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ON SOME BANACH SPACE PROPERTIES 
SUFFICIENT FOR WEAK NORMAL STRUCTURE 

AND THEIR PERMANENCE PROPERTIES 

BRAILEY SIMS AND MICHAEL A. SMYTH 

ABSTRACT. We consider Banach space properties that lie between conditions 
introduced by Bynum and Landes. These properties depend on the metric 
behavior of weakly convergent sequences. We also investigate the permanence 
properties of these conditions. 

1. INTRODUCTION 

Throughout this paper, X will denote a real Banach space. 
Recall that X has (weak) normal structure if whenever C is a (weak compact) 

bounded convex subset of X with diam C > 0 then rad C < diam C, where 

diam C := sup{llx - y 1 1  : x, y E C) and rad C := inf sup{llx - Y 1 1  : Y E C)  
xEC 

are the diameter and radius of the set C.  Recall also that Banach spaces with the 
Schur property are those for which weak compact and norm compact sets coincide. 
This gives the well known fact that Schur spaces have weak normal structure. We 
will assume in the sequel that the Banach spaces X are not Schur. Thus, they 
have weakly .convergent sequences that are not norm convergent. This will also be - 
convenient for the definition of some Banach space constants. 

It is well known that X fails weak normal structure if and only if there exists 
a sequence (2,) in X with x, % 0, d i a m ~ { x , ) ~ = ,  (= diam{x,)~=,) = 1 and 
dist (x,+I, Ei{~k);=~) + 1. 

In particular diam,(x,), rada(xn) and limn llxn 1 1  are a11 equal to 1, where 

and 

rada(xn) := inf{lim sup 112 - xnll : x E W { X ~ ) ~ = ~ )  
n 

are, respectively, the asymptotic diameter of (x,) and the asymptotic radius of (x,) 
in Ei{xn)r=,. 

See [lo] for details and the relevance of weak normal structure to fixed point 
theory of nonexpansive mappings. 

In section 2 we discuss the notion of minimal sequential diameter, which will be 
useful as a technique in the investigation of metric phenomena in the sequel and is 
also used explicitly in section 3 for the definition of Banach space properties. 
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Section 3 considers the properties mentioned in the abstract. Section 4 is devoted 
to permanence results for these properties. 

2. ON THE MINIMAL SEQUENTIAL DIAMETER 

Throughout this section C will denote a nonempty bounded metric space. Define, 
for infinite such C, 

A*(C) := inf{diam B : B is an infinite subset of C) 

= inf{diam(x,) : (x,) is an infinite sequence in C), 

the equality being obvious. For convenience, if C is finite, put A*(C) = 0. We will 
call A*(C) the minimal sequential diameter of C. 

The minimal sequential diameter will be related in this section to the separation 
index of noncompactness, and also to the notion of a-minimal sets. It is also used 
in section 3 for the definition of Banach space properties. 

We recall the following combinatorial result. 

Ramsey's Theorem 2.1. Suppose n E N and D is an infinite set. With P,(D) 
denoting the members of P(D)  with n elements, suppose that P,(D) = AUB. Then 
there exists an infinite subset E of D so that either Pn(E)  & A or P,(E) & B (the 
possibilities are not mutually exclusive). 

See page 234 of [7] or 392 of [2] for a proof of this result. 
Recall that the separation index of a bounded nonempty metric space C is defined 

by 

y(C) := sup{sep(y,) : (y,) is a sequence in C), 

where sep(x,) := inf,+, d(x,, x,) is the separation of a bounded sequence (x,). 

Lemma 2.2. Suppose C is infinite and r > 0. Then there exists an infinite se- 
quence (y,) in C so that either diam(y,) < r or sep(yn) > r. 

Proof. Let 

A = {{x,Y) E P2(C) : ~ ( X , Y )  l r )  , 
B = {{x, Y) E P2(C) : d(x, y) L r )  . 

Using 2.1 when n = 2 then gives the result. 17 

We can now relate the minimal sequential diameter with the separation index of 
noncompactness. 

Lemma 2.3. A*(C) < y(C). 

Proof. The lemma is trivial if C is finite, so suppose that C is infinite. Suppose now 
on the contrary that y(C) < r < A*(C) for some r > 0. But by using lemma 2.2 we 
can obtain an infinite sequence in C whose diameter is no larger than r or whose 
separation is no smaller than r .  Either possibility will give a contradiction. 

Proposition 2.4. If C is an infinite bounded metric space, then 

y(C) = sup{A*(D) : D is an infinite subset of C) 

and 

A*(C) = inf{y(D) : D is an infinite subset of C). 
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Proof. From lemma 2.3, if D is an infinite subset of C then 

A*(D) F y(D) I y(C). 

Thus y(C) 2 sup{A*(D) : D is an infinite subset of C). To establish the reverse 
inequality, suppose that E > 0. Then let (x,) be a sequence in C with sep(x,) > 
y(C) - E. Clearly then A*(%,) > y(C) - E,  and the first equality is shown. Also we 
have, for any infinite subset D of C,  

A* (C) I A* (D) I y(D) 

and so A*(C) I inf{y(D) : D is an infinite subset of C). Since y(D) 5 diam D for 
any subset D of C,  the reverse inequality is clear. 

