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REMARKS ON ORTHOGONAL
CONVEXITY OF BANACH SPACES

D. KuTzZAROVA, S. PRUS AND B. SiMs

ABSTRACT. It is proved that orthogonal convexity defined by A. Jimenez-
Melado and E. Llorens-Fuster implies the weak Banach-Saks property. Rela-
tions between orthogonal convexity and another geometric properties, such
as nearly uniform smoothness and property {3), are studied.

Introduction.

Orthogonal convexity has been introduced by A. Jimenez-Melado and
E. Llorens-Fuster (see [3] and [4]) as a geometric property of Banach spaces
which implies the fixed point property for nonexpansive mappings. They
have shown that various kinds of Banach spaces, such as ¢y, uniformly
convex spaces, spaces with the Schur property, the James space, among
others have this property.

Let F be a Banach space. If A is a nonempty bounded subset of E,
we put |A] = sup{||z|| : z € A}. Moreover for A > 0 and z,y € E let

Mx(z,y) = {z € E: max{||z - z||, |} = yll} < 31+ X)ll= — g} -

Having a bounded sequence (z,,) in E, we use the following notation:

D|(z,)] = limsup (lim sup ||zn — :cm||>

Ax[(zn)] = limsup (lim sup |MA(¢n,xm)|> .

n—o0 m—00
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The Banach space F is called orthogonally convex if for each sequence
(zn) in E weakly convergent to zero, with D[(z,)] > 0, there exists A > 0
such that

Ax[(zn)] < Dl(2n)] -

In this paper we prove that orthogonal convexity implies the weak
Banach-Saks property. Our second result concerns orthogonal convexity of
some direct sums. The remaining part of the paper is devoted to the study
of relations between orthogonal convexity and some infinite dimensional
geometric properties.

Results. Let us recall that a Banach space E has the weak Banach-Saks
property (also called the Banach-Saks-Rosenthal property) if every weakly
null sequence (z,) in E contains a subsequence (z,) such that the Cesaro
means n~!' Y ?_, z} form a norm-convergent sequence.

Theorem 1. Let FE be an orthogonally convex Banach space. Then E has
the weak Banach-Saks property.

Proof. Assume the contrary, that is, there is a weakly null sequence (z,,)
in E such that no subsequence has norm-converging Cesaro means. Using
a method described in [1] one can find a constant ¢ such that for a fixed
integer m there exists a sequence (y;'), >, with the following properties.

1. There is a sequence of scalars (@;) and an increasing sequence of
integers (k,) such that m < ki,

kn ko,
Yn = Zi=2,1.+1 a;r; and E;:Ziﬂ loi| < ¢
for all n.

2. If n > 1, then
(el +18D) < lley™ + Byl < laf + 18]

for any scalars a, 3.

Consider now a sequence (z,) obtained by a rearrangement of the set
{y,’{‘}m,nx. Since the sequence (z,) is weakly null, from 1 it follows that
also (z,) converges weakly to zero.

By 2 we have ||z,|| < 1 for all n. Conseqently D[(z,)] < 2. On the
other hand ’

D[(z«)] 2 limsup,, .o, (limsup, _, [[97" — y7'l}) > 2.
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Hence D[(zx)] = 2 and from orthogonal convexity it follows that

(1) Ax[(zn)] < 2

for some A > 0.
We take mg so that —- =< A. Condition 2 shows that for every k

lygll <1< m+1(1+/\)_§(1+A My — vl

whenever m > mg and n > 1. In particular this means that y* + y' €
M (y*,ym). Therefore applying 2 again, we obtain

A,\[(Zn ] > hrnsup (hm SuleA( mo+k7yglo+k)|)
k—

n—oo

k- 00

> limsup (hmsup“y"“"""c + y;"°+k||> >2.

This contradicts (1).

In [3] some statements on direct sums are given. Here we present
another one. Let (X;) be a sequence of spaces and Y be a space with a
1-unconditional basis (e,) (i.e. (e,) is an unconditionally monotone basis
in the terminology of [2]).

