0 < t < \delta$ and each weak star null sequence $\{x_n^*\}$ of $S(X^*)$, there is $k \in \mathcal{N}$ satisfying $||x_1^* + tx_k^*|| < 1 + t\varepsilon$.

Notice that for reflexive Banach spaces the properties (A_2^{ε}) and $(A_2^{\varepsilon})^*$ coincide.

Prus (see [9]) has proved that X is NUS^* if and only if X has property (A_2^{ε}) and X contains no copy of l_1 . He also proved that if X is NUS^* , then X has the weak Banach-Saks property.

A natural generalization of this notion is property (WA_2^{ε}) .

A Banach space X has property (WA_2^{ε}) whenever it satisfies the condition from the definition of property (A_2^{ε}) with "for every $\varepsilon > 0$ " replaced by "for some $\varepsilon \in (0, 1)$ ".

Let C be a nonempty bounded closed convex subset of X. A mapping $T: C \to C$ is said to be nonexpansive whenever the inequality $||Tx - Ty|| \le ||x - y||$ holds for every $x, y \in C$.

We will say that X has the weak fixed point property (**WFPP** for short) if every nonexpansive mapping $T : K \to K$ from a nonempty weakly compact convex subset K of X into itself has a fixed point.

R. Browder, D. Gohde, W. A. Kirk (see [5]) and other authors have established that conditions of a geometric nature on the norm of X, guarantee the **WFPP**. Uniform convexity and normal structure are examples of such conditions.

To obtain the weak fixed point property in Banach spaces, García-Falset [3] introduced the coefficient R(X) as follows:

$$R(X) = \sup\left\{\liminf_{n \to \infty} \|x_n + x\| : \{x_n\} \subset B(X), x_n \xrightarrow{w} 0, x \in B(X)\right\}.$$

He proved that a Banach space X with R(X) < 2 has the weak fixed point property (see [4]).

It is clear that a Banach space X with property (WA_2^{ε}) has R(X) < 2. Therefore, a Banach space X with property (WA_2^{ε}) has the fixed point property.

Let $\|\cdot\|$ be a norm in X. We say that $\|\cdot\|$ is a uniformly *Frechet* differentiable norm (**UF**-norm for short) if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists uniformly over $x, y \in S(X)$.

Denote by \mathcal{N} and \mathcal{R} the sets of natural and real numbers, respectively. Let (G, Σ, μ) be a measure space with a finite and non-atomic measure μ . Denote by L^0 the set of all μ -equivalence classes of real valued measurable functions defined on G. Let l^0 stand for the space of all real sequences.

A map $\Phi : \mathcal{R} \to [0, \infty)$ is said to be an *Orlicz function* if it is even, convex, vanishes at 0, but not identically 0.

An Orlicz function is called an *N*-function if

$$\lim_{u \to 0} \frac{\Phi(u)}{u} = \infty.$$

By the Orlicz function space L_{Φ} we mean

$$L_{\Phi} = \left\{ x \in L^0 : I_{\Phi}(cx) = \int_G \Phi(cx(t)) \, d\mu < \infty \quad for \ some \ c > 0 \right\}.$$

Analogously, we define the Orlicz sequence space

$$l_{\Phi} = \left\{ x \in l^0 : I_{\Phi}(cx) = \sum_{i=1}^{\infty} \Phi(cx(i)) < \infty \text{ for some } c > 0 \right\}.$$

The spaces L_{Φ} and l_{Φ} are equipped with the so-called *Luxemburg norm*

$$||x|| = \inf\{\varepsilon > 0 : I_{\Phi}(\frac{x}{\varepsilon}) \le 1\}$$

or with the equivalent one

$$||x||_{0} = \inf_{k>0} \frac{1}{k} \left(1 + I_{\Phi}(kx)\right),$$

called the *Orlicz* or the *Amemiya norm*. It is well known that if Φ is an *N*-function, then for any $x \neq 0$ there exists a number k such that

$$||x||_0 = \frac{1}{k} (1 + I_{\Phi}(kx)).$$

(see [1]).

