ON THE NUMERICAL RANGE OF COMPACT OPERATORS ON HILBERT SPACES

G. DE BARRA, J. R. GILES AND BRAILEY SIMS

In the study of the numerical range of operators on Hilbert spaces, P. R. Halmos has raised the problem of determining those continuous linear operators T on infinitedimensional Hilbert spaces whose numerical range W(T) is closed, [1, problem 168, p. 111]. He has given the example of the operator T on l^2 defined by

$$T(\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots) = \left(\alpha_1, \frac{1}{2}\alpha_2, \ldots, \frac{1}{n} \alpha_n, \ldots\right),$$

with W(T) = (0, 1] to show that "the numerical range may fail to be closed even for compact operators", [1, solution 168, p. 320]. It is the aim of this note to contribute further to our knowledge of the closure properties of the numerical range of compact operators.

THEOREM 1. For a compact operator T on an infinite-dimensional Hilbert space,

- (i) if $0 \in W(T)$ then W(T) is closed,
- (ii) if $0 \notin W(T)$ then 0 is an extreme point of $\overline{W(T)}$, and $\overline{W(T)} \setminus W(T)$ consists at most of line segments in $\partial W(T)$ which contain 0 but no other extreme point of $\overline{W(T)}$.

Proof. If λ is a cluster point of W(T), then there exists a sequence $\{(Tx_n, x_n)\}$, where $||x_n|| = 1$ for all *n*, converging to λ . Since the unit ball in a Hilbert space is weakly sequentially compact, there exists a subsequence $\{x_{n_k}\}$ which is weakly convergent to an *x* where $||x|| \leq 1$. Since *T* is a compact operator, $\{Tx_{n_k}\}$ is strongly convergent to *Tx*.

However,

$$|(Tx_{n_k}, x_{n_k}) - (Tx, x)| \leq |(Tx_{n_k}, x_{n_k}) - (Tx, x_{n_k})| + |(Tx, x_{n_k}) - (Tx, x)|$$

$$\leq ||x_{n_k}|| ||Tx_{n_k} - Tx|| + |(x_{n_k}, Tx) - (x, Tx)|.$$

Therefore $\{(Tx_{n_k}, x_{n_k})\}$ converges to (Tx, x) and so $(Tx, x) = \lambda$. If $\lambda \neq 0$, clearly $x \neq 0$, so

$$\frac{\lambda}{\|x\|^2} = \left(T\frac{x}{\|x\|}, \frac{x}{\|x\|}\right) \in W(T).$$

Since $||x|| \leq 1$ it follows that λ belongs to the interval $(0, \lambda/||x||^2]$, using an obvious notation for line segments in the complex plane.

(i) If $0 \in W(T)$ we have from the convexity of W(T) that $\lambda \in W(T)$ and so W(T) is closed.

(ii) If λ , $(\lambda \neq 0)$, is an extreme point of the intersection of a ray from 0 with $\overline{W(T)}$, then, since $0 \in \overline{W(T)}$, we have that $\lambda = \lambda/||x||^2$ and so ||x|| = 1 and $\lambda \in W(T)$. If 0 is in the interior of a line segment in $\partial W(T)$ then the intersection of the line with

Received 6 September, 1971; revised 29 October, 1971.

[J. LONDON MATH. SOC. (2), 5 (1972), 704-706]

 $\overline{W(T)}$ has two extreme points and these are in W(T); but these are on either side of 0, so from the convexity of W(T) we have that $0 \in W(T)$; we conclude that if $0 \notin W(T)$ then 0 is an extreme point of $\overline{W(T)}$. If $0 \notin W(T)$ and 0 does not belong to a line segment in $\partial W(T)$ then every point in $\partial W(T) \setminus \{0\}$ is an extreme point of the intersection of a ray from 0 with $\overline{W(T)}$, and so $\overline{W(T)} \setminus W(T) = \{0\}$.

COROLLARY. For a compact operator T on a non-separable Hilbert space, W(T) is closed.

Proof. Since the range of a compact operator is separable, 0 is an eigenvalue of T, so $0 \in W(T)$.

It remains to examine the case of a compact operator T on an infinite-dimensional Hilbert space where $0 \notin W(T)$ and 0 is contained in a line segment of $\partial W(T)$. The authors wish to thank Dr. A. M. Sinclair for drawing their attention to examples of compact normal operators which exhibit the exceptional behaviour of the numerical range in such a case. Such examples can be constructed from the following characterisation of the numerical range of a compact normal operator.

THEOREM 2. For a compact normal operator T on a Hilbert space, $W(T) = co(p\sigma(T))$, the convex hull of the point spectrum of T.