Y{(X:)} denotes the space of all sequences (z(7)), where z(z) € X;
for each i, such that the series ) ||z(¢)|le; converges in Y. The norm in
Y{(X:)} is given by the formula

Y llz(@lles
=1 Y

Let us also recall that the basis (e,) is shrinking if the coefficient
functionals e}, form a basis of the dual space Y* (see [2] p. 64).

Theorem 2. Let (X;) be a sequence of Banach spaces with the Schur
property and Y be an orthogonally convex space with a I-unconditional
shrinking basis (e;). Then the space X =Y {(X;)} is orthogonally convex.

Proof. For any = = (z(i)) € X put T = ) ;o; ||z(d)|le; € Y. By the
definition ||z||x = ||Z||y. Let (z,) be an arbitrary weakly null sequence in
X with D[(z,)] > 0. Since all X; have the Schur property, one can see that

® Jim_ o)) =0
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for each 1.

But the basis of Y is shrinking. Therefore (2) implies that (Z,) con-
verges weakly to zero in Y.

Fix an integer n. From (2) it is easy to see that

3) Jim Hign = mllx = 120 = Zally| = 0.

Consequently D[(Z.)] = D[(z»)] > 0. Since Y is orthogonally convex, there
exists A > 0 such that A,[(Z,)] < D[(Zx)] -

For a fixed n consider an arbitrary z € M 2 (zn,Zm). Clearly

max{||Z — Znl|, 12 = Zall} < 3 (1 + 3) lzm — 2.
If £, # 0, then it follows from (2) and (3) that
(14 ) lzm — 2all < 1+ X)|Zm — Za

for m large enough. Obviously this inequality holds also in case z, = 0.
Therefore for large m we have z € M)(Z,,%,). Hence

Ax[(20)] £ Ax[(Zn)] < D[(Z2)] = D(2x)]

which means that X is orthogonally convex.

Now we turn to the study of relations between orthogonal convexity
and another geometric properties. Let us recall a definition introduced in
[7].

A Banach space X is nearly uniformly smooth (NUS in short) provided
for every € > 0 there exists > 0 such that if 0 < t < 5 and (z,) is a basic
sequence in the unit ball By of X, then there is £ > 1 for which

|21 + tze]l < 1+ et .

We shall say that X is weakly NUS (WNUS in short) if it satisfies the
condition obtained from the above definition by replacing “for every € > 0”
by “for some € in (0,1)”.

In [7] it was proved that uniform smoothness implies NUS which in
turn implies reflexivity. A slight modification of the proof of Proposition
2.3 [7] shows that WNUS spaces are reflexive.
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Proposition 3. A Banach space X is WNUS if and only if there exists a

constant ¢ € (0,1) such that for every basic sequence (z,) in Bx there is
k > 1 for which

||Z1+.’13k” SQ—C.

Proof. Assume that X is a WNUS space. From the definition we obtain
some € > 0 and n > 0. Now if t = 2 min{n, 1} and (z,) is a basic sequence
in Bx, then there exists k > 1 such that

liz1r + k|l < [ler + toel| + (1 - )|zl
<ltet+l1—-t=2-t(l—¢€).

Assume in turn that there exists ¢ € (0,1) such that if (z,) is a basic

sequence in By, then ||z; + zk|| < 2 — ¢ for some k > 1. For t € (0,1) we
have

21 + tzi|| < tzy + el + (1 = )] ]
<t2-¢)+1-t=1+t(l-c),

which shows that X is WNUS.

We also need the next definition.

A Banach space X has the weak Opial property provided for every
weakly null sequence (z,) in X and every z € X

liminf ||z,| < liminf ||z + z,] .
n—oo n—oo

Theorem 4. If X isa WNUS Banach space with the weak Opial property,
then X is orthogonally convex.

Proof. Let X bea WNUS space with the weak Opial property. From Propo-
sition 3 we obtain a constant ¢ € (0,1). Take a positive A < 3%-. Let now

(z5) be a weakly null sequence in X with D[(z,)] > 0. For a fixed n there
exists a sequence of integers (my) such that

limg_ o0 |[Mr(2n, Tm, )| = limsup,, . |[Ma(zn,2m)| .

