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Numerical range theory for linear operators on normed linear spaces and 
for elements of normed algebras is now firmly established and the main results 
of this study are conveniently presented by Bonsall and Duncan in (1971) and 
(1973). An extension of the spatial numerical range for a class of operators on 
locally convex spaces was outlined by Moore in (1969) and (1969a), and an 
extension of the algebra numerical range for elements of locally m-convex 
algebras was presented by Giles and Koehler (1973). It is our aim in this paper 
to contribute further to Moore's work by extending the concept of spatial 
numerical range to a wider class of operators on locally convex spaces. 

1. The spatial numerical range of quotient bounded operators 

For a separated locally convex space X there exists a separating family of 
semi-norms {p,) which generates the locally convex topology. We follow 
Moore in specifying that the numerical range of an operator on a locally convex 
space X is dependent on the particular family of seminorms {p,} chosen to 
generate the topology. We denote by (X,{p,}) the linear space X with a 
particular separating family of semi-norms {p,} which generates the topology 
as a base. (Moore calls such a family {p,} a calibration for X.) 

Given (X, {p,}) we call a linear operator T on X quotient bounded if for 
each (Y there exists a K, > 0 such that 

P-(TX) 5 K,p,(x) for all x EX. 

The set of quotient bounded operators Q(X, {p,}) is a subalgebra of L(X)  the 
algebra of continuous linear operators on X. For any given T E Q(X. {p,}) and 
each (Y we define 
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qa(T)  =sup{p , (Tx) :  p , ( x )S  1 for x E X } ;  

then {q,,} is a separating family of sub-multiplicative semi-norms on Q(X,{p ,} )  
such that q, (I) = 1 for all a. Q ( X ,  {p,,}) with the topology generated by {q,} is a 
unital 1.m.c. algebra and we denote by (Q,{q,})  the algebra Q(X,{p,.l)  with the 
particular family {q,} which generates the topology. (In fact this algebra is 
given as an example of an 1.m.c. algebra by Michael (1952; page 1 1 ) ) .  

Given (X,{p,})  we call a linear operator T on X universally bounded if 
there exists K > 0 such that, for all a 

p,(Tx) 5 Kp,(x) for all x E X .  

The set of universally bounded operators B(X,{p, .})  is a subalgebra of 
Q ( X ,  {p,}). For any given T E B ( X ,  {p,,}) we define 

I (  TI( = sup{p,(Tx): p,(x) 5 I for x E X  and all a } ;  

then ( 1 . 1 1  is a norm for B ( X ,  {p,}) and ( 1  T  / I  = sup,, q, ( T ) .  We denote this unital 
normed algebra by ( B ,  1 ) .  1 1 ) .  (This is the particular class of operators to which 
Moore confined his attention.) 

Given (X,{p, ,}) ,  for each a let N, denote the null space of p,, and X, the 
quotient space XIN,,. For each a ,  consider the natural mapping x +x,, = 
x + N,, of X onto X,,. It is clear that for each a ,  X,, is a normed linear space 
with norm defined by llx,.l(,. =p , . (x ) .  For each a ,  consider the algebra 
homomorphism T-,  T"  of Q(X,{p , , } )  into B(X , , )  defined by Tax ,  = (Tx), .  
Since T ( N , , )  C N,, for every a. these operators T" are well defined. But also, 
for each a ,  B(X, , )  is a unital normed algebra and we have for the operator norm 
on B (X, , )  that 

1 1  T "  II,, - sup { ( I  Tax,, II:, : Ilx, 11.. 5 1 for x,, E X,, 1 
= sup {p,, ( T x ) :  p,, ( x )  d I for x E XI = 4,. ( T I .  

We now proceed to a definition of numerical range for quotient bounded 
operators. 

For a normed linear space ( X .  11.11) we define the sets, 

S ~ { x E X : l l x I I = l } ,  

for each x E S D ( x ) - { f  E X ' :  f ( x )  = 1 and I l f  1 1  = I}, and 

I I = { ( x , f ) E X x X r : x E S  and f € D ( x ) } .  

For T E B ( X )  we define the spatial numerical range o f .  T as the set 

For each T E B ( X )  we have that V(X,lI - 1 1 ;  T )  is a bounded subset of the 
complex numbers and is contained in the disc with centre 0 and radius ( 1  T  11. 



