ON THE EXISTENCE OF SUPPORT MAPS WITH DENSE IMAGES

BRAILEY SIMS

(Received 18 August 1975; revised 17 August 1976)

Abstract

For a normed linear space X we investigate conditions for the existence of support maps under which the image of X is a dense subset of the dual. In the case of finite-dimensional spaces a complete answer is given. For more general spaces some sufficient conditions are obtained.

Throughout we will use $\|\cdot\|$ for the norm function of a normed linear space X, X' for its dual space and S(X) to denote its unit sphere $\{x \in X : \|x\| = 1\}$.

We will be particularly interested in S(X') regarded as a metric space under the metric d(f, g) = ||f - g|| for all $f, g \in S(X')$.

Unless otherwise stated, by the interior, int A, or the boundary, bdry A, of a subset $A \subseteq S(X')$ we mean in the context of (S(X'), d). Thus, for example, $f \in \text{int } A$ if there exists r > 0 such that $B_r(f) = \{g \in S(X'): \|f - g\| < r\} \subseteq A$.

It is a simple consequence of the Hahn-Banach Theorem that we may define a set valued map \mathcal{D} from S(X) into the non-trivial subsets of S(X') by

$$f \in \mathcal{D}(x)$$
 if $f(x) = 1$.

This map is frequently termed the duality map of X. When we want to emphasize the underlying space X we will write $\mathcal{D}_X(x)$ in place of $\mathcal{D}(x)$.

A support map is a selector for \mathcal{D} , that is a function

$$\phi \colon S(X) \to S(X')$$
: $x \mapsto \phi_x \in \mathcal{D}(x)$.

The important property of subreflexivity, as established by Bishop and Phelps (1961), states that for a Banach space X, $\bigcup_{x \in S(X)} \mathcal{D}(x)$ is a dense subset of S(X'). We will be interested in the geometry of spaces which have a support

map ϕ with $\overline{\phi(S(X))} = S(X')$. Such a support map will be referred to as naving dense image.

Not every Banach space has a support map with dense image, a fact amply demonstrated by the space $l_x^2(\mathcal{R})$.

Recalling that a Banach space X is smooth at $x \in S(X)$ if $\mathcal{D}(x)$ is a singleton set, we see that subreflexivity establishes that for every smooth Banach space the unique support map has dense image. So a sufficient condition for a Banach space to have a support map with dense image would be the existence of a lower semi-continuous support map (norm to weak*, Cudia (1964)).

That the requirement of smoothness is over strong may be seen from the xample of \Re^3 equipped with norm the gauge of the "lens-shaped" set

$$\{\boldsymbol{x}: \|\boldsymbol{x} - (0, \frac{1}{2}, 0)\|_2 \le 1 \text{ and } \|\boldsymbol{x} + (0, \frac{1}{2}, 0)\|_2 \le 1\}.$$

In this space the selection of a support map with dense image follows from the existence of a function $f \colon \mathcal{R} \to \mathcal{R}$ under which the image of an open neighbourhood is a dense subset of \mathcal{R} . Accordingly we seek weaker conditions than smoothness which will ensure the existence of support maps with dense images.

The following equivalence is an obvious consequence of subreflexivity.

PROPOSITION 1. A support map ϕ of the Banach space X has dense image if and only if for each $x \in S(X)$ and $f \in \mathcal{D}(x)$ there exists a sequence $\{x_n\}$ of points in S(X) with $\phi_{x_n} \to f$.

As a consequence of this proposition we have:

If for any
$$x \in S(X)$$
, int $\mathcal{D}(x) \neq \emptyset$ and

$$[\operatorname{int} \mathscr{D}(x)] \cap [\bigcup_{y \in S(X) \setminus \{x\}} \mathscr{D}(y)] = \emptyset$$

then X does not have a support map with dense image.

The next lemma shows that the second (underlined) condition is redundant.

LEMMA 2. In the normed linear space X, if $f \in \text{int } \mathcal{D}(x)$ for some $x \in S(X)$, then $f \notin \mathcal{D}(y)$ for any $y \in S(X) \setminus \{x\}$.

PROOF. Assume the contrary, that there exists $y \in S(X) \setminus \{x\}$ with $f \in \mathcal{I}_X(y)$. Let Y be the two-dimensional subspace of X spanned by x and y. Then $f|_Y \in \mathcal{D}_Y(y)$ and further in S(Y'), $f|_Y \in \operatorname{int} \mathcal{D}_Y(x)$ which clearly cannot be the case in a two-dimensional space unless x = y, a contradiction.

COROLLARY 3. If the normed linear space X has a support map with dense image, then int $\mathcal{D}(x) = \emptyset$ for all $x \in S(X)$.