In [4] the notion of a-minimality is defined. First recall that the a index of 
noncompactness of a nonempty bounded metric space C is defined by 

a ( C )  := inf{d : C can be covered with a finite number of sets of diameter I d). 

An infinite bounded metric space C is called a-minimal if a ( B )  = a (C)  for every 
infinite subset B of C.  It is shown in [4] that every infinite bounded metric space 
contains an a-minimal subset. We now verify this using an alternative method. 

After [22] we call a bounded sequence (x,) in C asymptotically equidistant if 

lim d(x,, x,) exists. 
n,m+co(n#m) 

The following lemma is widely known and will be useful in the sequel. The proof 
we give is suggested in [5 ] .  

Lemma 2.5. Evey  bounded infinite metric space C contains an asymptotically 
equidistant sequence. 

Proof. Let €, > Olen --+ 0. Choose an infinite sequence (x,) from C so that 
sep(z,) > y(C) - €112. Lemma 2.2 will give a subsequence (y,) of (x,) such that 
diam(yn) l y(C) + €112. 

Thus y(C) - ~ 1 1 2  I d ( ~ n , ~ m )  F y(C) + €112 for n # m. 
We now continue the process, using (y,) and €2 instead of C and €1, etc. A 

diagonalization will then give the result. 

Proposition 2.6. Eve y infinite bounded metric space contains an a-minimal sub- 
set. 

Proof. By the previous lemma it is sufficient to show that an asymptotically equidis- 
tant sequence is a-minimal. So, suppose that limn,,,,(,#,) d(x,, xm) = I .  Since 
any subsequence of (2,) also has this property, it is sufficient to show that a(%,) = 1. 
But this is easily seen to be so. 

The next proposition shows that a-minimal sets can be easily characterized 
using the minimal sequential diameter. Its truth is obvious. 

Proposition 2.7. If C is infinite then 

A*(C) = inf{a(B) : B is an infinite subset of C). 

Also, C is a-minimal if and only if 

A* (C) = a(C).  
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Note that lemma 2.3 and proposition 2.7 together imply that for an a-minimal 
set C ,  A'(C) = y(C) = a(C).  Simple examples show that the last equality does 
not characterize a-minimal sets. 

We now recover lemma 1 of [23]. 

Proposition 2.8. If C is infinite, then 

y(C) = sup{a(B) : B is an a-minimal subset of C).  

a (B)  can be replaced by A'(B) or y(B) in the above equality. 

Proof. We have from 2.4 that 

y(C) = sup{A'(D) : D is an infinite subset of C) .  

Write s = sup{a(B) : B is a a-minimal subset of C). By proposition 2.6 an infi- 
nite subset D of C contains an a-minimal subset B. 2.7 then gives that 

A'(D) 5 A'(B) = a (B) .  

Thus s 2 y(C). The reverse inequality is also given by proposition 2.7. The re- 
mainder of the proposition is now established by using the remark preceding it. 

Bynum [6] defined the weakly convergent sequence coefficient of a Banach space 
X to be 

diam, (x, ) 
WCS(X) := inf :x,  %o ,x ,  f + O  

rad, (xn) 

It is easily checked that diam, can be replaced with diam in the definition. 
Some authors have said that a space X has weak uniform normal structure if 

WCS(X) > 1. We shall say that X satisfies Bynum's condition if this inequality 
holds. 

We need some further notation for the following proposition. With D[(xn)] := 
limsup, limsup, llx, - x,ll for a bounded sequence (x,), [12] defines 

Most of the contents of the following proposition has been noticed before. 

Proposition 3.1. The following are equal. 
(1) WCS(X). 

exists). 

Proof. That (1) = (2) is well known (see, for example, [18],[22]). Lemma 2.5 gives 
(4) = (7). Obviously (2) = (5) = (6) on the extraction of appropriate subsequences. 
Also (6) 5 (4) by 2.4. Finally, (4) 5 (3) 5 (2) is straightforward and completes the 
proof. 
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Note. The condition that llxnll + 1 in the above can be replaced by the condition 
that llxnll = 1 for all n. 

We should note that the equality of (1) with (4) was noted in [18], and that of 
(1) with (7) in [5] and [22]. 

A large class of Banach spaces have Bynum's condition. Spaces which have 
uniform normal structure have this condition. A Banach space X has uniform 
normal structure if 

diam C 
inf {- : C is a bounded convex subset with diam C > 0 

rad C 

Uniformly convex spaces have uniform normal structure and thus Bynum's condi- 
tion. We mention now some properties weaker than uniform convexity. 

X is Nearly Uniformly Convex (NUC) if, given E > 0, there exists 6 ( ~ )  > 0 so 
that if (2,) is a sequence in Bx and sep(x,) > E,  then E(x,) n Bl-a(0) # 0. 

It will be convenient to introduce the following modulus. If E > 0 let 

O(E) := inf (1 - llxll : there exists a sequence (x,) C B x  

with x, % x and sep(x,) > E). 
+ 

It is implicit that we only allow 6's for which the set used in the definition is 
nonempty. We say that X is Uniformly Kadec-Klee (UKK) if O(E) > 0 for all 6, 

E-UKK if O(E) > 0 and E--UKK if limb,,- O(h) > 0. Of course X is 6--UKK 
exactly when there exists a h < E so that O(h) > 0. 