470 J. R. Giles. G. Joseph, D. 0. Koehler and B. Sirns [31 

For a separated locally convex space X,  given (X,{p, ,}) ,  for each a 

consider the normed linear space (x,,I/ . I ( , )  the completion of (X,,,(I.lI,). For 
any given T E Q ( X ,  {p,)) and a,  the operator T"  on (X,, 1 1  - Il,,) has a unique 
continuous linear.extension f a  on (xCr,II. 1 1 , ) .  We define the spatial numerical 
range of T as the set 

V ( X ,  {p,}; T )  = U v ( X C x ,  ( 1  . 11, ; f a  1. 

Of course, V ( X ,  {p,,}; T )  is not necessarily bounded for each T E Q ( X ,  {p,}). 
But it is clear that this numerical range has the usual numerical range 
properties: 
for T E Q ( X ,  {p,)) and complex A, p 

V (X , {p , ) ;  A T + p ) = A V ( X , { p , I ;  T ) + p ,  

and for T ,  S E Q ( X ,  {pa 1) 

V ( X ,  {pa l ;  T + S )  C V ( X .  {P,);  T )  + V ( X ,  {P,};  S ) .  

Given (X,{p,}) ,  for each a consider the semi-normed space (X ,p , , )  and 
define the sets 

s { x  E X :  p,,(x) = l), 

for each x E S ,  

D o ( ~ ) ' { f E X 1 : f ( ~ ) = I  and l f ( y ) l Z p , , ( y )  f o r a l I y E X ) .  

and 

II,, 3 { ( x ,  f )  E X x X ' :  x E S,, and f E D,,(x)}. 

For each a and x E S,,, consider the mapping f +f, of D,(x) onto D(x , )  
defined by f , ,(y,) = f ( y  ). For every f E D,(x 1, since N,, C kerf the linear 
functionals f,, are well defined and we have that f,(x,,) = f ( x )  = 1 and /f,,(y,)I = 

I f ( y ) J  z p<,(y)  = 1 )  y, 11,. for all y E X .  It follows that for T E Q(X,{p , , } ) ,  f ( T x )  E 
V ( X , { p , ) ;  T )  for all a and ( x , f )  E n,,. 

2. The numerical range and the spectrum 

In a Banach space, the closure of the spatial numerical range of an 
operator contains its spectrum. We now show that this relation holds for all 
quotient bounded operators on a complete locally convex space. 

LEMMA 1 .  Let X be a complete separated locally convex sphce. Given 
( X ,  {pa )) and T E Q ( X ,  (pa I), T is invertible in Q ( X ,  {pa )) if and only if fa is 
invertible in B(x=)  for all a. 
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PROOF. If T has an inverse T ' E Q(X.{p, , ) )  then Fe has an inverse 
T -'" E B ( x ~ , )  for each a. 

Conversely, suppose that for each a, F" has an inverse in B(%, ). Then for 
each a there exists an m,, > O  such that 

* m,p,(x) 5 pa ( T x )  for all x E X. 

Since {p,) is a separating family, *implies that T is one-to-one. 
T has a closed range. For any net { x s )  such that {Txs )  is convergent to 

y E X,  we have from* that { x s )  is Cauchy in X. But since X is complete there 
exists an x E X  such that {x s )  is convergent to x and since T is continuous 
y = Tx. 

T also has a dense range. Consider y E X and any basic neighbourhood of 
y, U = {x E X :  p,(y - x )  < E )  for any given a and E > 0. Since fa is onto and 
continuous on 2, there exists an x E X  such that ( 1  y, - Tax,  ( 1 ,  < E ; that is, 
p,(y - T x )  < E and so Tx E U. 

We conclude that T has an inverse T - '  and from * that T-' E Q(X,{p,)).  

COROLLARY. Let X be a complete separated locally convex space. Given 
( X ,  { P ,  )) and T E Q ( X ,  {pa 1) 

PROOF. It is clear that even when X is not complete, 

and for every a 

u(X, .  ; T " )  > U(X" ; F a ) .  

But from the lemma we have directly that 

THEOREM 1 .  Let X be a complete separated locally convex space. Given 
( X ,  {pa I), for any T E Q ( X ,  (pa 1) 

PROOF. From the normed linear space theory see Bonsall and Duncan 
(1971; page 88) we have for each a 

u ( X a  ; Fa 1 c v ( Z a ,  11 . ll<. : Fa 1. 

