## ON A CONNECTION BETWEEN THE NUMERICAL RANGE AND SPECTRUM OF AN OPERATOR ON A HILBERT SPACE

## BRAILEY SIMS

For a complex Hilbert space $H$ we denote by $B(H)$ the algebra of continuous linear operators on $H$. For $T \in B(H), T^{*}$ denotes the adjoint operator. The numerical range of $T, W(T)$, is defined as

$$
W(T)=\{(T x, x): x \in H,\|x\|=1\}
$$

and

$$
v(T)=\sup \{|\lambda|: \lambda \in W(T)\}
$$

is the numerical radius of $T . W(T)$ is a convex subset of the complex plane whose closure contains the spectrum of $T, \sigma(T)$. The set of eigenvalues of $T$ is denoted by $\rho \sigma(T)$ and the set of approximate eigenvalues by $\pi \sigma(T)$. $\operatorname{Co} \sigma(T)$ is the convex hull of $\sigma(T)$.

A point $\lambda \in \bar{W}(T)$ is a bare point of $\bar{W}(\bar{T})$ if $\lambda$ lies on the perimeter of a closed circular disc containing $\bar{W}(T)$. We say $\bar{W}(\bar{T})$ has a corner with vertex $\lambda$ if $\lambda \in W(\bar{T})$ and $\bar{W}(T)$ is contained in a half-cone with vertex $\lambda$ and angle less than $\pi$.

We aim to relate the vertices of corners of $\overline{W(T)}$ to points in $\sigma(T)$. The starting point is the following lemma first suggested to me by A. M. Sinclair.

Lemma 1. For a complex Hilbert space $H$ and $T \in B(H)$, if $1=v(T) \in W(T)$, then $\mathrm{l} \in \rho \sigma(U)$ where $U=\frac{1}{2}\left[T+T^{*}\right]$.

Proof. $1=\sup \operatorname{Re} W(T)=\sup W(U) \leqslant v(U)=\|U\| \leqslant \frac{1}{2}\left(v(T)+v\left(T^{*}\right)\right)=1$; so $\|U\|=1$. Now for some $x \in H,\|x\|=1$, we have

$$
1=(T x, x)=\operatorname{Re}(T x, x)=(U x, x) \leqslant\|U x\|\|x\| \leqslant 1
$$

so, by the rotundity of $H, U x=x$.

Lemma 2. For a complex Hilbert space $H$ and $T \in B(H)$, if $\lambda \in \overline{W(T)}$ is a bare point of $W(T)$, then $\left(e^{-i \theta} T+e^{i \theta} T^{*}\right) x=\left(e^{-i \theta} \lambda+e^{i \theta} \bar{\lambda}\right) x$ for some $x \in H,\|x\|=1$, and $\theta, 0 \leqslant \theta<2 \pi$.

Proof. Since $\lambda$ is a bare point of $\overline{W(T)}$ there exists $r>0$ and $\alpha \in C$ such that $W(T) \subseteq D=\{z \in C:|z-\alpha| \leqslant r\}$ and $\lambda \in W(T) \cap b d r y D$. Let $\lambda-\alpha=r e^{i \theta}$, $0 \leqslant \theta<2 \pi$ and set $T_{1}=r^{-1} e^{-i \theta}(T-\alpha I)$. Then $\bar{W}\left(T_{1}\right)$ is contained in the unit disc and if $x \in H,\|x\|=1$, is such that $\lambda=(T x, x)$, we have

$$
1=\left(T_{1} x, x\right)=v\left(T_{1}\right) \in W\left(T_{1}\right)
$$

so, by Lemma 1, $\frac{1}{2}\left[T_{1}+T_{1}^{*}\right] x=x$. Therefore

$$
\frac{1}{2}\left[r^{-1} e^{-i \theta}(T-\alpha I)+r^{-1} c^{i \theta}\left(T^{*}-\bar{\alpha} I\right)\right] x=x
$$

or

$$
\begin{aligned}
\frac{1}{2}\left[e^{-i \theta} T+e^{i \theta} T^{*}\right] x & =r x+\frac{1}{2}\left(e^{i \theta} x+e^{i \theta} \bar{\alpha}\right) x \\
& =r x+\frac{1}{2}\left(e^{i \theta} i-r+e^{i \theta} i+r\right) x \\
& =\frac{1}{2}\left(e^{i \theta} i+e^{i \theta} i\right) x .
\end{aligned}
$$

This last lemma is similar to a result by B. A. Mirman for compact operators [4; sledstvie 1], and from it our first main result follows.

Theorem 1. For a complex Hilbert space $H$ and $T \in B(H)$, if $\lambda \in W(T)$ is the vertex of a corner of $\bar{W}(T)$, then $\lambda \in \rho \sigma(T)$.

Proof. Since $i$ is the vertex of a cormer of $\bar{W}(T), \lambda$ is a bare point of $\overline{W(T)}$, and in fact we can find at least $r_{1}, r_{2}>0$ and $\alpha_{1}, \alpha_{2} \in \mathbb{C}, \alpha_{1} \neq t \alpha_{2}$ for any $t \in R$, such that $W(T) \subseteq D_{j}=\left\{z \in C:\left|z-\alpha_{j}\right| \leqslant r_{j}\right\}$ and $\lambda \in W(T) \cap D_{j}$ for $j=1,2$. So from the proof of Lemma 2 there exist $\theta_{1}, 0_{2} \in(0,2 \pi), 0<\left|\theta_{1}-\theta_{2}\right|<\pi$, such that

$$
\frac{1}{2}\left[e^{-i \theta_{j}} T+e^{i \theta_{j}} T^{*}\right] x=\frac{1}{2}\left(e^{-i \theta_{j}} i+e^{i \theta_{j}} \bar{\lambda}\right) x
$$

or

$$
\frac{1}{2}\left[e^{-2 i \theta_{j}} T+T^{*}\right] x=\frac{1}{2}\left(e^{-2 i \theta_{j}} i+\bar{j}\right) x, j=1,2 .
$$

Subtracting these two equations gives

$$
\frac{1}{2}\left(e^{-2 i \theta_{1}}-e^{-2 i \theta_{2}}\right) T x=\frac{1}{2}\left(e^{-2 i \theta_{1}}-e^{2 i \theta_{2}}\right) \dot{x}
$$

and so, since $\theta_{1} \neq \theta_{2}, T x=\lambda x$.