To simplify notations, we put $L_{\Phi} = (L_{\Phi}, \|\cdot\|)$, $l_{\Phi} = (l_{\Phi}, \|\cdot\|)$, $L_{\Phi}^{0} = (L_{\Phi}, \|\cdot\|_{0})$ and $l_{\Phi}^{0} = (l_{\Phi}^{0}, \|\cdot\|_{0})$.

For any Orlicz function Φ we define its *complementary function* $\Psi : \mathcal{R} \longrightarrow [0, \infty)$ by the formula

$$\Psi(v) = \sup_{u>0} \{ u |v| - \Phi(u) \}$$

for every $v \in \mathcal{R}$. The complementary function Ψ is also a convex function vanishing at zero.

We say an Orlicz function Φ satisfies the Δ_2 -condition (δ_2 -condition) if there exist constants $k \geq 2$ and $u_0 > 0$ such that $\Phi(u_0) > 0$ and

$$\Phi\left(2u\right) \le k\Phi\left(u\right)$$

for every $|u| \ge u_0$ (for every $|u| \le u_0$), respectively (see [1], [7] an [10]).

We say an Orlicz function Φ satisfies the ∇_2 -condition ($\overline{\delta}_2$ -condition) if its complementary function Ψ satisfies the Δ_2 -condition (δ_2 -condition), respectively. An Orlicz function Φ is said to be *uniformly convex* on $[0, u_0]$, if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\Phi\left(\frac{u+v}{2}\right) \le (1-\delta)\frac{\Phi(u) + \Phi(v)}{2}$$

for all $u, v \in [0, u_0]$ satisfying $|u - v| \ge \epsilon \max\{u, v\}$.

We say an Orlicz function Φ is *strictly convex* if for any $u \neq v$ and $\alpha \in (0, 1)$ we have

$$\Phi\left(\alpha u + (1-\alpha)v\right) < \alpha \Phi(u) + (1-\alpha)\Phi(v).$$

For more details on Orlicz functions and Orlicz spaces we refer to [1], [8] and [11].

§2. RESULTS

Theorem 1. If a norm $\|\cdot\|$ in a Banach space X is a **UF**-norm, then X has property (UA_2^{ε}) .

Proof: Since $\|\cdot\|$ is a **UF**-norm in X, we get that the Banach space X is Gateaux differentiable, i.e., X is smooth. Let $f_x \in S(X^*)$ be the unique supporting functional at $x \in S(X)$. It is well know that the norm $\|\cdot\|$ on a Banach space X is **UF** if and only if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} = f_x(y)$$

exists uniformly for $x, y \in S(X)$.

Now, for any $\varepsilon > 0$ and each weakly null sequence $\{x_n\}$ in S(X), there exists $n_0 \in \mathcal{N}$ such that

$$|f_x(x_n)| < \frac{\varepsilon}{2},$$

for all $n \ge n_0$. Since the norm $\|\cdot\|$ on a Banach space X is **UF**, there exists a $\delta > 0$ such that

$$\left|\frac{\|x+tx_{n_0}\|-\|x\|}{t}-f_x(x_{n_0})\right|<\frac{\varepsilon}{2}$$

whenever $|t| < \delta$, whence

$$||x + tx_{n_0}|| - ||x|| < \frac{t\varepsilon}{2} + |f_x(x_{n_0})| t < t\varepsilon$$

uniformly with respect $x \in S(X)$. This means that X has property (A_2^{ε}) .

Theorem 2. Suppose that a Banach space X has property (WA_2^{ε}) . Then X has the weak Banach-Saks property and the weak fixed point property.

Proof: Since X has property (WA_2^{ε}) , there exist $\varepsilon \in (0, 1)$ and $\delta > 0$ such that for $t \in [0, \delta]$ and weak null sequence $\{x_n\} \in B(X)$ there exists $k \in N, k > 1$ such that $||x_1 + tx_k|| < 1 + \varepsilon \delta$. Hence

$$||x_1 + x_k|| = ||x_1 + \delta x_k + (1 - \delta) x_k||$$

$$\leq ||x_1 + \delta x_k|| + (1 - \delta) \leq 1 + \varepsilon \delta + 1 - \delta = 2 - \delta(1 - \varepsilon),$$

That is, a Banach space with property (WA_2^{ε}) has property (A_2) . Consequently, a Banach space with property (WA_2^{ε}) has the weak Banach-Saks property.