Therefore. 
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3. The relation between the spatial and algebra numerical ranges 

For a unital normed algebra the spatial numerical range of an element 
acting as an operator on the algebra is the algebra numerical range of the 
element. We show that this relation holds for elements of a unital1.m.c. algebra. 

For a unital normed algebra (A, 11.11) we define the set 

D ( l ) = { f ~ A ' : f ( l ) = I  and ( I fJI= l ) .  

For a E A we define the algebra numerical range of a as the set 

For each a E A we have that V(A, ) /  .(I; a )  is a compact convex subset of the 
complex numbers and is contained in the disc with centre 0 and radius 1 1  a 1 1 .  
Considering the left regular representation a + T, of A in B ( A )  we have that 

V(A, 1 ) .  (1; a ) = V(A, 1 ) .  11; T,, ), (Bonsall and Duncan (1971; page 15)), 

Let A be a unital 1.m.c. algebra and {p,) be a separating family of 
sub-multiplicative semi-norms which generates the topology and is such that 
p,(1) = 1 for all a. Given (A,{p,}), we define the algebra numerical range of a 
as the set 

V(A, {p, 1; a ) = .U V(A,, 1 1  . l l , ,  ; am 1. 
m 

Considering the left regular representation a + T,, of A in T(A) ,  since the 
semi-norms p,, are sub-multiplicative it follows that the image of A is a 
subalgebra of Q(A,{p,}). For any given a E A and a, and all x E A, we have 

(ax I,, = (Tux 1, = (T,, ,)"xu 

and since the natural mapping x +x, is here an algebra homomorphism 

(ax ), = a,,x,, = T,,<-x,,, 
and so (T, )" = T,,,. 

Therefore, from the invariance of the normed algebra numerical ranges 
under completions (Bonsall and Duncan (1971; page 16)) we have for each a, 

and so, as in the normed case, we have 
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V ( A ,  {p,); a = V ( A ,  {pa ); To 1. 

For a normed linear space (X,II. II), the closed convex hull of the spatial 
numerical range of a continuous linear operator on X is the algebra numerical 
range of the operator as an element of the unital normed algebra of operators 
B ( X ) .  We now show that for a separated locally convex space X ,  given 
(X,{p,,)) there is a similar relation between the spatial numerical range of a 
quotient bounded operator and the algebra numerical range of the operators as 
an element of the unital 1.m.c. algebra (Q,{q<.}). 

Given (Q,{q,)),  for each a let M ,  denote the null space of q,, and Q,, 
denote the quotient algebra QIM,,. For each a,  consider the natural mapping 
T -+ T, = T + M,, of Q onto Q,. It is clear that for each a, Q ,  is a unital 
normed algebra with norm defined by ( 1  T, 1 1 ,  = q,(T). 

For each a, we need to examine the relation between the unital normed 
algebras Q ,  and B(x,). 

LEMMA 2. Let X be a separated locally convex space. Given ( X ,  {p,}), we 
have that for each a,  Q, is isometrically isomorphic to a unital subalgebra of 
B (xu 1. 

PROOF. For any given a ,  consider the mapping T,, + f a  of Q ,  into ~ ( x , ) .  
The mapping is well defined and is an isometry. For T, S E Q(X,{p,}) ,  

The mapping is an algebra homomorphism. The mappings T + T, of Q onto Q, 
and T -+ of Q into B ( k )  are algebra homomorphisms, so it follows from 
the mapping T, + f m  of Q, into ~ ( x , )  being well defined, that it is also an 
algebra homomorphism. 

COROLLARY. Let Xbe  a separated locally convex space. Given ( X ,  {p,}) ,  for 

any T E (Q, J) 

PROOF. We have 

But from the lemma and the invariance of the normed algebra numerical range 
under unital subalgebras (Bonsall and Duncan (1971; page 16)) we have for 
each a, 
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THEOREM 2. Let X he u  separated locally convex space. Given ( X .  { p , } ) ,  for 
any T  .E Q ( X ,  {p,.}) we have 

and when {q,) is a directed fumily, 

PROOF. We have established the characterisation 

V(Q,{qw  1; T )  = U v ( B ( ~ , ) ,  ( 1 .  ((,, ; ?" ). 