Corollary 1.1. For a complex Hilbert space $H$ and compact operator $T \in B(H)$. if $0 \neq \lambda \in W(T)$ is the vertex of a corner of $W(\bar{T})$, then $\lambda \in \rho \sigma(T)$.

Proof. Since $\lambda$ is the vertex of a corner of $\overline{W(T)}, \lambda$ is a non-zero exposed $<$ point of $\overline{W(T)}$ and so, by $[\mathbf{1}$; Theorem 1], $\lambda \in W(T)$ and the result now follows from Theorem 1.

Corollary 1.2. For a complex Hilbert space $H$ and $T \in B(H)$, if $W(T)$ is a closed polygon then co $\sigma(T)=W(T)$.

Proof. Let the vertices of the convex polygon $W(T)$ be $\left\{\lambda_{i}\right\}$. Then, by Theorem 1, $\dot{\lambda}_{i} \in \rho \sigma(T)$ for all $i$; so

$$
\operatorname{co} \sigma(T) \supseteq W(T) \quad \text { but } \quad \operatorname{co} \sigma(T) \subseteq W(T)=W(T)
$$

Corollary 1.3. A closed bounded polygon with $m$ vertices is the numerical range of an operator on $n$-dimensional Hilbert space if and only if $m \leqslant n$.

Proof. Let the numerical range of $T$ be the closed polygon with vertices $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Then by Theorem 1 each $\lambda_{i}$ is an eigenvalue of $T$ and there are at most $n$ of them.

Conversely, let $\lambda_{1}, \ldots, \lambda_{m}(m \leqslant n)$ be the vertices of a closed polygon $P$. Then the normal operator represented by the diagonal matrix

$$
\begin{aligned}
a_{i j} & =\lambda_{i} \delta_{i j} & & 1 \leqslant i \leqslant m \\
& =0 & & m<i \leqslant n
\end{aligned}
$$

has $\quad W(T)=\operatorname{co} \sigma(T)=P$.
We now consider the case when $\lambda$ is the vertex of a corner of $\overline{W(T)}$ but $\lambda \in \overline{W(T)} \backslash W(T)$.

Theorem 2. For complex Hilbert space $H$ and $T \in B(H)$, if $\lambda \in \overline{W(T)}$ is the vertex of a corner of $\bar{W}(T)$ then $\lambda \in \pi \sigma(T)$.

Proof. By a construction of S. K. Berberian [2] and a result of Berberian and G. H. Orland [3] we can embed $H$ in a larger Hilbert space $K$ and extend $T$ to $[T] \in B(K)$ such that $\bar{W}(T)=W([T])$ and $\pi \sigma(T)=\rho \sigma([T])$. The result now follows by applying Theorem 1 to $[T]$, since $\lambda \in W([T])$ is the vertex of a corner of $\bar{W}([\bar{T}])=W([T])$.

Corollary 2.1. For a complex Hilbert space $H$ and $T \in B(H)$, if $\overline{W(T)}$ is a closed polygon, then $\cos \sigma(T)=\bar{W}(T)$.

Proof. Let $\left\{\lambda_{i}\right\}$ be the vertices of $\overline{W(T)}$. Then, by Theorem $2, \lambda_{i} \in \pi \sigma(T)$ for all $i$; so $\operatorname{co} \sigma(T) \supseteq \bar{W}(T)$.

A result corresponding to Theorem 2 is not generally valid in a Banach algebra without further restrictions. B. Schmidt $[5,6]$ has shown that if $\lambda$ is the vertex of a corner of $V(B, T)$ with angle less than $\pi / 2$ then $\lambda \in \sigma(T)$ and that this is best possible.

The author wishes to express his gratitude to the referee, who suggested a number of improvements to the original manuscript. It has also been brought to the author's notice that a similar result to that of Theorem 2 has been obtained by S . Hilderbrandt (Math. Annalen 163 (1966), pp. 230-247).

## References

1. G. de Barra, J. R. Giles and Brailey Sims, " On the numerical range of compact operators on a Hilbert space", J. London Math. Soc., 5 (1972), 704-706.
2. S. K. Berberian, "Approximate proper vectors ", Proc. Amer. Math. Soc., 13 (1962), 111-114.
3. —— and G. H. Orland, "On the closure of the numerical range of an operator", Proc. Amer. Math. Soc., 18 (1967), 499-503.
4. B. A. Mirman, "Cislovaja oblast'vpolne neprerynovo operatora i evo spektr", Teor. Funcii Funkcional. Anal. i Prilożen, 8 (1969), 44-49. (M.R. 41, No. 9043).
5. B. Schmidt, "Über die Ecken des numerischen wertebereichs in einer Banachalgebra", Math. Z., 126 (1972), 47-50.
6. ___, "Über die Ecken des numerischen wertebereichs in einer Banachalgebra II ", Math. $Z$., 127 (1972), 186-190.
The University of New England, Armidale, N.S.W. 2351.
