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REMARKS ON FIXED POINT THEOREMS 

IN HYPERCONVEX SPACES 

SEHIE PARK AND BRAILEY SIMS 

ABSTRACT. We generalize and improve known fixed point theorems in hyper- 
convex spaces by applying the selection theorem in [BO] and other results on 
C-spaces or G-convex spaces. In fact, we obtain generalizations of fixed point 
theorems for nonexpansive multimaps, the Kakutani type maps, and the Fan- 
Browder type maps. Some additional new observations are also stated for the 
Caristi-Kirk-Browder type theorems. 

The notion of hyperconvex spaces was introduced by Aronszajn and Pan- 
itchpakdi [AP] in 1956. Later, in 1979, independently Sine [S:l.] and Soardi 
[So] proved that a bounded hyperconvex space has the fixed point property 
for nonexpansive maps. Since then many interesting works have appeared for 
hyperconvex spaces. For the literature, see the end of this paper. 

Until recently, the study of hyperconvex spaces concentrated on the re- 
lationship with nonexpansive maps. However, Khamsi [K] established the 
Knaster-Kuratowski-Mazurkiewicz theorem (in short, KKM theorem) for hy- 
perconvex spaces and applied it to obtain a Schauder type fixed point theorem. 
This line of study was followed by Kirk [Ki2], Kirk and Shin [KS], Kim and 
Shin [KmS], and Park [P4,5]. In particular, the first author obtained exten- 
sions or equivalent forms of the KKM theorem, a Fan-Browder type fixed 
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point theorem, and other results for hyperconvex spaces in [P4,5]. Moreover, 
Kirk, Sims, and Yuan [KSY] established the KKM theorem, its equivalent 
formulations, fixed point theorems, and their applications for hyperconvex 
spaces. 

However, most of the above-mentioned works are simple consequences of 
much more general results. In fact, Horvath [HI-51 initiated study of the 
KKM theory and fixed point theory for C-spaces, which are meaningful gen- 
eralizations of convex spaces or convex subsets of topological vector spaces. 
Wioreover, in [H5], he found that hyperconvex spaces are a particular type of 
C-spaces and gave a useful selection theorem on 1.s.c. multimaps related to C- 
spaces. Recently, this selection theorem was extended by Ben-El-Mechaiekh 
and Oudadess [BO] following some ideas from the celebrated theory on con- 
tinuous selections due to Michael. On the other hand, the first author [PI-3, 
7-11, PK1-41 initiated study of generalized convex spaces or G-convex spaces, 
which properly include the class of C-spaces and a large number of spaces 
kaving particular type of abstract convexity. 

The main purpose of the present paper is to generalize and improve known 
fixed point theorems in hyperconvex spaces by applying some of the estab- 
- ' 
lished results for G-convex spaces, especially, the selection theorem in [BO] 
and other results on C-spaces. Some additional new observations are also 
stated. 

In Section 3, we obtain a generalization of the fixed point theorem of Sine 
[S2] for nonexpansive multimaps on hyperconvex spaces. 

Section 4 deals with the fked point theorems for compact Kakutani type 
maps on hyperconvex spaces. In fact, from a new theorem of Park [P8], we 
deduce Himmelberg type theorems for G-convex spaces and apply them to 
obtain some variants for hyperconvex spaces. 

In Section 5, we deduce generalized forms of a Fan-Browder type theorem 
for compact maps on hyperconvex spaces. 

Section 6 deals with a new generalization of the Caristi-Kirk-Browder fixed 
point theorem [C]. We note that this can be applied to hyperconvex spaces in 
order to obtain some new results. 

A metric space (H, d) is said to be hyperconvex if 
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for any collection {B(x,, r,)) of closed balls in H for which d(x,, xp)  5 
r, + rg. 

It is known that the space @(E) of all continuous real functions on a Stonian 
space E (that is, an extremally disconnected compact HausdorfT space) with 
the usual norm is hyperconvex, and that every hyperconvex real Banach space 
is a space @(E) for some Stonian space E .  Therefore, (Rn, 1 1  . Ilm), lm, and 
Lm are concrete examples of hyperconvex spaces. 