But from the norrned case (Bonsall and Duncan (1971; page 84)) we have, for 
each a, 

V(Q,{q , , } ;  T )  2 U v(& / ( . l l , , ;  = V(X , {p , } ;  TI .  

But also 

- 
CZ U v(~, , , l l . I I , , ;  ? " )=coV(X , {p , , ) ;  T I .  

When {q,) is a directed family for the 1.m.c. algebra (Q,{q,})  we have that 
V(Q,{q , ) ;  T )  is convex and so 

4. Operators with bounded numerical range 

We are now in a position to discuss boundedness of the spatial numerical 
ranges of quotient bounded operators and to characterise classes of these 
operators by boundedness of their numerical ranges and spectra. 

Using Theorem 2 which relates the spatial and algebra numerical ranges 
we are able to apply boundedness results previously established for algebra 
numerical ranges. 

THEOREM 3. Let X be a separated locally convex space. Gitlen (X ,{p ,} ) ,  

B(X,{p , , } )  = {T  E Q(X,{p , , ) ) :  V(X.{p, ,}:  T )  is hounded}. 

PROOF. For T E Q(X,{p , , } ) ,  i f  V (X , {p , , ) ;  T )  is bounded then by Theorem 
2, V(Q,{q,);  T )  i s  bounded and so by Giles and Koehler (1973; page 83) we 
have that supq,(T)  < m  which implies that T E B ( X , { p , ) ) .  
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Conversely, it follows from Giles and Koehler (1973; page 85) that if 
T E  B(X,{p,))  then V(Q,{q,);  T )  is bounded and so by Theorem 2,  
V (X , {p , ) ;  T )  is bounded. 

It follows that, if T E Q ( X ,  {p,))\B(X, {p,))  then V ( X ,  {p,,); T )  is un- 
bounded. Nevertheless, we show that, when X is complete, for any T E 
Q(X,{p , ) )  with bounded spectrum u ( Q ;  T )  it is possible to find a family of 
semi-norms {ph) generating the topology of X such that T E Q(X,{p:,)) and the 
numerical range V ( X ,  { p  h); T )  is bounded. 

For a locally convex space, given (X,{p,))  we say that a family of 
semi-norms {p:,) generating the topology of X is quotient preserving if it has the 
same indexing and for each a there exist m,,, M,, > 0 such that 

m , p , ( x ) 5 p A ( x ) 5  M,,p,(x) forall x E X ,  

It is clear that Q(X,{p , ) )  = Q(X,{p:.)).  

THEOREM 4. Let X be a complete separated locully convex space. Given 
( X ,  {p,,)), if T E Q ( X ,  {p,,)) and u ( Q  ; T )  is hounded then there exists a quotient 
preserving family of semi-norms {p:) generating the topology of X such thut 

( i )  T E B ( X , { p b ) ) ,  and 
( i i )  the spectrul rudius, p ( Q ;  T )  

= inf { J J  T 1 1 ' :  all quotient preserving families {p  :,) 
generating the topology of X ) .  

PROOF. We have from the Corollary to Lemma 1 that 

and so 

p ( Q ;  T )  = sup ~ ( 2 , ;  f a ) .  

For each a consider (A,, 1 1  1 1 , ) .  We have from Holmes (1968; page 164) 
that 

p ( 2 ,  ; f a )  = inf { I )  f a  11:: for all equivalent norms 1 )  . ( 1 ;  for 2,). 
Therefore, given E > 0, for each a there exists an equivalent norm 1 1  . I IL on x, 
such that 

For each a such a norm I I . I J L  on 2, induces a semi-norm p: on X defined by 

and we have that there exist m,, M, > 0 such that 
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mapu ( x )  5 p h(x)  5 M,,p,, ( x  for all x E X. 

It is clear therefore that {pb) is a quotient preserving family of semi-norms 
t 

generating the topology on X. Now since a ( Q ;  T )  is bounded it follows from 
that { I /  pa Ilb} is bounded and so 

v ( X ,  {p  h);  T )  = U ~ ( g - ,  1 1  . ( 1 : ;  f a )  
u 

is bounded and T E B ( X ,  { p  b)) which is result (i). 
t 

It also follows from that 

p ( Q ;  T )  = sup ~ ( 2 ~  ; f a )  
a 

5 ( 1  T 11' = sup I (  f a  1 ) ;  
a 

and so we establish (ii). 