Proof. Clearly $W(T) \supset \operatorname{co}(p\sigma(T))$ so it is sufficient to show that $W(T) \subset \operatorname{co}(p\sigma(T))$. Suppose that there exists a $\lambda \in W(T) \setminus \operatorname{co}(p\sigma(T))$; then $0 \notin \operatorname{co}(p\sigma(T)) - \lambda \equiv A$, say. Then for any $z \in A$, $\theta \leq \arg z \leq \theta + \pi$ for some θ , so for any $z \in \exp(-i\theta) A$, $\operatorname{Im} z \ge 0$. Now there exists an x, ||x|| = 1 such that $\lambda = (Tx, x)$. We may choose an orthonormal basis for the space such that if $x = \sum_{1}^{\infty} \alpha_n e_n$, $Tx = \sum_{1}^{\infty} \mu_n \alpha_n e_n$ where $\{\mu_n\} \subset p\sigma(T)$. So $\lambda = \sum_{1}^{\infty} \mu_n |\alpha_n|^2$ where $\sum_{1}^{\infty} |\alpha_n|^2 = 1$, and $\sum_{1}^{\infty} \exp(-i\theta)(\mu_n - \lambda)|\alpha_n|^2 = 0$. If we write $\exp(-i\theta)(\mu_n - \lambda) = \gamma_n + i\delta_n$ then $\sum_{1}^{\infty} \gamma_n |\alpha_n|^2 + i \sum_{1}^{\infty} \delta_n |\alpha_n|^2 = 0$, where $\delta_n \ge 0$ for all n. We may assume that $\alpha_n \ne 0$ for each n, so $\delta_n = 0$ for all n. We may choose n_1 and n_2 where γ_{n_1} and γ_{n_2} have opposite signs to get $\lambda \in [\mu_{n_1}, \mu_{n_2}]$. But this contradicts the convexity of $\operatorname{co}(p\sigma(T))$. Therefore, $W(T) \subset \operatorname{co}(p\sigma(T))$.

Examples

1. The following compact normal operators illustrate the different sorts of exceptional behaviour of W(T) for a compact operator T when $0 \notin W(T)$ and 0 is contained in a line segment of $\partial W(T)$. The operators on l^2 defined by

$$\begin{split} T_1(\alpha_1, \alpha_2, \dots, \alpha_n, \dots) &= \left(\alpha_1, i\alpha_2, \dots, \frac{i}{n-1} \alpha_n, \dots\right), \\ T_2(\alpha_1, \alpha_2, \dots, \alpha_n, \dots) &= \left(\frac{1}{2}\alpha_1, \alpha_2, i\alpha_3, \dots, \frac{i}{n-2} \alpha_n, \dots\right), \\ T_3(\alpha_1, \alpha_2, \dots, \alpha_n, \dots) &= \left(\alpha_1, i\alpha_2, \frac{i+1}{2} \alpha_3, \dots, \frac{i+1}{n-1} \alpha_n, \dots\right), \\ T_4(\alpha_1, \alpha_2, \dots, \alpha_n, \dots) &= \left(\alpha_1, i\alpha_2, \dots, \frac{\alpha_{2n-1}}{2n-2}, \frac{i\alpha_{2n}}{2n-1}, \dots\right), \end{split}$$

have numerical ranges with the same closure, the triangle in the complex plane with vertices 0, 1 and *i*, but $\overline{W(T_1)} \setminus W(T_1) = [0, 1)$, $\overline{W(T_2)} \setminus W(T_2) = [0, \frac{1}{2})$, $\overline{W(T_3)} \setminus W(T_3) = [0, i) \cup [0, 1)$ and $W(T_4) \setminus \overline{W(T_4)} = \{0\}$.

2. The following compact operator shows that the line segments in $\overline{W(T)} \setminus W(T)$ which contain 0 need not have eigenvalues as end points. The operator T defined on l^2 by

$$T(\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots) = \left(\alpha_1, \alpha_1 + \alpha_2, \alpha_3, \frac{1}{2}\alpha_4, \ldots, \frac{1}{n-2}\alpha_n, \ldots\right)$$

can be regarded as the direct sum of operators T_1 on l_2^2 defined by

$$T_1(\alpha_1, \alpha_2) = (\alpha_1, \alpha_1 + \alpha_2)$$

with $\sigma(T_1) = \{1\}$ and $W(T_1)$ the closed disc with centre 1 and radius $\frac{1}{2}$, and T_2 on l^2 defined by

$$T_2(\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots) = \left(\alpha_1, \frac{1}{2}\alpha_2, \ldots, \frac{1}{n} \alpha_n, \ldots\right)$$

with $\sigma(T_1) = \{0, 1, \frac{1}{2}, ..., 1/n, ...\}$ and $W(T_2) = \{0, 1\}$. As such we can compute $W(T) = \operatorname{co} \{W(T_1) \cup W(T_2)\}$, [1, p. 113]. We have then that $\overline{W(T)} \setminus W(T)$ consists of two half-open line segments containing 0, and tangent to the disc $W(T_1)$, but $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$ is contained in the real line.

Reference

1. P. R. Halmos, Hilbert space problem book (Van Nostrand, 1967).

Royal Holloway College, Englefield Green, Surrey University of Newcastle, N.S.W. 2308, Australia University of Newcastle, N.S.W. 2308, Australia