Moreover, we have $R(X) \leq 2 - \delta(1 - \varepsilon) < 2$, so X enjoys the weak fixed point property.

Theorem 3. Let X be a separable Banach space. If X^* has property $(A_2^{\varepsilon})^*$, then X has the (UKK)-property.

Proof: Let $\{x_n\}$ be a sequence in S(X) with $sep(\{x_n\}) > \varepsilon$ and $x_n \xrightarrow{w} x \in B(X)$, deleting at most one element of the sequence, we can assume that $sep(\{x_n - x\}) > \varepsilon$. For any $\varepsilon_1 > 0$ let $M = 1 + \varepsilon_1$. By the Bessaga-Pelczynski selection principle, there exists a subsequence $\{z_n\}$ of $\{x_n - x, x\}$ with $z_1 = x$ that is a basic sequence with basic constant less than or equal to M. (See [[2]] p 46)

Let us consider the sequence $\{z_n^*\}$ of the Hahn-Banach extensions of the coefficient functionals of the basic sequence $\{\frac{z_n}{\|z_n\|}\}$. Put $X_0 = \overline{span}\{z_n : n = 1, 2, ...\}$. Then $\langle z_n^*, z \rangle \to 0$ for any $z \in X_0$ as $n \to \infty$. In fact, for any $z \in X_0$ we have $z = \sum_{i=1}^{\infty} z_i^*(z) z_i$, hence

$$\begin{aligned} |\langle z_n^*, z \rangle| &= ||z_n^*(z)z_n|| = \left\| \sum_{i=n}^{\infty} z_i^*(z)z_i - \sum_{i=n+1}^{\infty} z_i^*(z)z_i \right\| \\ &\leq \left\| \sum_{i=n}^{\infty} z_i^*(z)z_i \right\| + \left\| \sum_{i=n+1}^{\infty} z_i^*(z)z_i \right\| \to 0. \end{aligned}$$

Since X is separable, we can assume that $z_n^* \xrightarrow{w^*} z^*$ as $n \to \infty$. Now, for any $\varepsilon_2 > 0$. Since X^{*} has property $(WA_2^{\varepsilon})^*$, there exists $0 < \delta_2 \leq 1$ such that for any $t \in (0, \delta_2)$ there exists k > 1 such that

(1)
$$\left\|\frac{z_1^*}{\|z_1^*\|} + t\frac{(z_k^* - z^*)}{\|z_k^* - z^*\|}\right\| < 1 + t\varepsilon_2,$$

It is easy to see that

(2) For all
$$k \in \mathbb{N}$$
, $\langle z^*, z_k \rangle = 0$ and $\langle z^*_k, z_k \rangle = ||z_k||$. In particular $\langle z^*, x \rangle = 0$

- (3) For all $k \ge 2$, $||x + z_k|| = 1$ and $\langle z_k^*, x \rangle = 0$
- (4) For all $k \in \mathbb{N}$, $||z_k^* z^*|| \le 4M$, and $||z_1^*|| \le M$.

We can assume that $||z_n|| \ge \frac{\varepsilon}{2}$ for $n \ge 2$, because $sep(\{x_n\}) > \varepsilon$

Let $t \in (0, \delta_2)$ and let k > 1 be such that (1) holds, by (2)- (4) we obtain

$$||x|| = \langle z_1^*, x \rangle = ||z_1^*|| \langle \frac{z_1^*}{||z_1^*||}, x \rangle = ||z_1^*|| [\langle \frac{z_1^*}{||z_1^*||}, x + z_k \rangle]$$

$$= \|z_1^*\| [\langle \frac{z_1^*}{\|z_1^*\|}, x + z_k \rangle + t \langle \frac{z_k^* - z^*}{\|z_k^* - z^*\|}, x + z_k \rangle - t \langle \frac{z_k^* - z^*}{\|z_k^* - z^*\|}, x + z_k \rangle]$$

$$= \|z_1^*\| [\langle \frac{z_1^*}{\|z_1^*\|} + t \frac{z_k^* - z^*}{\|z_k^* - z^*\|}, x + z_k \rangle - \frac{t \|z_k\|}{\|z_k^* - z^*\|}]$$

$$\leq \|z_1^*\| [\| \frac{z_1^*}{\|z_1^*\|} + t \frac{z_k^* - z^*}{\|z_k^* - z^*\|} \| - \frac{t \|z_k\|}{\|z_k^* - z^*\|}]$$

$$\leq M [(1 + t\varepsilon_2) - \frac{t\varepsilon}{2\|z_k^* - z^*\|}] \leq M [(1 + t\varepsilon_2) - \frac{t\varepsilon}{8M}]$$