We now develop some partial converses to Corollary 3.

LEMMA 4. For the Banach space X, if int $\mathcal{D}(x) = \emptyset$ for all $x \in E$ a countable subset of X, then

$$\operatorname{int}\left[\bigcup_{x\in E}\mathscr{D}(x)\right]=\varnothing.$$

PROOF. Assume the contrary, then there exists $f_0 \in S(X')$ and r > 0 with $B_r(f_0) = \{f \in S(X'): ||f - f_0|| < r\} \subseteq \inf [\bigcup_{x \in E} \mathcal{D}(x)]$. Now the closed subset $B_{r/2}[f_0] = \{f \in S(X'): ||f - f_0|| \le \frac{1}{2}r\}$ is a complete metric space. However,

$$B_{r/2}[f_0] = \bigcup_{\mathbf{x} \in E} (\mathcal{D}(\mathbf{x}) \cap B_{r/2}[f_0])$$

and for each $x \in E$, $\mathcal{D}(x) \cap B_{r/2}[f_0]$ is nowhere dense, since $\mathcal{D}(x)$ is closed and in $B_{r/2}[f_0]$, int $(\mathcal{D}(x) \cap B_{r/2}[f_0]) = \emptyset$, contradicting the Baire Category Theorem.

For any normed linear space X denote by $\lambda(X)$ the set of non-smooth points of the unit sphere S(X) and let $\Delta = \bigcup \{ \mathcal{D}(x) : x \in S(X) \}$ and $\Lambda = \bigcup \{ \mathcal{D}(x) : x \in \lambda(X) \}$.

LEMMA 5. Every support map of the Banach space X has dense image in $S(X')\setminus \bar{\Lambda}$.

PROOF. For $f \in S(X') \setminus \bar{\Lambda}$, either $f \in S(X') \setminus \bar{\Lambda}$ or $f \in \text{bdry } \bar{\Lambda}$. If f belongs to the open set $S(X') \setminus \bar{\Lambda}$, then by the subreflexivity of X there exists a sequence $\{f_n\}$ of functionals in $\Delta \setminus \bar{\Lambda}$ convergent to f. Now each $f_n \in \mathcal{D}(x_n)$ for some $x_n \in S(X) \setminus \lambda(X)$ in which case $\mathcal{D}(x_n)$ is the singleton set $\{\phi_{x_n}\}$ and so we have a sequence $\{x_n\}$ in S(X) with $\phi_{x_n} \to f$.

On the other hand, if $f \in \text{bdry }\bar{\Lambda}$, then by definition there exists a sequence $\{f_n\}$ of elements in $S(X')\backslash\bar{\Lambda}$ with $f_n \to f$. From the first half of the proof we can choose an $x_n \in S(X)$ with $\|\phi_{x_n} - f_n\| < 1/n$ in which case

$$||f - \phi_{x_n}|| \le ||f - f_n|| + ||f_n - \phi_{x_n}|| \to 0$$

and again we have established the existence of a sequence $\{x_n\}$ in S(X) with $\phi_{x_n} \to f$, thus establishing the result.

COROLLARY 6. Let X be a Banach space and suppose Λ is nowhere dense. Then every support map on X has dense image.

Lemma 7. Let X be a normed linear space. If Λ has empty interior in the metric subspace Δ , then every support map has dense image in Δ .

PROOF. If $f \in \Delta$ then, for any $\varepsilon > 0$, $B_{\varepsilon}(f)$ contains a point $g \in \Delta \setminus \Lambda$. Since $g = \phi_x$ for some $x \in S(X)$, $||f - \phi_x|| < \varepsilon$ so the image of ϕ is dense in Δ .

THEOREM 8. Let X be a Banach space with separable dual, then X has a support map with dense image if and only if int $\mathcal{D}(x) = \emptyset$ for each $x \in S(X)$.

PROOF. Necessity has already been proved in Corollary 3.

To prove sufficiency, by Lemma 5, we need only ensure the image of ϕ is dense in int $\bar{\Lambda}$.

Since int $\bar{\Lambda}$ is an open subset of S(X') we may choose $\{f_1, f_2, \dots, f_n, \dots\}$ to be a countable, dense subset of int $\bar{\Lambda}$.

Now let $\theta: n \mapsto (\theta_1(n), \theta_2(n))$ be a 1-1 map from the set of natural umbers \aleph onto $\aleph \times \aleph$, and inductively select x_n from

$$\{x \in \lambda(X) \setminus \{x_1, x_2, \dots, x_{n-1}\}: \mathscr{D}(x) \cap B_{r_n}(f_{\theta_2(n)}) \neq \emptyset \text{ where } r_n = \theta_1(n)^{-1}\}$$
 and ϕ_{x_n} from $\mathscr{D}(x_n) \cap B_{r_n}(f_{\theta_2(n)})$.