Denote this limit by a,. There is a sequence (z) with zx € Mx(zn, ZTm,),
for all k, and limj_. o ||2k|| = an- Since X is reflexive, we can assume that
(zx) converges weakly to some z.



608 D. KUTZAROVA, S. PRUS AND B. SIMS

Let d, = limsupy_, o, ||Zn — Zm,|- We shall show that
(4) a, < Bd, ,

where B = (1 — §£)(1 + A) < 1. If (2x) converges to z in norm, then
an = ||z|| < liminfxoo |2k — Tm, || € 3(1 4+ A)dn < Bd, .

Let us now consider the case when (z,) does not converge in norm.
Passing to a subsequence, we can assume that the elements z, 2, ~z, z22—2, ...
form a basic sequence (see [2] p. 107). Proposition 3 gives us a further
subsequence, which we still denote by (zx), such that

(5) ap= klim lz+ (2 = 2)| < (2 =¢) max{”z]],likminf]]zk - z||} .

But
Ilz|| < liminfe—co ||z — Zm, || < (1 + A)dn -
Moreover by the weak Opial property
liminfg_ o || 2k — 2|| < liminfe_ o |25 — Za|| £ %(1 + AN)d, .

Therefore (5) shows that a, < 3(2 —¢)(1+ A)d, = Bd,,.

Having established (4), we conclude that
Ax[(zk)] = limsup,_, an < Blimsup,_, . d, < BD[(zk)] .

Let us now mention another geometric properties. In [8] the notion of
the uniform Opial property was introduced.

A Banach space X has the uniform Opial property provided for every
¢ > 0 there exists 7 > 0 such that if ||z|| > ¢ and (z,) is a weakly null
sequence in X with ||z, || > 1 for all n, then

1+ r <liminfl|jz + z,|| .
n—oo

It was proved that if X is a reflexive space with the uniform Opial
property, then X* has the fixed point property for nonexpansive mappings.
But Lemma 2.2 [8] actually shows that the space X* is WNUS and has

the weak Opial property. Therefore we obtain the following corollary of
Theorem 4.
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Corollary 5. If X is a reflexive space with the uniform Opial property,
then X* is orthogonally convex.

The next property related to WNUS was defined in [9] as a gener-
alization of uniform convexity. It was called property (8), but instead of
quoting its definition we prefer to recall the following result (see [5]).

A Banach space X has property (() if and only if for every € > 0 there
exists 6§ > 0 such that for each element z € Bx and each sequence (z,) in
Bx with inf{||zm — z.|| : m # n} > € there is an index k for which

slle+ze]| <1-6.

We shall say that X has property w(f) provided it satisfies the con-
dition obtained from the above one by replacing “for every € > 0” by “for
some € € (0,1)”. In [6] it was observed that spaces with property w(3) are
reflexive.

Spaces dual to those with property (3) satisfy so called property (8*),
which is known to imply NUS (see [6]). The same argument shows in fact
that if a space X has property w((3), then X* is WNUS. We shall prove
that the space X is WNUS too.

Let (z,) be a basic sequence in the unit ball Bx of a space X with
property w(/3). Since X is reflexive, the sequence (z,) converges weakly to
zero (see [2] p. 67).

From the definition of property w(3) we obtain some constants € €
(0,1) and 6 > 0.

If ||z,|| > € for all n > 1, then passing to a subsequence, we can

assume that inf{||zn,, — 2| : m # n} > €. Therefore there is an index k > 1
such that

oy + el < 21— ).
If ||zk|| < € for some k > 1, then
|z + x| <1+€.
In light of Proposition 3 this shows that the space X is WNUS.

Since for reflexive spaces the weak Opial property is self- dual, we thus
obtain the next corollary of Theorem 4.
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Corollary 6. If a Banach space X has property w((3) and the weak Opial
property, then X and X* are orthogonally convex.

Let us point out that the assumption of having the weak Opial prop-
erty is essential in the above results.

Example. There exists a NUS Banach space X which is not orthogonally
convex.

Let us consider the following norm in a two-dimensional space.