It is shown in [ll] that X is NUC if and only if X is UKK and reflexive, and 
that in general UC =+ NUC =+ UKK, with none of these implications reversible. 

In [8] van Dulst and Sims called a Banach space X Weakly Uniformly Kadec- 
W 

Klee (WUKK) if there exist an E < 1 and a 6 > 0 so that if (x,) C Bx and x, + x - with sep(x,) > E then llxll 5 1 - 6. By the above, this is equivalent to X being 
I--UKK. 

Landes [14] defined WUKK', which results from replacing sep(x,) > E in the 
definition of WUKK by liminf llx, - 211 > E. On the extraction of appropriate 
subsequences it can be seen that lim inf can be replaced by lim sup in the definition 
and WUKK' can be written as: There exist an E < 1 and a 6 > 0 so that if x, E Bx 
and x, % x, then llxll 5 1 - 6 if limsup llx, - xll > E. 

That WUKK implies WUKK' is clear, since any sequence (x,) converging weakly 
to x satisfies y(x,) 2 liminf llxn - xi1 (using the weak lower semicontinuity of the 
norm). 

Proposition 3.2. W U K K '  is equivalent to each of the following. 
(1) There exist E < 1, 6 > 0 so that zf limsup llx, - x I I  5 1, X n  % 0 and 

limsup IIxnll > E, then IIxII 5 1 - 6. 
(2) There existr < 1, p >  1 so that i f  IIxnll + 1, xn % 0 and I I x I I  > r ,  then 

limsup llx, - xi1 2 p. 
(3) There exist r < 1, p > 1 S O  that i f  limsup IIxnll 2 1, X n  0 and (1x11 > r ,  

then limsup ((x, - xll 2 p. 

Proof. WUKK' + (1): Suppose X is WUKK'. Let 6 and E be the associated 
constants. Now suppose that limsup llx, - X I [  5 1, xn % 0 and lim sup llx, 1 1  > E. 
We show that llxll 5 1 - 6. 
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Clearly we can assume that llx, - X I \  -+ s 5 1 and that s > 0, llx, - x 1 1  > 0 for 
all n. Now, with 

we have llynll = 1, yn 3 -X/S and limsup Ily, +x/sll > e/s 2 e. 
Thus by WUKK1, lixlsll 5 1 - 6. Thus llxll 5 (1 - 6)s 5 1 - 6 as required. 
(1) + WUKK1: Suppose that X satisfies condition (1) and that lJy,lJ I 1, 

y, 3 y with limsup((y, - yJJ  > e. 
w 

Then, putting x, := y, - y, x := -y, we have x, + 0, lim sup llxn 1 1  > e and 
limsup((x, - $ 1 1  = limsupllynll I 1. Thus llxll 5 1 - 6, giving llyll 5 1 - 6 and 
WUKK1. 

(1) + (2): Suppose that X has condition (1) with the associated e and 6. We 
can assume that 1 - 6 < e. 

Now suppose that llxll > (1 - 6)/e, llxnll -+ 1 and xn 3 0. 
Then suppose that lim sup llx, - x 1 1  < 1/e, s > 1 with lim sup ((sex, - sexll < 1. 

Now sex, 3 0 and limsup llsexnl) = SE > e. Thus (1) gives JJsexJJ 5 1 - 6, i.e. 
11x11 I (1 - 6)/se < (1 - 6)/e, a contradiction. 

Thus lim sup ))x, - xi1 2 l/e, giving (2) with r = (1 - 6)/e and p = 1/e. 
(2) =+ (3): Suppose that (2) holds with r and p given. Now suppose that 

limsup llxnll 2 1, xn % 0 and llxll > r ,  but that limsup ((x, - xJI < p. 
Since x, % 0, llxll < p. We can assume that llxnll + a 2 1. Then 

1 1 
limsup 1 1 %  - xi1 = limsup I(-(x, - X) + (1 - ;)(-x)ll 

a a 

But x,/a % 0 and \lxn/all + 1, contradicting (2). Thus X satisfies condition (3). 
(3) =+ (1): Suppose r and p are given by (3). Assume that limsup ((x, - xll 5 

1, x, % 0 and limsup llx,ll > l/p. Choose t so that p limsup llxnll > t > 1. 
Then limsup Jl(px,)/tll > 1, limsup ))px,/t - pxltll I p/t < p and px,/t % 0; 

so by (3), IIpx/tJl 5 r. Thus IIxII 5 trip. Since t can be made arbitrarily close to 1, 
llxll 5 rip. Thus X has (1) with e = 1lp and 6 = 1 - rip. 

Propositions 2.1 and 3.2 tell us that WUKK1 implies Bynum's condition. We 
note that this was also essentially shown in [14]. 

We now define other conditions that depend on the metric properties of weak 
null sequences. Perhaps the most recently introduced property is property (P) of 
Tan and Xu [20]: 

liminf llxn - 211 < diam(x,) if x, % x and (2,) is nonconstant. 

By extracting appropriate subsequences this can be seen to be unaltered if lim sup 
is used instead of liminf and, on normalizing, is equivalent to: 

If llxnll-+l and x n % O  then diam(x,)>l .  
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We say that X has asymptotic (P) if the above (again equivalent) conditions hold 
with diam replaced by diam, (assuming that (2,) is nonconvergent). Clearly as- 
ymptotic (P) + (P), and asymptotic (P) can also be written as: 

W 
If IIxnll=l and xn+O,  then diam,(x,)>I. 