Such a selection is possible since int $\bar{\Lambda}$ is an open subset of $\bar{\Lambda}$, and for any $n \in \mathbb{N}$

$$\bigcup_{x \in \lambda(X) \setminus \{x_1, \dots, x_n\}} \mathcal{D}(x)$$

is a dense subset of $\bar{\Lambda}$ as int $\mathcal{D}(x) = \emptyset$, $\mathcal{D}(x)$ is closed, and so $\bigcup_{i=1}^n \mathcal{D}(x_i)$ is nowhere dense by Lemma 4.

It is clear from the above selection procedure that $\{\phi_{x_n}: n \in \mathbb{N}\}$ is dense in int $\overline{\Lambda}$. Thus assigning ϕ_x arbitrarily for $x \in \lambda(X) \setminus \{x_1, x_2, \dots, x_n, \dots\}$ we arrive at a support map with dense image.

We now investigate some conditions under which int $\mathfrak{D}(x) = \emptyset$. From the convexity of the norm in the normed linear space X it follows that for any $x, y \in S(X)$ and α real

$$g^{+}(x; y) = \underset{\alpha \to 0^{-}}{\text{Limit }} \alpha^{-1}(||x + \alpha y|| - 1) \quad \text{and} \quad g^{-}(x; y) = \underset{\alpha \to 0^{-}}{\text{Limit }} \alpha^{-1}(||x + \alpha y|| - 1)$$

It is well known that

exist.

$$g^{-}(x; y) = \inf \{ \operatorname{Re} f(y) : f \in \mathcal{D}(x) \}$$

$$\leq \sup \{ \operatorname{Re} f(y) : f \in \mathcal{D}(x) \}$$

$$= g^{+}(x; y).$$

: 0

0

25

١u

C (

 Γ

the

ınt

t`ti

>C.C

161

der

ŧΞ

su;

SUC

 $v \in$

SUP

The norm is differentiable at $x \in S(X)$ in the direction y if $g^{-}(x; y) = g^{+}(x; y)$, in which case we will denote the common value of these two limits by g(x; y).

If the norm is differentiable at $x \in S(X)$ in some direction $y \in S(X) \setminus \{x, -x\}$ we say the norm is differentiable at x in a non-radial direction, y.

LEMMA 9. In the normed linear space X, if the norm is differentiable at $x \in S(X)$ in a non-radial direction y, then the real linear hull of $\mathcal{D}(x)$ is a proper subset of X'.

PROOF. It suffices to observe that z = y - g(x; y)x is a non-zero element of X for which Re f(z) = 0 for all $f \in \mathcal{D}(x)$, and so should the real linear hull of $\mathcal{D}(x)$ equal X' we would contradict the Hahn-Banach Theorem.

As a partial converse to this result we offer the following.

LEMMA 10. If X is a finite-dimensional normed linear space and $x \in S(X)$ is such that the real linear hull of $\mathcal{D}(x)$ is a proper subset of X', then the norm is differentiable at x in a non-radial direction.

PROOF. Let D be the real linear hull of $\mathscr{D}(x)$ then D is a proper closed subspace of $(X')_{\mathscr{R}}$ —the dual of X regarded as a linear space over \mathscr{R} . So by the Hahn-Banach Theorem there exists $F \in (X')'_{\mathscr{R}}$ with ||F|| = 1 and $F(D) = \{0\}$.

Form F' by F'(f) = F(f) - iF(if) for all $f \in X'$ then $F' \in X''$ and so by the reflexivity of X, $F' = \hat{y}$ for some $y \in S(X)$, where $\hat{y}(f) = f(y)$. Clearly $y \neq x$, -x as f(x) = -f(-x) = 1 for all $f \in \mathcal{D}(x)$ while $\operatorname{Re} f(y) = \operatorname{Re} \hat{y}(f) = F(f) = 0$ for all $f \in \mathcal{D}(x)$. From this it also follows that $g^-(x; y) = g^+(x; y) = 0$ and so g(x; y) exists.

LEMMA 11. If, in the normed linear space $X, x \in S(X)$ has int $\mathcal{D}(x) \neq \emptyset$, then X' is the real linear hull of $\mathcal{D}(x)$.