Results of Aronszajn and Panitchpakti [AP, Theorem 1'1 and Isbell [I, The- 
orem 1.11 are combined in the following: 

Theorem 2.1. A hyperconvex space is complete and (freely) contractible. 

The concepts of C-spaces, LC-spaces, and LC-metric spaces were intro- 
duced and extensively studied by Horvath in a sequence of papers [HI-51: 

A C-space (X, I') is a topological space X with a multimap r : (X)  4 X 
from the set (X)  of all nonempty finite subsets of X into the power set of X 
such that 

(1) for each A E (X) ,  r (A)  = FA is n-connected for all n 2 0; and 
(2) for all A, B E (X) ,  A C B implies FA C r B .  

A nonempty subset Y c X is said to be r-convex if A E (Y) implies FA c Y. 
A C-space (X,  I') is called an LC-space (or a locally H-convex space [TI) 

if X is a Hausdorff uniform space and there exists a basis {Vx)xcr for the 
uniform structure such that for each X E I, {x E X : E f l  V,[x] # 0) is 
r-convex whenever E c X is r-convex, where 

Vx[x] = {x' E X : (x,xP) E VA). 

For example, any nonempty convex subset X of a locally convex Hausdorff 
topological vector space is an LC-space with FA = co A, the convex hull of 
A E (X).  

A triple (X, d; I') is called an LC-metric space whenever (X,  d) is a metric 
space and (X,I') is a C-space such that open balls are r-convex, and any 
neighborhood {x E X : d(x,Y) < r) of a r-convex set Y c X is also r -  
convex. 

Horvath [H5, Theorem 91 obtained the following : 

Theorem 2.2. Any hyperconvex space H is a complete LC-metric space with 

FA = n { ~  : B is a closed ball containing A) 
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for each A E (H).  

Note that FA itself is hyperconvex. From now on, a hyperconvex space 
(H, d; I') is simply denoted by H. 

The following is due to Ben-El-Mechaiekh and Oudadess [BO, Theorem 31: 

Theorem 2.3. Let X be paracompact, (Y, d; I?) a complete LC-metric space, 
Z C X with dimx Z <_ 0, and @ : X -O Y a lower semicontinuous (1.s.c.) 
multimap with nonempty closed values such that @(x) is r-convex for x @ Z. 
Then @ admits a continuous selection f : X + Y such that f (x) E @(x) for 
x E X .  

Motivated by the concepts of C-spaces and many other abstract convexities, 
the first author introduced the following: 

A generalized convex space or a G-convex space (X, D ;  I?) consists of a topo- 
logical space X and a nonempty set D such that, for each A E (D) with the 
cardinality lA( = n + 1, there exist a subset r ( A )  = FA of X and a continuous 
function +A : A, + r (A)  such that J E (A) implies 4 ~ ( A j )  c I'(J). Note 
that 1 a , can be regarded as 4.~. 

The above definition of G-convex spaces is a little more general than 
the one used in our previous works [Pl-3, 7-11, PK1-41, where basic the- 
ory was extensively developed.  ere, A, is the standard n-simplex with 
vertices {e,}2t,o, and A j  the face of An corresponding to J E (A); that 
is, i f A  = {ao,al  , . . .  , an}  and J = {a,,,a ,,,..., a,,} c A, t h e n A J  = 
co{ezo, e,, , . . . , ezk).  We may write (X, I') = (X, X;  I'). 

There are a lot of examples of G-convex spaces: 

Examples 2.1. If X is a convex subset of a vector space, D C X ,  and X has 
a topology such that each rA is the convex hull of A E (D) equipped with 
the Euclidean topology, then (X, D ;  I') becomes a convex space generalizing 
the one due to Lassonde. Note that any convex subset of a topological vector 
space (t .v.s.) is a convex space, but not conversely. 