In [19] it was noted that asymptotic (P) and (P) are distinct properties, and that 
(P)  is equivalent to a condition introduced in [21] which has subsequently been 
known as WO (since it is a weakening of the Opial condition [17]): X has WO if, 
given a nonconstant weak null sequence, lirn inf llxnll < sup, lirn sup, llxm - x, 11. 

WO can be restated as follows: If x, % 0 and (x,) is a nonconstant sequence, 
then there exists x E ~ ( x , )  so that limsup IIx, 1 1  < limsup IIx - xn 11. Of course 
WO can also be normalized as (P) was. 

In [12] a Banach space was said to satisfy the Generalized Gossez-Lami Dozo 
property (GGLD) if the original inequality defining WO holds with sup, replaced 
by lirn sup,. The following was proved in [19]. 

Proposition 3.3. The following statements are equivalent. 
(1) X has asymptotic (P). 
(2) X has the GGLD condition. 
(3) If x, E X and x, 3 0, IIxnll + 1, then y(x,) > 1. 
(4) If xn E X and x, 3 0, IJxnJJ + 1, then cr(x,) > 1. 

We will say that X has Subsequential (P)  (SUP) if, when x, 3 0 and IIxnll + 1, 
that A*(x,) > 1. 

We also say that X has Strong Subsequential (P)  (SSuP) if and only if, given a 
weak null sequence (2,) in X with liminf llxnll > 0, there exists an T < 1 so that 
if (y,) is any subsequence of (2,) , then lirn sup 1 1  yn 1 1  5 r diam(yn). 

SSuP is perhaps a more natural property than SUP. It is shown in section 4 that 
it is preserved under finite products. Clearly Bynum's condition + SSuP + SUP 
=+ asymptotic (P). It is also shown in section 4 that the first two properties, as well 
as the last two, are distinct. It is unknown whether SSuP is different from SUP. We 
now give an elementary restatement of SSuP that will be useful later. 

Proposition 3.4. SSuP is equivalent to: 
If x, % 0 and liminf IIxnll > 0, then there exists s > 0 so that diam(y,) 2 

lim sup llyn 1 1  + s for every subsequence (y,) of (x,) . 

Proof. Suppose that X has SSuP and x, % 0, lirn inf llx, 1 1  > 0. Then there exists 
r < 1 so that limsup IIynl( I r diam(yn) for every subsequence (y,) of (x,). For 
such (y,) , then, 

1 
L limsup llynll + liminf IIxnll(- - 1). 

T 

Thus lirn inf llxn J J ( ( l / r )  - I )  suffices for s. 
W Conversely, suppose that X satisfies the statement in the proposition and x, + 

0, liminf IIxnll > 0. Let s be as given by the statement. Then for any subsequence 
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(y,) of (x,) we have limsup IIynll 5 diam(yn) - s. Now, since (x,) is bounded, 
there exists r < 1 so that 

for any subsequence (y,) of (x,). Then limsup Ily,II 5 r diam(y,), as required. 

We now show that Bynum's condition, SSuP and SUP are equivalent in the class 
of Asplund spaces. 

Theorem 3.5. If X is an Asplund space and WCS(X)  = 1, then X does not have 
SUP. 

Proof. We will use the characterization of an Asplund space as one in which separa- 
ble subspaces have separable duals. Suppose then that X is Asplund and WCS(X)  
= 1. Then we can obtain a sequence (xm) of weak null sequences xm = (xp )  satis- 
fying limn ((x2ll = 1 and d i a m ( ~ p ) T = ~  5 I + l / m  for all m. Since we are working 
in a separable subspace of X ,  we can assume that X has separable dual. But then 
bounded subsets of X are metrizable and thus first countable in the weak topology. 
We can clearly assume that C := {X;)~,,~N is bounded. 

Let {A,) and {B,) be, respectively, nested bases for the weak topology (re- 
stricted to C)  at 0 and the euclidean topology at  1. Without loss of generality we 
can assume that x: E A, and 11xF11 E B, for any n, m. It now follows that any 
enumeration of C gives a weak null sequence (w-ns) with norms converging to 1 
and which violates SUP. 

In [2:1.] it was asked whether WO is equivalent to w-ns. It is easily seen, given 
the equivalence of (P) and WO, that this is true in the class of spaces with the 
nonstrict Opial condition ( X  has the nonstrict Opial condition if x, 3 0 and 
IIxnJI + 1 imply limsup Ilx - x,ll 2 1 for any x E X ) .  

We now comment on a property introduced by Landes that lies between (P) and 
w-ns. Firstly, we establish some nomenclature. Suppose that (x,) is a bounded 
sequence. Then (x,) is said to be limit affine if lim Ilx - x, 1 1  exists for all x E E(x,) 
and the function f : m(x,) -+ R defined by f (x) = lim 1 1  x - x, 1 1  is affine on 
- co(x,). The sequence is further said to be nondecreasingly limit affine if (f (x,)) is 
a nondecreasing sequence. 

The Banach space X is said to have the Weak Sum Property (WSP) if every 
weakly convergent nondecreasingly limit affine sequence in X is constant. This is 
not the actual definition given in [16], but is equivalent to it by a theorem in [16]. 