So far we have $||x|| \leq M(1 + t\varepsilon_2 - \frac{t\varepsilon}{8M})$. Using $M = 1 + \varepsilon_1$, and taking the limit as $\varepsilon_1 \to 0$ and obtain

$$||x|| \le 1 + t(\varepsilon_2 - \frac{\varepsilon}{8})$$

Now take $\varepsilon_2 = \frac{\varepsilon}{16}$, and $t = \frac{\delta_2}{2}$, and get

$$\|x\| \le 1 - \frac{\delta_2 \varepsilon}{32}$$

Completing the proof of the theorem.

Remark 1. It worth noting that separability of X in the last theorem is only necessary to ensure that w^* - compact subsets are w^* -sequentially compact. We can relax the assumption of separability of X to, for example, requiring X admit an equivalent smooth norm [13].

Corollary 1. Let X be a separable Banach space. If X^* has property $(A_2^{\varepsilon})^*$, then both X and X^* have the weak fixed point property.

Proof: The result follows from theorem 2, Theorem 3 and Theorem 1 in [].

Corollary 2. Let X be the Orlicz space L_M or L_M^0 . The following statements are equivalent:

- (1) X is uniformly smooth;
- (2) X is nearly uniformly smooth;
- (3) X is (**NUS***):
- (4) X has property (A_2^{ε}) ;

 $(5)\Psi \in \Delta_2$, Ψ is strictly convex on the whole real line and Φ is uniformly convex outside a neighborhood of zero.

Proof: It follows from Theorem 3 and Theorem 3.15 in [1].

Lemma 1. Suppose $\Phi \in \delta_2$. Then for any $\varepsilon > 0$ and L > 0 there exists $\delta > 0$ such that

$$I_{\Phi}(x+ty) - I_{\Phi}(x) < t\varepsilon$$

whenever $I_{\Phi}(x) \leq L$, $I_{\Phi}(y) \leq \delta$ and $t \in (0, 1)$.

Proof: Since $\Phi \in \delta_2$, for any $\varepsilon > 0$ and L > 0 there exists $\delta \in (0, 1)$ such that

 $I_{\Phi}(x+y) - I_{\Phi}(x) < \varepsilon$

whenever $I_{\Phi}(x) \leq L$ and $I_{\Phi}(y) \leq \delta$ (see []). So for any $t \in (0, \delta)$

$$I_{\Phi}(x+ty) = I_{\Phi}(tx+ty+(1-t)x)$$

$$\leq tI_{\Phi}(x+y) + (1-t)I_{\Phi}(x)$$

$$\leq t(I_{\Phi}(x)+\varepsilon) + (1-t)I_{\Phi}(x) = I_{\Phi}(x) + t\varepsilon$$

whenever $I_{\Phi}(x) \leq L$ and $I_{\Phi}(y) \leq \delta$.

Lemma 2. Suppose $\Phi \in \overline{\delta}_2$. Then for any $\varepsilon > 0$ and $u_0 > 0$ there exists $\delta > 0$ such that

$$\Phi\left(tu\right) \le t\varepsilon\Phi\left(u\right)$$

whenever $|u| \leq u_0$ and $t \in (0, \delta)$.

Proof: Suppose that $\Phi \in \overline{\delta}_2$. Then for any $u_0 > 0$ there exists $\theta \in (0, 1)$ such that

$$\Phi\left(\frac{u}{2}\right) \le \frac{\theta}{2}\Phi\left(u\right)$$

whenever $|u| \leq u_0$ (see []). Take $n \in \mathcal{N}$ such that $\theta^n \leq \varepsilon$. Then for $\delta = \frac{1}{2^n}$, we have

$$\Phi(\delta u) = \Phi\left(\frac{u}{2^n}\right) \le \left(\frac{\theta}{2}\right)^n \Phi\left(u\right) \le \delta \varepsilon \Phi\left(u\right)$$

whenever $|u| \leq u_0$.