Examples 2.2. If X = D and FA is assumed to be contractible or, more 
generally, infinitely connected (that is, n-connected for all n 2 O) ,  and if for 
each A, B E (X): A c B implies FA c rg, then (X, I') becomes a C-space 
(or an H-space) . 
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Examples 2.3. Other major examples of G-convex spaces are Pasicki's S- 
contractible spaces, Horvath's pseudoconvex spaces, Komiya's convex spaces, 
Bielawski's simplicial convexities, Job's pseudoconvex spaces, and so on. For 
the literature, see [PKl-41. Recently, further examples of G-convex spaces 
were given by the first author [PI01 as follows: L-spaces and B1-simplicia1 
convexity of Ben-El-Mechaiekh et al., continuous images of G-convex spaces, 
Verma's or Stachb's generalized H-spaces, Kulpa's simplicial structures, Pl, - 
spaces of Forgo and Job, mc-spaces of Llinares, hyperconvex spaces due to 
Aronszajn and Panitchpakdi, and Takahashi's convexity in metric spaces. 

Examples 2.4. Futhermore, any hyperbolic space X in the sense of Kirk 
[Kill and Reich-Shafrir [RS] is a G-convex space, since the closed convex hull 
of any A E (X)  is contractible [RS, p.5421. This class of metric spaces contains 
all normed vector spaces, all Hadamard manifolds, the Hilbert ball with the 
hyperbolic metric, and others. Note that an arbitrary product of hyperbolic 
spaces is also hyperbolic; see [RS]. 

F'rom now on, all topological spaces are assumed to be Hausdorff and D c 
X for simplicity. For such a G-convex space (X,  D ;  I?), a subset Y of X is said 
to be I?- convex if for each A E (D),  A C Y implies FA c Y. 

A G-convex space (X, D ;  I?) is called an LG-space (or a locally G-convex 
space) if (X,U) is a uniform space such that D is dense in X and if there 
exists a basis {Vx}xEI for the uniformity U such that for each X E I ;  {x E X : 
C n Vx[x] # 8 )  is I?-convex whenever C c X is I?-convex, where 

VX[2] = {XI E X :  (x,x') EVA}. 

For details, see [P8,9]. 

3. NONEXPANSIVE MULTIMAPS 

In their pioneering work, Aronszajn and Panitchpakdi [AP] proved that a 
hyperconvex space is a nonexpansive retract of any metric space in which it is 
isometrically embedded. Sine [S:l.] and Soardi [So] showed independently that 
a nonexpansive map of a bounded hyperconvex space has a fixed point. Both 
of these works were in the concrete setting of function spaces. Later, Baillon 
[B] proved the following : 
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Theorem 3.1. If f : H -+ H is a nonexpansive map with H a bounded 
hyperconvex space, then the firced point set F i x ( f )  of f is nonempty and hy- 
perwnvex. 

Recall that for bounded closed sets A and B in a metric space ( X ,  d ) ,  we 
set 

h o ( A ,  B )  = sup{d(x ,  B )  : x E A )  

and then define the Hausdorff metric by 

A multimap M : X 4 X with nonempty bounded closed values is said to be 
nonexpansive in the Hausdorff metric if 

From Theorems 2.2 and 2.3, we immediately have the following: 

Theorem 3.2. Let X be a metric space, Z c X with dimx Z 5 0, H a 
hyperconvex space, and : X 4 H 1.s.c. with nonempty closed values such 
that @ ( x )  is  r-convex for x $ Z.  Then admits a continuous selection. 

Since a nonexpansive multimap M : X 4 H is l.s.c., from Theorem 3.2, 
we have the following due to Sine [S2, Theorem 11: 

Corollary 3.3. Let M : X 4 H be a nonexpansive multimap from a metric 
space X into a hyperwnvex space H having r-convex values. Then M admits 
a nonexpansive single-valued selection. 

Combining Theorems 3.1 and 3.2, we have the following : 

Theorem 3.4. Let H be a bounded hyperconvex space, Z c H with dimH Z 5 
0, and M : H 4 H a nonexpansive multimap such that M ( x )  is r-convex for 
x $ 2. Then M has a fixed point. 

