ON A CONNECTION BETWEEN THE NUMERICAL RANGE AND SPECTRUM OF AN OPERATOR ON A HILBERT SPACE

BRAILEY SIMS

For a complex Hilbert space H we denote by B(H) the algebra of continuous linear operators on H. For $T \in B(H)$, T^* denotes the adjoint operator. The *numerical range* of T, W(T), is defined as

and

$$W(T) = \{(Tx, x) : x \in H, ||x|| = 1\},\$$

$$v(T) = \sup \{ |\lambda| : \lambda \in W(T) \}$$

is the *numerical radius* of T. W(T) is a convex subset of the complex plane whose closure contains the spectrum of T, $\sigma(T)$. The set of eigenvalues of T is denoted by $\sim \rho\sigma(T)$ and the set of approximate eigenvalues by $\pi\sigma(T)$. Co $\sigma(T)$ is the convex hull of $\sigma(T)$.

A point $\lambda \in \overline{W(T)}$ is a *bare point* of $\overline{W(T)}$ if λ lies on the perimeter of a closed circular disc containing $\overline{W(T)}$. We say $\overline{W(T)}$ has a *corner* with *vertex* λ if $\lambda \in W(T)$ and $\overline{W(T)}$ is contained in a half-cone with vertex λ and angle less than π .

We aim to relate the vertices of corners of $\overline{W(T)}$ to points in $\sigma(T)$. The starting point is the following lemma first suggested to me by A. M. Sinclair.

LEMMA 1. For a complex Hilbert space H and $T \in B(H)$, if $1 = v(T) \in W(T)$, then $1 \in \rho\sigma(U)$ where $U = \frac{1}{2}[T + T^*]$.

Proof. 1 = sup Re W(T) = sup $W(U) \le v(U) = ||U|| \le \frac{1}{2}(v(T) + v(T^*)) = 1$; so ||U|| = 1. Now for some $x \in H$, ||x|| = 1, we have

$$1 = (Tx, x) = \operatorname{Re}(Tx, x) = (Ux, x) \leq ||Ux|| ||x|| \leq 1;$$

so, by the rotundity of H, Ux = x.

LEMMA 2. For a complex Hilbert space H and $T \in B(H)$, if $\lambda \in W(T)$ is a bare point of W(T), then $(e^{-i\theta} T + e^{i\theta} T^*) x = (e^{-i\theta} \lambda + e^{i\theta} \overline{\lambda}) x$ for some $x \in H$, ||x|| = 1, and $\theta, 0 \leq \theta < 2\pi$.

Proof. Since λ is a bare point of $\overline{W(T)}$ there exists r > 0 and $\alpha \in C$ such that $W(T) \subseteq D = \{z \in C : |z - \alpha| \leq r\}$ and $\lambda \in W(T) \cap$ bdry D. Let $\lambda - \alpha = re^{i\theta}$, $0 \leq \theta < 2\pi$ and set $T_1 = r^{-1}e^{-i\theta}(T - \alpha I)$. Then $\overline{W(T_1)}$ is contained in the unit disc and if $x \in H$, ||x|| = 1, is such that $\lambda = (Tx, x)$, we have

$$l = (T_1 x, x) = v(T_1) \in W(T_1);$$

Received 29 March, 1972; revised 21 August, 1972.

[J. LONDON MATH. SOC. (2), 8 (1974), 57-59]

BRAILEY SIMS

so, by Lemma 1, $\frac{1}{2}[T_1 + T_1^*]x = x$. Therefore

or

$$\frac{1}{2}[r^{-1} e^{-i\theta} (T - \alpha I) + r^{-1} e^{i\theta} (T * - \bar{\alpha} I)]x = x$$

$$\frac{1}{2}[e^{-i\theta} T + e^{i\theta} T^*]x = rx + \frac{1}{2}(e^{i\theta} \alpha + e^{i\theta} \bar{\alpha})x$$

$$= rx + \frac{1}{2}(e^{i\theta} \lambda - r + e^{i\theta} \lambda + r)x$$

$$= \frac{1}{2}(e^{i\theta} \lambda + e^{i\theta} \bar{\lambda})x.$$

This last lemma is similar to a result by B. A. Mirman for compact operators [4; sledstvie 1], and from it our first main result follows.

THEOREM 1. For a complex Hilbert space H and $T \in B(H)$, if $\lambda \in W(T)$ is the vertex of a corner of $\overline{W(T)}$, then $\lambda \in \rho\sigma(T)$.

Proof. Since λ is the vertex of a corner of W(T), λ is a bare point of $W(\overline{T})$, and in fact we can find at least $r_1, r_2 > 0$ and $\alpha_1, \alpha_2 \in \mathbb{C}, \alpha_1 \neq t\alpha_2$ for any $t \in R$, such that $W(\overline{T}) \subseteq D_j = \{z \in C : |z - \alpha_j| \leq r_j\}$ and $\lambda \in W(\overline{T}) \cap D_j$ for j = 1, 2. So from the proof of Lemma 2 there exist $\theta_1, \theta_2 \in (0, 2\pi), 0 < |\theta_1 - \theta_2| < \pi$, such that

$$\frac{1}{2} [e^{-i\theta_j} T + e^{i\theta_j} T^*] x = \frac{1}{2} (e^{-i\theta_j} \lambda + e^{i\theta_j} \overline{\lambda}) x$$

or

$$\frac{1}{2} \left[e^{-2i\theta_j} T + T^* \right] x = \frac{1}{2} \left(e^{-2i\theta_j} \lambda + \bar{\lambda} \right) x, \, j = 1, 2.$$

Subtracting these two equations gives

$$\frac{1}{2}(e^{-2i\theta_1} - e^{-2i\theta_2}) T x = \frac{1}{2}(e^{-2i\theta_1} - e^{2i\theta_2}) \lambda x$$

and so, since $\theta_1 \neq \theta_2$, $Tx = \lambda x$.