Hence for any $t \in (0, \delta)$, we have

$$\Phi(tu) = \Phi\left(\frac{t}{\delta}\delta u\right) \le \frac{t}{\delta}\delta\varepsilon\Phi\left(u\right) = t\varepsilon\Phi\left(u\right)$$

whenever $|u| \leq u_0$.

For any $x \in l_{\Phi}^{0}$, put $N(x) = \{i \in N : x(i) \neq 0\}$. Define $D(l_{\Phi}^{0}) = \{x = (x(i)) \in B(l_{\Phi}^{0}) : N(x) \text{ is finite } \}$.

Lemma 4. Let Φ be an N-function such $\Phi \in \delta_2$ and $\Phi \in \overline{\delta}_2$. Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that for every weakly null sequence $\{x_n\}$ in $B(l_{\Phi}^0)$ and $x \in D(l_{\Phi}^0)$ there exists k > 1 such that

$$\|x + tx_k\|^0 \le 1 + t\varepsilon$$

whenever $t \in (0, \delta)$.

Proof: Let $\varepsilon > 0$ be given. By $\Phi \in \overline{\delta}_2$, the set $Q = \{k_x : \frac{1}{2} \leq ||x|| \leq 1\}$ is bounded, i.e., there exists $\mathbf{k} > 1$ such that $1 \leq k_x \leq \mathbf{k}$. By Lemma 2, we know that there exists $\delta \in (0, 1)$ such that

$$\Phi\left(tu\right) \le t\delta\Phi\left(u\right)$$

whenever $t \in (0, \delta)$ and $|u| \leq \Phi^{-1}(\mathbf{k})$.

By the Lemma 1, there exists $\theta > 0$ such that

$$I_{\Phi}(x + ty) - I_{\Phi}(x) < t\varepsilon$$

whenever $I_{\Phi}(x) \leq L$, $I_{\Phi}(y) \leq \theta$ and $t \in (0, 1)$.

Let $t \in (0, \frac{\delta}{\mathbf{k}})$ be fixed and $\{x_n\}$ be arbitrary weakly null sequence in $S(l_{\Phi}^0)$.

For any $x \in D(l_{\Phi}^{0})$, take $i_{0} \in \mathcal{N}$ such that x(i) = 0 when $i > i_{0}$. Since $x_{n} \xrightarrow{w} 0$, there exists $n_{0} \in \mathcal{N}$ such that $\sum_{i=1}^{i_{0}} \Phi(x_{n}(i)) < \theta$ for all $n \ge n_{0}$. Hence, we get for $l \ge 1$ satisfying $||x_{1}|| = \frac{1}{l}(1 + I_{\Phi}(lx_{1}))$:

$$\|x_{1} + tx_{n}\|^{0} \leq \frac{1}{l} \left[1 + I_{\Phi} \left(l(x_{1} + tx_{n})\right)\right]$$

$$= \frac{1}{l} \left[1 + \sum_{i=1}^{i_{0}} \Phi \left(l(x_{1}(i) + tx_{n}(i))\right) + \sum_{i=i_{0}+1}^{\infty} \Phi \left(ltx_{n}(i)\right)\right]$$

$$\leq \frac{1}{l} \left[1 + \sum_{i=1}^{i_{0}} \Phi \left(lx_{1}(i)\right) + t\varepsilon + \sum_{i=i_{0}+1}^{\infty} \Phi \left(ltx_{n}(i)\right)\right]$$

$$\leq \frac{1}{l} \left[1 + \sum_{i=1}^{i_{0}} \Phi \left(lx_{1}(i)\right) + t\varepsilon + tl\varepsilon \sum_{i=i_{0}+1}^{\infty} \Phi \left(x_{n}(i)\right)\right)\right]$$

$$\leq \frac{1}{l} \left[1 + \sum_{i=1}^{i_{0}} \Phi \left(lx_{1}(i)\right)\right] + 2t\varepsilon \leq 1 + 2t\varepsilon.$$

Assume that $\Phi \in \delta_2$. Then for any $x \in S(l_{\Phi}^0)$ and k > 1, there exists a unique $d_{x,k} > 0$ such that $I_{\Phi}\left(\frac{kx}{d_{x,k}}\right) = \frac{k-1}{2}$. Define $d_x = \inf\{d_{x,k} : k > 1\}$.