Proof. Since M is I.s.c., by Theorem 3.2 with X = H ,  M admits a continuous 
selection f : H -+ H .  Since d ( f ( x ) ,  f ( y ) )  < h ( M ( x ) ,  M ( y ) )  L d ( x , y ) ,  f is 
nonexpansive and hence has a fixed point xo = f ( x o )  E M ( x o )  by Theorem 
3.1. This completes our proof. 

From Theorem 3.4, we have the following form of Sine [S2, Corollary 21: 
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Corollary 3.5. Let M : H -o H be a nonexpansive multimap with I'-convex 
values on a bounded hyperconvex space H .  Then M has a fixed point. 

Further, Sine [S2, Corollary 31 showed that the fixed point set is hyper- 
convex if the values of M are nonempty closed ball intersections (which are 
I'-convex). From this, results on common fixed points for commuting families 
of nonexpansive maps follow. 

Since every singleton is I'-convex in a hyperconvex space, the first part of 
Theorem 3.1 follows from Corollary 3.5. 

Moreover, the following due to Sine [S2, Theorem 151 gives another example 
of hyperconvex spaces: 

Theorem 3.6. The collection BI(H)  of all nonempty closed ball intersections 
in  a hyperconvex space H is hyperconvex under the Hausdorfl metric. 

This is also proved by Kirk [Ki, Lemma 21 for the case H itself is bounded. 

4. KAKUTANI TYPE MULTIMAPS 

For a topological space X and a convex space Y, a multimap T : X -o Y is 
called a Kakutani map if it is upper semicontinuous (u.s.c.) and has nonempty 
closed convex values. 

Recently, the first author obtained the following fixed point theorem [P8, 
Theorem 21 for Kakutani type multimaps: 

Theorem 4.1. Let (X, D ; I ' )  be an LG-space and T : X -o X a compact 
U.S.C. multimap with nonempty closed I'-convex values. Then T has a fixed 
point. 

Note that, for a convex subset X = D of a locally convex t.v.s., Theorem 
4.1 reduces to the well-known Himmelberg fixed point theorem. 

In this section, we first show that several known Schauder type fixed point 
theorems on hyperconvex spaces are consequences of the following corollary 
of Theorem 4.1, which improves Horvath [H4, Corollary 4.41: 

Corollary 4.2. Let (X, D ; I ' )  be an LG-space such that singletons are I'- 
convex. Then any compact continuous function f : X + X has a fixed point. 

We list known particular forms of Corollary 4.2 for hyperconvex spaces : 
(i) Espinola-Garcia [E, Lemma 31: Let X be a compact hyperconvex space 

and f : X -+ X a continuous map. Then f has a fixed point. 



58 S. Park and B. Sims 

(ii) Khamsi [K, Theorem 61: Let X E BI(H)  be a compact subset of a 
hyperconvex space H and f : X + X a continuous map. Then f has a fixed 
point. 

(iii) Park [P5, Theorem 71: Let H be a hyperconvex space and f : H + H 
a continuous function. If f is compact, then f has a fixed point. 

Note that in view of Theorem 2.2, (i)-(iii) are all simple consequences of 
Corollary 4.2. 

Rom Theorem 2.3 and Corollary 4.2, we obtain the following new result : 

Theorem 4.3. Let (X,  d;  I') be a complete LC-metr ic  space such that I?(,) = 

(x), 2 c X with dimx Z < 0, and : X --o X a l.s.c. mult imap with 
nonempty  closed values such that @(x) is  I'-convex for x $ 2. If i s  compact, 
then  has a fixed point. 

Proof. By Theorem 2.3 with X = Y, admits a continuous selection f : X + 
X.  Since is compact, so is f .  Now by Corollary 4.2, f has a fixed point. 
This completes our proof. 

Fkom Theorems 4.1 and 4.3, we have the following: 

Theorem 4.4. Let  (X, d;  I') be a complete LC-me t r i c  space such that Ti,) = 

{x), and : X 4 X an  u.s.c. or  a 1.s.c. mult imap with nonempty closed 
T-convex values. If i s  compact, then has a fixed point. 