Landes proved that WSP is the weakest Banach space property so that every 
finite product of spaces with this property has w-ns. In particular, he showed that 
WSP is preserved under the taking of finite products. 

We note that (P)  implies WSP. Indeed, suppose that (x,) is a nonconstant 
weakly convergent (to 0, without loss of generality) nondecreasingly limit affine 
sequence. Then f (x,) is convergent, to  1 say. Since f is affine and (norm) continuous 
on ~ ( x , ) ,  it is also weak continuous. Thus f (0) = lim llxnll = 1. The fact that 
f (x,) is nondecreasing will now contradict (P)  (or, more precisely, WO). 

[16] also contains two examples that are of interest to us. They are, using Landes' 
notation for the norms, (co, ( 1  111) and (co, 1 1  I I ; ,~) ,  both renormings of co, which we 
will denote by X1 and X2 respectively. It  is shown in [16] that X1 has WSP, and 
that X2 has w-ns but not WSP. Also, it is easy to verify that the sequence of 
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coordinate indicators (en) in X1 satisfies lien 1 1  1 -+ 1, en 2 0 and diam(en) = 1, 
giving that X1 fails (P). This shows that WSP lies strictly between (P) and w-ns, 
and of course answers Tingley's question. 

4. PERMANENCE PROPERTIES 

Perhaps the first relevant product result was given in [3]: that the t ,  product 
of finitely many spaces with normal structure also has normal structure. Also Lan- 
des showed in [15] that normal structure is preserved when a general substitution 
space is uniformly convex. The methods of proof used for those results also give 
preservation of weak normal structure. We give results on the permanence prop- 
erties of some of the conditions defined in previous sections. Included are infinite 
product results that are useful in separating some of the conditions considered in 
the previous section. 

We first give finite product results. Suppose Z is a finite dimensional normed 
space, written Z = (Rm, 1 1  l l z ) ,  which has a monotone norm. That is, 

11(x(l), . . . ,x(m))llz < Il(y(l), . . . ,y(m))llz if 0 I x ( i )  5 ~ ( i )  for all 2. 
A If X I , .  . . , Xm are m Banach spaces, then the Z direct product of them, written 

(XI @ .  . . @ X,)Z, is the Banach space (nzl X,, 1 1  ) I ) ,  where 

I l (~(1) l . .  .1x(m))Il = l l ~ l l x ~ ~ ~ l l x ~ l ~  .. 1 llx(m)llxm)llz 

for (x ( l ) , .  . . ,x(m))  E H z l  X,. 

Proposition 4.1. Property (P) is preserved under the taking of finite products. 

Proof. Suppose X1, . . . , Xm all have property (P), and write X = (XI @. . .@Xm)z.  
Now suppose that x, E X, x, 3 0 and llxnll -+ 1. We will show that diam(x,) > 1, 
giving (P) for X .  

Write x, = (x,(l), . . . , x,(m)). Then xn(i) 2 0 for all i. We can assume that 
none of the (z,(i)),"==, have any constant subsequences (otherwise (~,(i)),"=~ has 
a constantly 0 subsequence and we can disregard coordinate i).  

We can also assume that Ilxn(i)ll -+ N(i), say, SO that 

Il(N(l), . . . ,N(m))llz = l i ~  ll(ll~n(l)lli.. . , 11~n(m)ll)lz = lim Ixnll = 1. 

Since the Xi have property (P), by 2.1 there exists a subsequence (y,) of (xn) so 
that IIyn(i) - ym(i)l) > N(i) if n # m and for any i (noting that if N(i) = 0 and 
property (P) cannot be applied there is still no problem by the earlier assumption 
on the sequence (2,)). This easily gives diam(y,) > 1 and property (P) for X .  

Proposition 4.2. Asymptotic (P) is preserved under the taking of finite products. 

Proof. We first follow the proof of 4.1 until just after the definition of N(i).  We 
show that y(x,) > 1, thus establishing the result by 3.3. 

Now by 3.2 we can obtain a subsequence (calling it (x,) again) of (x,) so that 
sep(x,(i)) 2 rN(i )  for any i and some r > 1 (noting that this is satisfied automat- 
ically if N(i) = 0). Then, for any p, n € N, 

IIxp - xnII = II(IIxp(1) - xn(l)IIr.. . 1  IIxp(m) - xn(m)II)IIz 

2 Il(rN(l), . .  . l  rN(m))llz 

> ll(N(l), . . .  1N(m))Ilz 
= 1, 

completing the proof. 
C 
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Below we will find it convenient to use the following fact. 
If for any n E N we are given x, = (x,(l), . . . , x,(m)) E (XI @ . . . @ X,)z with 

(2,) bounded, then 

A*(xn) 2 1 1  (A*(xn(l)),. . . , A*(xn(m))) IIz. 

If (2,) is finite the inequality is obvious. Suppose then that (x,) is an infinite 
sequence. It clearly suffices to show that 

~ ( y n )  2 II(A*(zn(l)),-. . ,A*(xn(m)))IIz 

for any infinite subsequence (y,) of (x,). Supposing we had such a subsequence, 
for any r < 1 lemma 2.3 will enable us to obtain a further subsequence (z,) so that 
sep(z,(i)) 2 rA*(x,(i)) for any i. This readily gives the above inequality. 