We can deduce directly the following corollary which is similar to that of 
Holmes (1968; page 165). 

For a locally convex space X, given (X,{p,})  we say that T E B ( X ,  {p,}) is 
a strict contraction if ( 1  T 1 1  < 1 .  

COROLLARY. Let X be a complete separated locally convex space. Given 
( X ,  {pa} ) ,  if T E Q ( X ,  { p a ) )  then there exists a quotient preserving family of 
semi-norms {p:} generating the topology o f  X for which T is a strict contraction 
if and only if p ( Q ;  T )  < 1 .  

It should be observed that 
I .  there are quotient bounded operators with unbounded spectrum, and 
2. there are continuous linear operators with bounded spectrum but which 

are not quotient bounded. 

EXAMPLES. 
1. Consider the linear space X of complex mappings on C ,  with the 

topology generated by the family of semi-norms ipF) where 

p ~ ( f )  = max { I  f ( x )  1 :  x E F a finite subset of C).  

Consider the linear operator T on X defined by 

( T f )  ( x )  = x . f ( x )  for all x E C. 

Now for every x E C, 
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and so T  E  Q ( X ,  {pF)) .  
Suppose that AP u ( Q ;  T ) ;  that is, T  - A1 has an inverse S  E Q(X,(pF)).  
Then 

( T - A I ) ( S f ) =  f for all f E X  

( X  - A ) ( S f ) ( x )  = f ( x )  for all f E X  and x  E C .  

Choose f to be a constant mapping, f ( x )  = k#  0 for all x  E C ,  then 

( x - A ) ( S f ) ( x ) = k  for all x E C ,  

but this gives a contradiction when x  = A. We conclude that a ( Q ;  T )  = C.  

2. Consider the linear space of complex sequences with topology gener- 
ated by the family of semi-norms {p.) where 

pn(AI ,  A*, - .  .) = sup{I Ak 1: k  E (1,. . ., n) ) .  

Consider the operator T  on X  defined by 

T(A,,Az,A,,...)=(Az,Al,A7,...). 

Then T  is linear and continuous. Clearly T g  Q(X,{p,)) .  
Now 2 1 are eigenvalues of T. 
For (Y f 2 1 we can define the operator S  on X  by 

It is simply verified that S  is an inverse of a1  - T and that S  E  L ( X ) .  
Therefore a ( X ;  T )  = { - 1 ,  + 1). 

5. Hermitian operators 

Numerical range theory enables an extension of the notion of hermitian 
operators to operators on normed linear spaces. We now define and examine 
properties of hermitian operators on separated locally convex spaces. 

For a separated locally convex space X ,  given (X,{p,})  we say that 
T  E Q ( X ,  {p,}) is hermitian if V ( X ,  {p,); T )  C R. 

For hermitian operators with bounded spectrum we have the following 
result. 
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THEOREM 5. For  a separated locally convex space X, given (X,{p,}), if 
T E Q(X,{p,}) is hermitian and u ( Q ;  T) is bounded then T E B(X,{p,}). 

PROOF. By Theorem 2 we have that 

so for each a, V(Q,, (I.lI, ; T,) C R; that is, T, is an hermitian element of 
(Q,, ( 1  - I),). However, by Sinclair's Theorem (Bonsall and Duncan (1971 ; Page 

54)) 

but W(Q; T )  > U,W(Q,; T,) SO p(Q;  T ) Z  SUP~P(Q,; T=)= supnqa(T). 
We conclude that sup, q, (T)  < m; that is. T E B(X, {p, 1). 

It should be noted that there are hermitian quotient bounded operators 
with unbounded spectrum. Our example uses the following lemma which may 
also be deduced from Proposition A4 of Michael (1952; page 70). 

LEMMA 3. Let X be a complete separated locally convex space. Given 
(X, {p, )), Q(X, {p, 1) is also complete. 

PROOF. Let {Ts} be a Cauchy net in (Q,{qo)). We deduce that for each 
x E X, {Tsx} is a Cauchy net in (X, {p,}). But since X is complete we can define 
the operator T on X by 

Tx = l i p  T8x. 