COROLLARY 1.1. For a complex Hilbert space H and compact operator $T \in B(H)$, if $0 \neq \lambda \in W(T)$ is the vertex of a corner of $W(\overline{T})$, then $\lambda \in \rho\sigma(T)$.

Proof. Since λ is the vertex of a corner of W(T), λ is a non-zero exposed \smile point of W(T) and so, by [1; Theorem 1], $\lambda \in W(T)$ and the result now follows from Theorem 1.

COROLLARY 1.2. For a complex Hilbert space H and $T \in B(H)$, if W(T) is a closed polygon then $co \sigma(T) = W(T)$.

Proof. Let the vertices of the convex polygon W(T) be $\{\lambda_i\}$. Then, by Theorem 1, $\lambda_i \in \rho\sigma(T)$ for all *i*; so

$$\cos \sigma(T) \supseteq W(T)$$
 but $\cos \sigma(T) \subseteq W(T) = W(T)$.

COROLLARY 1.3. A closed bounded polygon with m vertices is the numerical range of an operator on n-dimensional Hilbert space if and only if $m \leq n$.

Proof. Let the numerical range of T be the closed polygon with vertices $\lambda_1, \lambda_2, ..., \lambda_m$. Then by Theorem 1 each λ_i is an eigenvalue of T and there are at most n of them.

Conversely, let $\lambda_1, ..., \lambda_m$ $(m \le n)$ be the vertices of a closed polygon P. Then the normal operator represented by the diagonal matrix

$$a_{ij} = \lambda_i \delta_{ij} \qquad 1 \le i \le m$$
$$= 0 \qquad m < i \le n$$

has $W(T) = \operatorname{co} \sigma(T) = P$.

We now consider the case when λ is the vertex of a corner of $\overline{W(T)}$ but $\lambda \in \overline{W(T)} \setminus W(T)$.

THEOREM 2. For complex Hilbert space H and $T \in B(H)$, if $\lambda \in \overline{W(T)}$ is the vertex of a corner of $\overline{W(T)}$ then $\lambda \in \pi\sigma(T)$.

Proof. By a construction of S. K. Berberian [2] and a result of Berberian and G. H. Orland [3] we can embed H in a larger Hilbert space K and extend T to $[T] \in B(K)$ such that $\overline{W}(T) = W([T])$ and $\pi\sigma(T) = \rho\sigma([T])$. The result now follows by applying Theorem 1 to [T], since $\lambda \in W([T])$ is the vertex of a corner of $\overline{W}([T]) = W([T])$.

COROLLARY 2.1. For a complex Hilbert space H and $T \in B(H)$, if $\overline{W(T)}$ is a closed polygon, then $\operatorname{co} \sigma(T) = \overline{W(T)}$.

Proof. Let $\{\lambda_i\}$ be the vertices of $\overline{W(T)}$. Then, by Theorem 2, $\lambda_i \in \pi\sigma(T)$ for all *i*; so co $\sigma(T) \supseteq \overline{W(T)}$.

A result corresponding to Theorem 2 is not generally valid in a Banach algebra without further restrictions. B. Schmidt [5, 6] has shown that if λ is the vertex of a corner of V(B, T) with angle less than $\pi/2$ then $\lambda \in \sigma(T)$ and that this is best possible.

The author wishes to express his gratitude to the referee, who suggested a number of improvements to the original manuscript. It has also been brought to the author's notice that a similar result to that of Theorem 2 has been obtained by S. Hilderbrandt (*Math. Annalen* 163 (1966), pp. 230–247).

References

- 1. G. de Barra, J. R. Giles and Brailey Sims, "On the numerical range of compact operators on a Hilbert space", J. London Math. Soc., 5 (1972), 704-706.
- 2. S. K. Berberian, "Approximate proper vectors", Proc. Amer. Math. Soc., 13 (1962), 111-114.
- 3. —— and G. H. Orland, "On the closure of the numerical range of an operator", Proc. Amer. Math. Soc., 18 (1967), 499-503.
- B. A. Mirman, "Čislovaja oblasť vpolne neprerynovo operatora i evo spektr", Teor. Funcii Funkcional. Anal. i Priložen, 8 (1969), 44–49. (M.R. 41, No. 9043).
- 5. B. Schmidt, "Über die Ecken des numerischen wertebereichs in einer Banachalgebra", Math. Z., 126 (1972), 47-50.
- 6. _____, "Über die Ecken des numerischen wertebereichs in einer Banachalgebra II", Math. Z., 127 (1972), 186–190.

The University of New England, Armidale, N.S.W. 2351.