Proposition 4.3. Suppose that XI , .  . . ,Xm all have SSuP. Then so does X = 
(XI @ . . . @ X m ) z .  

Proof. Suppose xn = (xn(l),  ..., x,(m)) E X ,  x, 3 0 and liminf llxnII > 0. Let 
hi = limsup, IIx,(i)ll. In establishing the SSuP condition it can be checked that 
those coordinates for which hi = 0 can be disregarded. Consider this done. 

For 0 5 1 < hi put Nf = {n E N :  IIxn(i)ll 2 1) and 

ri(l) = inf{r : lim sup 1 1  yn(i) 1 1  5 T diam(y,(i)) 

for all subsequences (y, (i)) of (x, (i)),,,; ). 

Note that the above infimum is achieved and that ri(1) is decreasing on [0, hi). For 
convenience put ri (hi) = liml_hy ri(l). Then ri(1) is decreasing on [0, hi], and since 
(2,) is bounded it is easily seen that ri(hi) > 0. Also, since the Xi have SSuP, 
ri(1) < 1 for 1 E (0, hi). 

Choose X E (0, l) .  We begin by showing that there exists r E (0 , l )  so that if 
ll(ll,. . . ,.lm)ll 2 Xliminf llxnII and 0 5 li 5 hi, then 

Indeed, to argue for a contradiction, suppose no such r exists. Then for every 
i E {I,. . . , m )  there exists a sequence (1:) with 0 5 1: 5 hi and. 11(1?, . . . ,1:)1( > 
Xliminf llxnll SO that 

We can also assume that 1: + li and ri(l:) + ri. Clearly ri > 0 for all i ,  0 5 li 5 hi 
and. 11(11,. . . ,lm)II 2 Xliminf llxnII. By continuity 

Now suppose i satisfies li > 0 (such an i exists, since 1 1  (11, . . . , lm)  1 1  > 0). Since 17 + 
li > 0 and ri(l) is decreasing, for sufficiently large n we have ri(l?) 5 ri(li/2) < 1, 
the last inequality due to the SSuP of Xi. Thus ri < 1. Put s = max{ri : li > 0) < 
1. Then 

contradicting the above. 
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We now show that if z, = (z, (1), . . . , z, (m)) is a subsequence of (x,), then 

limsup llznll 5 T diam(zn), 

showing that X has SSuP. We can assume that Ilz,(i)ll -+ 1: for all i. Then 

11(1;, . . . , ~ ~ : I I I  = lim IIz,II 1 liminf IIxnll. 

Suppose p satisfies X < p < 1. Put li = pl:. Then II(11,. . . ,lrn)II 1 X liminf Ilxnll. 
We can then further assume that ((z,(i)ll > li (even if li = 0, of course). Now 
0 5 li < hi, and from the definition of ri(1) we can assume that 

Then 

P = - lim llznll. 
T 

Since p was arbitrary we have A*(z,) 2 ( 1 1 ~ )  lim llz,II, and the proof is complete. 

We note here that in [5] it is shown that if XI , .  . . , X, are Banach spaces then 

,WCS((Xi CB X2..  . CB X,)Z) = min{WCS(Xi) : 1 5 i 5 n). 

We now consider infinite product results. We restrict ourselves to considering 
substitution spaces with bases. Suppose X is a Banach space with a 1-unconditional 
Schauder basis {en). That is, if C,"==, b,e, E X then, if la,( 5 lbnl implies that 
CEl anen exists and 1 )  C,"==, anen(( 5 1 1  C,"==, b,e,ll. In particular, X is a Banach 
lattice with the coordinatewise ordering. 

If (X,) is a sequence of Banach spaces, we denote by ex X, the space {(x,) : 

x, E Xn7 C:=l 11xn1)en exists) with norm (((xn)ll = 1 1  CT=l 11xnllenl) If M is an 
Orlicz function and hAf the associated Orlicz sequence space, we denote the hAf 
product of the spaces X, by eM X,. If M = XP with 1 5 p < oo, we use eep X, 
to denote the product space. 

Proposition 4.4. Suppose that X, has S S U P ~ O T  all n.  Then so does X = eel X,. 

Proof. Suppose that (x,) is a sequence in X with lim inf Ilxnll > 0, xn % 0. We 
will denote by P, the projection onto the subspace of X naturally identified with 
X,, and put S, = Cy=l Pi. 

We can clearly assume that there exists 6 > 0 so that llxnll 2 6 for all n. We 
now claim that there exist m E N and E > 0 so that (ISrn(xn)(l 2 E for a11 n. Indeed, 
suppose not. Then there would exist a subsequence (y,) of (x,) and a sequence 
(2,) that is supported on disjoint el blocks satisfying llz, - ynII -+ 0. That is, there 
exist disjoint intervals In of natural numbers so that (CqGIn Pq)(zn) = z,. Note 

that z, % 0 and lim inf llzn 1 1  > 0. We can obviously assume that 112, 1 1  > 0 for all 
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n. If we now put w, = Ilz,Ile,, where en is the nth element of the usual unit basis 
of C 1 ,  then (2,) is equivalent to (w,). Indeed, the correspondence z, ++ wn extends 
to a linear isometry of ~ ( z , )  with ~ ( w , ) .  But since lim inf Ilw, 1 1  > 0, (w,) 
cannot be a weak null sequence, a contradiction. 