PROOF. Choose $f \in \operatorname{int} \mathscr{D}(x)$, then, for $g \in X'$ either g = kf for some $k \in \mathscr{R}$ or $\{f\} \subsetneq (\mathscr{D}(x) \cap \langle f, g \rangle_{\mathscr{R}})$ where $\langle f, g \rangle_{\mathscr{R}}$ is the real linear hull of $\{f, g\}$. So there exists $f' \in (\mathscr{D}(x) \setminus \{f\}) \cap \langle f, g \rangle_{\mathscr{R}}$ and further $f' \neq kf$ ($k \in \mathscr{R}$) since |k| = 1 so $k = \pm 1$ but if f' = -f then $0 = \frac{1}{2}f + \frac{1}{2}f' \in \mathscr{D}(x)$ which is impossible. Thus f, f' form a basis of $\langle f, g \rangle_{\mathscr{R}}$ and so g is a real linear combination of f and f' as required.

LEMMA 12. Let X be a normed linear space. If the norm is differentiable at $x \in S(X)$ in a non-radial direction, then int $\mathfrak{D}(x) = \emptyset$.

PROOF. The result follows from Lemmas 9 and 11.

Whether this requirement of differentiability is also a necessary condition

is not known. Since in general the converse of Lemma 11 may be untrue, a reversal of the above line of reasoning cannot be attempted. However in the case of finite-dimensional spaces we have the following result.

LEMMA 13. Let X be a normed linear space of finite dimension n. If $x \in S(X)$ is such that the real linear hull of $\mathcal{D}(x)$ is X', then int $\mathcal{D}(x) \neq \emptyset$.

PROOF. Let $f_1, f_2, \dots, f_n \in \mathcal{D}(x)$ have X' as their real linear hull. Form $f = \sum_{k=1}^{n} (1/n) f_k \in \mathcal{D}(x)$ by its convexity. From the continuity of the natural projections $\pi_k \colon X' \to \langle f_k \rangle$ we can choose an $\varepsilon > 0$ so that, if $g = \sum_{k=1}^{n} \mu_k f_k \in \mathcal{R}$) has $\|g - f\| < \varepsilon$ then $|\mu_k - 1/n| < 1/2n$ and so $\mu_k > 0$ for each k. For such an ε , take $g \in S(X)$ with $\|f - g\| < \varepsilon$, then $1 = \|g\| \le \sum_{k=1}^{n} \mu_k$ while $z' = g/\sum_{k=1}^{n} \mu_k$ is a convex combination of the $\{f_k\}$ and so belongs to $\mathcal{D}(x)$. Consequently g' has norm 1, whence $\sum_{k=1}^{n} \mu_k = 1$ and so $g = g' \in \mathcal{D}(x)$. That $1 \le \{g \in S(X): \|g - f\| < \varepsilon\} \subset \mathcal{D}(x)$ and so $f \in \operatorname{int} \mathcal{D}(x)$.

Combining this partial converse to Lemma 11 with Lemma 10 and Theorem 8 we arrive at the following characterization in finite-dimensional spaces.

THEOREM 14. Let X be a finite-dimensional normed linear space. Then the norm is differentiable at $x \in S(X)$ in a non-radial direction if and only if and $D(x) = \emptyset$. Therefore X has a support map with dense image if and only if at each point of S(X) the norm is differentiable in a non-radial direction.

PROOF. Lemmas 10, 12 and 13 establish the first equivalence, while the second equivalence follows from the first and Theorem 8.

THEOREM 15. Let X be a Banach space with $\lambda(X)$ finite. If at each $x \in \lambda(X)$ the norm is differentiable in some non-radial direction, then every apport map has dense image.

PROOF. Applying Lemma 12 then Lemma 4 shows that Λ is nowhere dense. Hence the conclusion follows from Corollary 6.

THEOREM 16. Let X be a reflexive space and $\lambda(X)$ countable. If at each $t \in \Lambda(X)$ the norm is differentiable in some non-radial direction, then every appear map has dense image.

PROOF. Since X is reflexive, $S(X') = \Delta$, so the result follows from the samessive application of Lemmas 12, 4 and 7.

THEOREM 17. Let X be a Banach space with separable dual. If at each $x \in S(X)$ the norm is differentiable in some non-radial direction, then X has a appoint map with dense image.

PROOF. The conclusion follows from Lemma 12 and Theorem 8.

A considerable improvement in the organisation and presentation of the above material resulted from the referee's constructive criticism of the original manuscript for which the author expresses his indebtedness.

References

- E. Bishop and R. R. Phelps (1961), 'A proof that every Banach space is subreflexive', *Bull. Amer. Math. Soc.* 67, 77-98.
- D. F. Cudia (1964), 'The geometry of Banach spaces: smoothness', Trans. Amer. Math. Soc. 110, 284–314.

University of New England, Armicale, N.S.W. 2351, Australia.