Theorem 4. Let Φ be an Orlicz function satisfying $\lim_{u\to 0} \frac{\Phi(u)}{u} = 0$ and $X = l_{\Phi}^0$. The following statements are equivalent:

- (1) X has property (A_2^{ε}) ;
- (2) X has property (WA_2^{ε}) ;
- (3) R(X) < 2;
- (4) $\Phi \in \delta_2$ and $\Phi \in \overline{\delta}_2$.

Proof: (3) \Rightarrow (4). Suppose that $\Phi \notin \delta_2$. Then for any $\varepsilon > 0$ there exists $x \in S(l_{\Phi}^0)$ such that

$$1 - \varepsilon \le \left\|\sum_{i=n}^{\infty} x(i)e_i\right\|^0 \le 1$$

for all $n \in \mathcal{N}$. Take $n_1 < n_2 < \cdots$ of \mathcal{N} such that

$$\left\| \sum_{j=n_i+1}^{n_{i+1}} x(j) e_j \right\|^0 \ge 1 - 2\varepsilon \quad \text{for all} \quad i \in \mathcal{N}.$$

Put $x_i = \sum_{j=n_i+1}^{n_{i+1}} x(j)e_j$. Since

$$\limsup_{\lambda \to 0} \frac{I_{\Phi}(\lambda x_n)}{\lambda} \le \lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x)}{\lambda} = 0$$

we have $x_i \stackrel{l_{\Psi}}{\to} 0$. Notice that every singular functional vanishes on any x_i . So, we have $x_i \stackrel{w}{\to} 0$.

But $\liminf_{i\to\infty} \|x_i + x\|^0 \ge \liminf_{i\to\infty} 2\|x_i\|^0 \ge 2(1-2\varepsilon)$. By the arbitrariness of ε , we get $R(l_{\Phi}^0) = 2$. In such a way we proved that if $\Phi \notin \delta_2$ then (3) does not hold. Suppose that $\Phi \notin \overline{\delta}_2$. Then the Kottman constant $K(l_{\Phi}^0) = \sup\{d_x : x \in S(l_{\Phi}^0)\} = 2.$ (see [1] and [11]). Hence for any $\varepsilon > 0$ there exists $x \in S(l_{\Phi}^0)$ such that $d_x > 2 - \varepsilon$. Furthermore, we have $d_{x,k} \ge d_x > 2 - \varepsilon$ for all k > 1. Put $x_1 = (x(1), 0, x(2), 0, x(3), 0, x(4), 0, x(5), 0, x(6), 0, \ldots),$ $x_2 = (0, x(1), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ldots),$

Then $||x_n||^0 = 1$, $x_n \xrightarrow{w} 0$ and for any k > 1 we have

$$\frac{1}{k} \left(1 + I_{\Phi} \left(\frac{k(x_n + x_1)}{d_x} \right) \right) \ge \frac{1}{k} \left(1 + I_{\Phi} \left(\frac{k(x_n + x_1)}{d_{x,k}} \right) \right)$$
$$= \frac{1}{k} \left(1 + I_{\Phi} \left(\frac{kx}{d_{x,k}} \right) + I_{\Phi} \left(\frac{kx}{d_{x,k}} \right) \right) = \frac{1}{k} (1 + \frac{k - 1}{2} + \frac{k - 1}{2}) = 1$$

So, we get $\left\|\frac{x_n+x_1}{d_x}\right\|^0 \ge 1$, i.e., $\liminf_{n\to\infty} \|x_n+x_1\|^0 \ge d_x - \varepsilon$. By the arbitrariness of ε , we get $R(l_{\Phi}^0) = 2$. Therefore, we proved that $\Phi \notin \overline{\delta}_2$ implies that (3) does not hold.