By proposition 4.3, ( X I  @ .  . . @ Xm)e ,  has SSuP. Thus there exists r < 1 so that 
lim sup 1 1  yn 1 1  5 T diam(yn) for any subsequence (y,) of ( S ,  (x,)).  Now suppose 
that (2,) is a subsequence of (x,), z, = S,(z,) + ( I  - S,)(z,). Suppose that 
l\Sm(zn)ll --+ a and II(I - Sm)(zn)JJ --+ b. 

Then 

A*(zn) 2 A*(Sm(zn))  + A * ( ( I -  Sm)(zn) )  

This gives SSuP for X by 3.4. 

Corollary 4.5. Bynum's condition and SSuP are distinct. 

Proof. Put X ,  = in the above proposition. The fact that WCS(C,) = 2l/" if 
1 < n < cc gives the result. 

Below we give infinite product results for Bynum's condition and asymptotic 
(P). ~ i r s t  we need to recall some further definitions. A Banach lattice X is said to 
be monotone if, when a, b E X with 0 5 a 5 b and lib - all > 0, then llbll > Ilall. X 
is called uniformly monotone if for each r > 0 there exists 6 > 0 so that if a > 0, 
((all 5 1 and b > a with lib- all > r, then llbll > llall+6. In [:I.] it is shown that this 
condition is equivalent to the same condition with the inequality llall 5 1 replaced 
by equality. 

The following proposition will be of interest later. If X has a 1-unconditional 
basis (en)  and A C N, we denote by PA the natural projection onto span{en)nEA. 
If A is the empty set, we take PA to be the projection onto the trivial one-element 
subspace. 

Proposition 4.6. Suppose that X has a 1-unconditional Schauder basis, and con- 
sider it as a Banach lattice under the associated ordering. Then the following are 
equivalent. 

(1) X is uniformly monotone. 
(2) If E > 0, then there exists 6 > 0 so that if A N and x E X with 

then llxll 2 1 + 6. 
(3) If r > 0, then there exits 6 > 0 so that if 0 5 a 5 b, llbll 5 1 and IlaJ( >- E 

then lib - all 5 1 - 6 .  
(4) If r > 0, then there exists 6 > 0 so that if A N and x E X with 
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then IIxII > 1. 

Proof. That (1) implies (2) is obvious. 
(2) 3 (4):  Suppose that (4 )  fails, so there exist a sequence (x,), subsets A, of 

N ,  and E > 0 SO that IIPA,xnll 2 E ,  IIPN\An~nll + 1 and Ilxn1/ 5 1. Then put 

so that lim inf J J  PA_ y, 1 1  2 E , 1 1  PN\~,yn 1 1  = 1 and lim sup 1 1  yn 1 1  5 1. But this will 
contradict (2) .  

(4) + (3): The proof is a specilization of one used in [13] to obtain a more 
general result in Banach lattice function spaces. Suppose that (3) fails. Then there 
are sequences (x,) and (y,) in X so that x, E B x ,  0 5 yn 2 x,, lly, - xnll + 1 
and Il~nll L 6 .  

Choose a sequence (6,) from ( 0 , ~ )  so that E ,  + 0 and 

3 

Put 

cn := {m E N :  Pm(yn) 1 E,P~(X , ) ) .  

Now 

IIP~\Cn (yn)II 5 E~IIPN\c, (xn!((  5 E n .  

Thus 

IIPc, (xn)II L IIPc,(Y~)(( 2 - E n  + 6 .  

But, 

IIxn - YnII 5 IIxn - PC, ( Y n )  I I  
I IIPIV\C, (xn)  + (1 - €,)PC, (xn)II 

= IlfnPN\c,(~n) f (1 - En)xnII 

i ~nIIP~\c,,(xn:~ll + 1 - E n .  

Thus, 

which contradicts (4).  
(3) + ( 1 ) :  Suppose that (1) fails, so that we obtain E > 0 and sequences (a,), (b,) 

so that JJa,ll 5 1, 0 5 a, 5 b,, ( (b ,  - a,ll 2 E but llbnll - llanll + 0. Without loss 
of generality we can assume that Ilbn(l + r and Ila,ll + r. Note that r > €12. Put 
b; = bn/llbnll and a; = an/llbnll, so 0 5 a; 5 b; and llb;ll = 1. NOW choose 6 > 0 
so that E / T  - 6 > 0. Put C ,  = b; - a;. Then for sufficiently large n ,  llcnll > E / T  - 6 .  
But Ila;(l --, 1 ,  which together with the above will contradict (3).  

Proposition 4.7. Suppose X has a 1-unconditional Schauder basis (en) with re- 
spect to which it is uniformly monotone. Then, if inf{WCS(X,) : n € N) > 1 ,  
W C S ( @ ,  X,) > 1. 
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Proof. Put w := inf{WCS(Xn) : n E N) and Y := ex X,. The uniform 
monotonicity of X gives a 6 > 0 so that if a ,  b E X ,  0 5 a 5 b, (Ibl( 5 3 and 
Ilb - all > max{(l/4)(w - I ) ,  1/41, then llbll > llall + 6. Suppose now that xn E Y, 
xn 3 0 and llxnll = 1. We show that diam(xn) 2 1 + 6. 