For a hyperconvex space, Theorem 4.4 reduces to the following: 

Corollary 4.5. Let H be a hyperconvex space and : H 4 H a compact 
m a p  with nonempty  closed I'-convex values. If i s  u.s.c. or l.s.c., then  
has a fixed point. 

Note that Corollary 4.5 generalizes all of (i)-(iii) to compact multimaps. 
The u.s.c. case of Corollary 4.5 was given by a different method in Park 

[ P l l ,  Theorem 71 together with three corollaries. One of them answers the 
question raised by Kirk and Shin [KS, Corollary 3.51 affirmatively. 

Finally, in this section, we note that it is routine to obtain fixed point 
results on condensing maps from corresponding results on compact maps. 

5. FAN-BROWDER TYPE THEOREMS 

Fkom Theorem 4.3 we have the following: 
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Theorem 5.1. Let (X, d;  F )  be a complete L C - m e t r i c  space such that  F{,) = 
{x), Z C X with dimx Z 5 0, and T : X 4 X a mult imap with  nonempty  
closed values such that  

(1) for each x f Z ,  T(z )  i s  F-convex; and 
(2) for each y E X ,  T-(y) i s  open in X .  

If T i s  compact, t h e n  T has a fixed point. 

Proof. Since T has open fibers by (2), T is 1.s.c. Hence, the conclusion follows 
from Theorem 4.3. 63 

In order to obtain a variant of Theorem 5.1, we need the following improved 
version of Horvath [H4, Theorem 3.21 due to the author [P7, Theorem 81: 

Theorem 5.2. Let X be a paracompact space, (Y, F )  a C-space, and S, T : 
X 4 Y two  mult imaps such that 

(1) for  each x E X ,  A E (S(x)) implies F A  c T(x); and 
(2) X = u{IntS-(y) : y E Y). 

T h e n  T has a continuous selection. 

The following is due to Komiya [KO]: 

Corollary 5.3. Let (X, F )  be a paracompact C-space, and S, T : X 4 X two 
mult imaps satisfying conditions ( I . )  and (2) in Theorem 5.2 with X = Y. If 
(X, F )  has the fixed point property (that is, every continuous selfmap has a 
fixed point), then T has a fixed point. 

Further, Komiya [KO] also noted the following: 

Proposition 5.4. Let (X, F )  be a paracompact LG-space. If any  mult imap 
T : X 4 X satisfying the requirements in Corollary 5.3 with  S = T has a 
fixed point, then  any  Kakutani  type m a p  F : X 4 X has a fixed point. 

From Corollary 4.2 and Theorem 5.2, we obtain the following : 

Theorem 5.5. Let H be a hyperconvex space and S , T  : H 4 H two mul-  
t imaps satisfying conditions (1) and (2) in Theorem 5.2. If T i s  compact, then  
T has a fixed point. 

Proof. Since H is a complete LC-metric space, by Theorem 5.2 with X = 
Y = H, T has a continuous selection f : H + H. Since T is compact, so is 
f .  Hence, by (iii), f has a fixed point. This completes our proof. 
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From Theorem 5.1 with Z = 0 or Theorem 5.5 with S = T,  we have the 
following : 

Theorem 5.6. Let H be a hyperconvex space and T : H 4 H a rnultirnap 
such that  

(1) for each x E H,  T(x)  i s  nonernpty and r - w n v e x ;  and 
(2) for each y E H ,  T-(y) i s  open in H. 

If T i s  compact, then  T has a fixed point. 

Remarks .  1. If H is a convex space or a convex subset of a t.v.s., then the 
validity of Theorern 5.6 is riot known yet. This is raised by Ben-El-Mechaiekh 
as a problem. For particular solutions, see Park [P1,12]. 

2. In the KKM theory, there are a lot of equivalent statements of the KKM 
:heorem and the Fan-Browder theorem. This can be done for hyperconvex 
spaces by using the corresponding results in [P4,5]. 