Clearly T is linear. But also for each a, {q,(Ta)} is a convergent net of real 
numbers. Therefore, for each a and all x E X  

But this implies that T E Q(X, {p,}). 
For each a, given E > O  there exists a 60 such that 

q,(T8 - T,,) < E for all 6 ,6 '  2 60. 

But then for all x E X where p,(x) 5 1 we have 
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p,(T,x - T,,x) < e for all 6 , s '  2 So 

which implies that 

5 e for all 6 2 So.  

Therefore 

q,. (T, - T )  5 e for all 6 2 S o .  

and we conclude that (Q,{q,)) is complete. 

Consider the complete 1.m.c. algebra X of all complex mappings on R. with 
topology generated by the family of semi-norms {p,) where 

pF(f) = max{lf(x)I: x E F afinite subset of R). 

Consider the linear operator T on X defined by 

(Tf) (x)=x. f (x)  for all x E R .  

As with Example 1 above it is shown similarly that T f Q(X,{pF)) and 

a ( Q ;  T) R. Now Tf = j.f where j is the identity mapping on R. Since 
Q(X, {p,)) is complete the operator exp T f Q(X, (p,)). For A f R we have 

(exp iAT) (f) = (exp iAj).f 

and for any x E R 

P ( ~ I ( ( ~ X P  T)f) = 1 exp iAx (pi,~(f 

SO 

p ~ ( ( e x p  iAT)f) = p ~ ( f ) ,  

and from Bonsall and Duncan (1971 ; page 46) we conclude that T is hermitian. 

The following theorem applies our theory to characterise hermitian 
quotient bounded operators on unital commutative b *-algebras. 

THEOREM 6. Let A be a unital commutative b*-algebra. Given a charac- 
terising (A, {P,~)), T E Q(A. {p,,)) is hermitian if and only if there exists a 
hermitian element y E A such that 

T(x) = y.x for all x E A. 

PROOF. If T is hermitian on A then for each a. is hermitian on A,. But 
since A is a b*-algebra, A, is a B*-algebra Giles and Koehler (1973; page 88). 
So 7- is an hermitian operator on a commutative B*-algebra A,. By the 
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Gelfand-Naimark Representation Theorem for commutative B *- algebras we 
may take 7 "  as an hermitian operator on %(A) where Jdl, is the maximal ideal 
space of A,. Now Lumer has characterised such operators as multiplication by 
real continuous mappings (Bonsall and Duncan (1973; page 91)). So for each a 

there exists a y, E A, such that y, is hermitian and Tax,  = y,x, for all x, E A,. 
Now 

So Tx  = T(1 )x  for all x E A. Since y,, is hermitian for each a so is the element 
T(I)  E A. 

Conversely, if T ( x )  = y.x where y is hermitian then Tax,, = y,..x, for every 
a, so that f" is multiplication by an hermitian element on a commutative 
B*-algebra A,,. By the Lumer characterisation, T" is hermitian on A,, and so T 
is hermitian on A. 

As a special case we have the following result which can also be proved 
simply and independently of Lumer's characterisation. 

COROLLARY. Let R be cr locally compact Hausdorfl space and % ( a )  be the 
algebra of complex continuous mappings on R ,  with the compact-open 
topology. A quotient bounded operator T o n  % ( a )  is hermitian if and only if 
there exists a real continuous mapping h on f2 such that 

T ( f )  = h.f for all f E 'G(R). 

6. Representation of b *-algebras 

The Gelfand-Naimark Representation Theorem for B *-algebras states that 
a B *-algebra is isometrically * isomorphic to a closed self-adjoint subalgebra of 
operators on a Hilbert space. We now extend this result to give a representation 
of b *-algebras. 

We firstly establish the character of the algebra of quotient bounded 
operators on a product of Hilbert spaces as a b*-algebra. 

THEOREM 7. Given a fumily {(H,, 1 1  . I(,,)) of Hilbert spaces, the algebra 
Q(IIH,, { / I .  1 1 , ) )  of quotient bounded operators on the product space IIH,, is a 
b *-algebra. 