We now use a technique of Benavides 151. 
By 2.5 we can assume that limn,m,,(n+,) JJxn(i) - xm(i)(( = l(i) exists for all 

i (where xn = Cxn(i )e i ) .  We can further assume that lim IIxn(i)ll = a(i). Note 
that 1 1  Cy=, a(i)ei 1 1  5 1 for all n, since llxn 1 1  = 1 for all n. Since X is uniformly 
monotone with respect to the coordinatewise ordering given by the basis, it follows 
fairly readily that the basis is boundedly complete, and so C a(i)ei exists. 

Now suppose that 118 > r > 0. Then there exists il  E N so that 1 1  a(i)eill < 
E. Choose n l  E N large enough so that, for any m > nl,  

with 

There exists iz E N so that 1 1  Ci,iz IIxnl(i)lleill < E. Choose nz > nl  large enough 

so that I (  Cy=il+, IIxnz(i)JJeill < E (using the fact that 1 1  Ci,il a(i)eiII < E). Now 

and 

Case 1. ( 1  Ca(i)eill > 112. Setting 

and 

b := C a(i)ei + C Ilxn1 (i) (lei, 
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0 5 a < b, llbll i 3, we get 

Thus llbll 2 llall+ 6 2 1 - 26 + 6 and llxnl - xnz (1 2 1 - 5c + 6. Since E was arbitary, 
this gives the result. 
Case 2. 1 1  C a(i)eill < 112. Then 1 )  Ci,iz 1(xnZ (i)lleill > 1 - 2~ - 112 = 112 - 26. 
Now, for a and b as above, ( (a  - bll > 1 1  C i>+ IIx,,(i)lleill > 112 - 2c > 114, so 
llbll > llall + 6, and we proceed as in case 1. 

Proposition 4.8. If X is as in  the above proposition and X ,  has asymptotic (P)  
for each n E N, then so does Bx X,. 

Proof. Suppose that x ,  E X ,  llxnll = 1 and xn 0. For a contradiction suppose 
that ~ ( x , )  = 1 (noting that ~ ( x , )  > 1 for any such sequence (x,) by weak lower 

r semicontinuity). As in the proof of the above theorem, we can further assume that 
lim Ilx,(i)(( = a( i )  and limn,m,,(n+m) Ilx,(i) - xm(i)(I = l ( i )  exist. The assump 
tionon(~,)impliesthat~~~~~~l(i)e~~~~1foralln.Notealsothat~~~a(i)e~/(<1. 
The proof now divides into two cases. 
Case 1. 1 1  C a(i)ei 1 1  = 1. Obviously there exists i E N so that a( i )  > 0. Thus, 
since Xi  has asymptotic ( P ) ,  l ( i )  > a( i ) .  Monotonicity of the norm now produces 
a contradiction. 
Case 2. a: := 1 1  C a(i)ei 1 1  < 1. We argue in a similar way to the proof of the 
above theorem, replacing 112 by a to obtain y(x,) 2 1 + 6 for some 6 > 0, a 
contradiction. 

Example 4.9. If M is a nondegenerate Orlicz function satisfying the A2 condition 
at 0, then it is shown in [9] that it has the Gossez-Lami Dozo (GLD) property. That 
is, for every E > 0 there exists a 6 > 0 so that if x E X M  with 1 )  C:=, P,x(l = 1 
and ll(I - C r = l  P,)xl( 2 c, then llxll > 1 + 6. Rom the definition of the norm in 
X M  it is not difficult to see that this property is equivalent to condition (2) of 4.6 
for X M .  Thus 4.6 gives that X M  is uniformly monotone, and so X M  suffices for X 
in the previous two propositions. We note that in [5] the result of 4.7 was achieved 
when the substitution space is an Orlicz space as above, and better estimates on the 
constants were achieved. In particular, the arguments return the best estimate for 
W C S ( B x M  X,) in terms of the W C S ( X , )  when the Orlicz function is of the form 
X P  for 1 < p < m. We also note that in [9] it was proved, with the substitution space 
as above, that if the X ,  have UKK then the product has weak normal structure. 
As noted in section 3, the X ,  have asymptotic ( P ) ,  and so 4.8 extends the result 
from [9]. 

Example 4.10. If X is a uniformly convex space with a 1-unconditional basis, 
then it is well known that X is uniformly monotone. Thus 4.7 generalizes a result 
fom [5]. 

The proof of the following corollary uses the same example that served in [15] 
to separate asymptotic ( P )  from Bynum's condition. 

Corollary 4.11. Asymptotic (P) and SUP are distinct properties. 
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Proof. Put Xn = and X = C2 in the above proposition. The resulting Y := 
Be2 Xn then has asymptotic ( P ) .  That it fails to have SUP can be verified directly. 
However, WCS(eP) = 2 l / p  -+ 1 gives W C S ( Y )  = 1, which combined with the 
fact that Y is reflexive, thus Asplund, allows us to deduce the required fact from 
theorem 3.5. 

We have not achieved any infinite product results for property ( P ) ,  but we ask 
whether (P) is preserved under infinite C, products for 1 <_ p < co. We also 
reiterate the question from [5] about the exact relationship between inf W C S ( X n ) ,  
W C S ( X )  and WCS(@,  X n ) ,  for a substitution space X .  
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