In case H itself is compact, Theorem 5.6 reduces to the following Fan- 
Browder type theorem : 

Theorem 5.7. Let H be a compact hyperconvex space and T : H 4 H a 
rnultirnap with values in B I ( H )  and open fibers. T h e n  T has a fixed point. 

Theorem 5.7 has a generalization for G-convex spaces due to Park and Kim 
;PK1,2], which includes a lot of particular cases. One of them, due to Horvatli 
iH1. Thkorbme 21, [H2, Theorern 1.41, Park and Jeong [P J ,  Theorem 41: is as 
follows : 

Theorem 5.8. Let X be a compact contractible space and G : X -o X a 
rnultirnap satisfying 

(a) G(x) i s  open for each x E X and G-(y) i s  nonernpty for each y E Y ;  
and 

(b) for each open set 0 in X ,  the  set nyEo G-(y) i s  empty  or contractible. 

T h e n  G has a fixed point. 

Proof of Theorem 5.7 using Theorem 5.8. Note that by Theorem 2.1, every 
hyperconvex space and hence every element of B I ( H )  is contractible. There- 
fore, by putting X = H and G = T-,  conditions (a) and (b) are satisfied. 
In fact, G(x) = T-(x)  is open and G-(y) = T(y) belongs to BI (H) .  Note 
that any intersection of a family in B I ( H )  is empty or belongs to BI (H) ,  and 
hence it is empty or contractible. Therefore by Theorem 5.8, there exists an 
xo E G(xo) = T- (xo) such that xo E T(xo). This completes our proof. 
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Remarks. 1. If X is a convex space in Theorem 5.8 and if G-(y) is convex 
for each y E X, then we obtain the well-known Fan-Browder theorem, which 
has numerous applications. 

2. Note that Theorem 5.7 is another application of Theorem 5.8. This 
would satisfy a question raised by an inconsiderate reviewer of [PJ] in MR 
96m:47109. 

6. CARISTI-KIRK-BROWDER TYPE THEOREMS 

Recently, the first author [P4] generalized the well-known Caristi-Kirk- 
Browder fixed point theorem [C] as follows: 

Let (X, d) be a quasi-metric space, where d is not necessarily symmetric. 
A function w : X x X + [0, oo) is called a W-distance on X if the following 
are satisfied: 

(1) w(x, z) 5 w h y )  + w(y, 2) for any x, Y,  z E X ;  
(2) for any x E X, w(x, .) : X + [0, oo) is lower semicontinuous; and 
(3) for any E > 0, there exists a 6 > 0 such that w(z, x) 5 6 and w(z, y) 5 6 

imply d(x, y ) I E. 

Let #I : X x X + (-oo, oo] be a function such that 

(4) 4(x, I 4(x, Y) + 4(y, z) for any x, Y, z X ;  and 
(5) +(x, .) is lower semicontinuous for all x E X ;  
(6) there exists an xo E X such that infPEx 4(xo, y) > -oo. 

It is known that for a quasi-metric space (X, d), the concepts of Cauchy 
sequences, completeness, and Banach contractions can be defined. 

The following is a particular form of Park [P6, Theorem (iii)] : 

Theorem 6.1. Let (X,d) be a complete quasi-met7-i~ space, w : X x X + 
[0, oo) a W-distance on X ,  and 4 : X x X + (-oo, oo] a function satisfying 
(4)-(6). If a function f : X + X satisfies 

then f has a fixed point. 

This has several equivalent formulations and some variants. Especially, for 
w = d and d(x,y) = g(y) - g(x), where g : X -+ (-oo, oo] is a proper lower 
semicontinuous function bounded from below, Theorem 6.1 reduces to the 
Caristi-Kirk-Browder fixed point theorem, which includes the Banach con- 
traction principle. Moreover, it is known that Theorem 6.1 and its equivalent 
forms have numerous applications; see [P6] and references therein. 



S. Park and B. Sims 

We close this paper by noting that Theorem 6.1 is applicable to hyperconvex 
spaces since they are complete metric spaces, and hence we can obtain results 
for such spaces. 
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