 $(4) \Rightarrow (1)$. By Lemma 4, for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for every weak null sequence $\{x_n\}$ in $B(l_{\Phi}^0)$ and any $x \in D(l_{\Phi}^0)$, there exists a number m > 1 such that

$$\|x + tx_m\|^0 \le 1 + \frac{t\varepsilon}{2}$$

whenever $t \in (0, \delta)$.

Let $t \in (0, \delta)$ be given arbitrary. For any weakly null sequence $\{x_n\}$ in $B(l_{\Phi}^0)$, we only need to consider the case when $N(x_1)$ is infinite. Take i_0 large enough such that $\left\|\sum_{i=i_0+1}^{\infty} x_1(i)e_i\right\|^0 \leq \frac{t\varepsilon}{2}$. Then there exists $m \in \mathcal{N}$ such that $\left\|\sum_{i=1}^{i_0} x_1(i)e_i + tx_m\right\|^0 \leq 1 + \frac{t\varepsilon}{2}$.

Hence

$$\|x_1 + tx_m\|^0 \le \left\|\sum_{i=1}^{i_0} x_1(i)e_i + tx_m\right\|_9^0 + \frac{t\varepsilon}{2} \le 1 + \frac{t\varepsilon}{2} + \frac{t\varepsilon}{2} = 1 + t\varepsilon.$$

Corollary 3. Let Φ be an Orlicz function with $\lim_{n\to 0} \frac{\Phi(u)}{u} = 0$ and $X = l_{\Phi}^0$. The following statements are equivalent:

- (1) X is nearly uniformly smooth;
- (2) X is (NUS*);
- (3) $M \leq 1, \Phi \in \delta_2$ and $\Phi \in \overline{\delta}_2$.

In same way, we can get the following result.

Theorem 5. For any Orlicz function Φ and X the following statements are equivalent:

- (1) X has property (A_2^{ε}) ;
- (2) X has property (WA_2^{ε}) ;
- (3) R(X) < 2;
- (4) $\Phi \in \delta_2$ and $\Phi \in \overline{\delta}_2$.

Corollary 4. Let Φ and X be as in Theorem 5. The following statements are equivalent:

- (1) X is nearly uniformly smooth;
- (2) X is (NUS*);
- (3) $\Phi \in \delta_2$ and $\Phi \in \overline{\delta}_2$.

References

- [1] S. Chen, Geometry of Orlicz Spaces, Dissertatioes Mathematicae, Warszawa, 1996.
- [2] J. Diestel, Sequence and Series in Banach Spaces, Graduate Texts in Math. 92 Springer-Verlag, 1984.
- [3] J. García-Falset, Stability and Fixed points for nonexpansive mappings, Houston Math. 20 (1994), 495-505.
- [4] J. García-Falset, The Fixed point property in Banach spaces with NUS property, Nonlinear Anal., (to appear).
- [5] R. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
- [6] L. V. Kantorovich and G. P.Akilov, *Functional Analysis*, Nauka Moscok, 1977 (in Russian).
- [7] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, 1983
- [8] S. Prus, Nearly uniformly smooth Banach spaces, Boll. U.M.I.,(7)3-B(1989),506-521.
- [9] S. Prus, On infinite dimensional uniform smoothness of Banach spaces (Preprint).
- [10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York, Basel, Hong Kong 1991.
- [11] Tingfu Wang, Ball-Packing constants of Orlicz sequence spaces, Chinese Ann. Math., 8A (1987), 508-513.
- [12] Guanglu Zhang, Weakly convergent sequence coefficient of product space, Proc. Amer. Math. Soc., 117 No.3 (1992), 637-643.
- [13] Hagler, J. and Sullivan, F., Smoothness and weak sequential compactness, Proc. Amer. Math. Soc., 78 No.4 (1980), 497-503.

YUNAN CUI: DEPARTMENT OF MATHEMATICS,, HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY, HARBIN, 150080, P.R. CHINA

E-mail address: cuiya@frey.newcastle.edu.au

Henryk Hudzik: Faculty of Mathematics and Computer Science, Adam Mickiewicz Uniwersity, Poznań, Poland

E-mail address: hudzik@amu.edu.pl

BRAILEY SIMS: DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF NEWCAS-TLE, NSW 2308, AUSTRALIA

E-mail address: bsims@frey.newcastle.edu.au