PROOF. It is clear that HH, is complete and so from Lemma 3 we have that 
Q(IIH,,,{II. ( I , ) )  is also complete. Given T E Q(IIH<,,{)) .((,)), for every a there 
exists a K, > 0 such that )I Tax ,  1 1 ,  5 K,(Ix, 11,. It is clear that the *-operation on 
B(H,)  for each a induces a *-operation on Q(nH,,{)I . I I , ) )  defined by 
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( T * x ) ,  = TU*x,. But for each a ,  since q a ( T )  = ( 1  T" 1 1 ,  we have that 
q, (T*T)  = q,(T)*. 

We now show that a b *-algebra can be represented as a closed self-adjoint 
subalgebra of the quotient bounded operators on a product of Hilbert spaces. 

THEOREM 8. Let A be a b *-algebra. Given ( A ,  {q,,)), for each a there exists 
a Hilbert space (H,, 1 1  .(I,) such that A is topologically * isomorphic to a closed 
self-adjoint subalgebra of Q(nH, ,  { I 1  . (I,)). 

PROOF. Given (A,{q,)) ,  consider the composition of the topological * 
isomorphism a -+ (a,  ) of ( A ,  {q,)) into the product of B *-algebras n(A, ,  ( 1 .  (I,), 
(Giles and Koehler (1973; page 88)), the topological * isomorphism (a , ) -+(T:)  
of II(A,, ( 1  . (1,) into II(B(H, ), 11 . / I , )  where for each a ,  (Ha, 1 1  . ( I , )  is the Hilbert 
space given by the Gelfand-Naimark Representation Theorem for the B*-  
algebra (A,,IJ.((,), and the topological * isomorphism ( T m ) - + T  of 
II(B(H,)J( .  1 1 , )  into Q(IIHa,{I(. (I,}) defined by ( T x ) ,  = Tax,  where the 
*-operation is defined on Q(IlH,,{((-I(,)) as in Theorem 7 .  It is clear that the 
image of A in Q(IIH,,{((.II,)) under this topological * isomorphism is a 
self-adjoint subalgebra and since A is complete this image is closed in 

Q (HHa, { ( I  . IIa 1). 
In a Hilbert space H, because of the convexity of the spatial numerical 

range we have that the spatial numerical range of an operator T on H and the 
algebra numerical range of the operator T in B ( H )  have the same closure. We 
now show that there is a similar relation between the spatial numerical range of 
a quotient bounded operator T on a product of Hilbert spaces II(H,, 1 .  ( 1 , )  and 
the algebra numerical range of the operator T in Q(IIH,, { / I -  ( I , ) ) .  

THEOREM 9. Given a family { (Ha , [ ( .  l ( a ) )  of Hilbert spaces, for any 

T E Q(HH,, 1 ) )  . / I , ) )  we have 

V(nHa ,  ( 1 1  . ) ) a ) ;  T )  = V ( Q ,  {qa); T I .  

PROOF. Since we are dealing with Hilbert spaces we have for each a ,  

V ( Q ,  Iq-1; T )  = V ( B ( H a ) ,  11. ( ( a  ; T a )  

and the result follows by Theorem 2. 



J. R. Giles, G. Joseph, D. 0 .  Koehler and B. Sims [I51 

References 

F. F. Bonsall and J. Duncan (197 I), Numerical range of operators on normed spuces and of elements 
o.f normed algebras, (Lond. Math. Soc. Lecture Note Series 2, Cambridge 1971). 

F. F. Bonsall and J. Duncan (1973), 'Numerical ranges 11' (Lond. Math. Soc. Lecture Note Series 
10, cambridge 1973). 

J. R. Giles and D. 0 .  Koehler (1973), 'On numerical ranges of elements of locally m-convex 
algebras', Pacific I. Math .  49, 79-91. 

R. B. Holmes (1968), 'A formula for the spectral radius of an operator', Amer. Math.  Monthly 75, 
163-166. 

E. A. Michael (1952). 'Locally multiplicatively convex topological algebras', Mem. Amer. Math.  

SOC. 11 (1952). 
R. T. Moore (1969), 'Banach algebras of operators on locally convex spaces', Bull. Amer. Math.  

SOC. 75, 68-73. 
R. T. Moore (1969a), 'Adjoints, numerical ranges, and spectra of operators on locally convex 

spaces'. Bull. Amer. Math.  Soc. 75, 85-90. 

The University of Newcastle, N.S.W. 
Australia 

Miami University, Oxford, Ohio 
U.S.A. 

The University of New England, N.S.W. 
Australia 