(2 By = max {090+ 1t — 0161, (a2 + (016)%)* |

where ¢t = g% and «, § are real numbers.

For an element z = (o;) € Iz we write Spx = (On41,An42,-.-)-
Let now E denote the space lo with the equivalent norm given by the
formula

el = sup{ [lI€as, a3 + @1[Sal 7] i n > 1}

where z = (o;) € I and || - ||, is the initial norm of 5.
It is easy to see that

(6) 0.1)lzl, < ll=ll < 1.4=(l,

for every z € E.

Our space X is the Ilg-sum of countably many copies of E, so that
X = Ig{(F;)}, where E; = FE for all ¢. Therefore each element z € X is of
the form = = (z(7)) with z(z) € E for all <.

Let (en) be the natural basis of E. We consider elements el* € X
such that e;*(i) = 0 if ¢ # m and €}’(:) = e, if ¢ = m. The set {ef'}, >,
rearranged into a sequence (z,) by the formula z, = el if m+k =n+1
gives us a basis of the space X.

Let (P,) be the sequence of the natural projections associated to this
basis, so that

Pn.’lt = 2;-;1 Q;T5
for any =z = E;’il ajz; € X.

It is easy to see that the sequence (z,) converges weakly to zero in X.
Moreover D[(z,)] = ||(1,-1)||, = 1.1t
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We take scalars «, 3 such that
09a+8=1, t(a-015)=-1

and put a = ;—éta+ 1,b= %tﬁ.
Let us now fix an arbitrary A > 0. For any m, k with k > 1, straight-
forward computations show that

z = ael" +bel’ € My(e",ef') .

Therefore | My (e}, ef")] 2 |zI| = lI(@,5)llp > Dl(za)}. Consequently

Ax(@)] 2 limsup (1imSUP|MA(€i",ekm)|) > D(z)] ,
m— o0 k— oo

which proves that X is not orthogonally convex.
In order to show that X is NUS let us consider elements z,y € X such
that there exists n for which P,z = z and P,y = 0. We shall check that

2
(7) =+ y1* < llz]* + 625 y)*.

Let us fix 4. If 2(4) # 0, then there are sequences of scalars (a;), (8;)
and an integer n > 1 such that

(i) = Yjo e, Y(i) = L2 04 Biese
To estimate ||z(s) + y(i)||* it suffices to consider an expression

2 oo
s = [|(7, vm)llg +0.01 3232 41 75,

where v; = 0; if 1< j <nandvy; =g;if j > n.
In the case when n > m, by (6) we have

s < l=@)]* +0.01]ly(®)(3 < ll=@I” + @I -
If n < m, then

s <o} +6256%+001 > 7

j=m+1

< Nlz(@)I1* +6.25y(3)|>.
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Therefore

Iz +y|* = <Z llz() + (@)1
< <Z 2|2 + (6.25]|y(3)[1)%)*) *

an O|%)* Z<625ny Nk

= ||96|I2 +6.251y[|”.

Let now (z,) be a weakly null sequence in the unit ball Bx and ¢ be
a positive number. Using (7) it is easy to see that there exists £ > 1 such
that

|1 + tzg|| < [1 4+ 6.25¢2]3
(compare to [7]). This implies that X is NUS.
Remark 7. The spaces X and X* have property ({3).

Proof. By Theorem 4 [4] it suffices to show that X satisfies the following
uniform Kadec-Klee property.

For every € > 0 there exists 6 > 0 such that if (2,) is a sequence in Bx
converging weakly to z, with inf{||2,, — 2.|| : m # n} > ¢, then ||z|| < 1-6.
This will be proved once we show that

l[1® + [0-1lll)* < ll= + »||®

whenever z,y € X are such that P,z = z and P,y = 0 for some n > 1 (see
[7]). But if z,y satisfy the above condition, then

lz(@)II* + [0y < fl(2) + y(0)]*
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for every i. Hence

[ER lew @I°

Hlx( DI° + 1y

Ms H'Mss:

v

RO

®+ 1078y

-.

B 0

We have proved that some direct sums are orthogonally convex. Our
next remark shows that in general even [,-sums of orthogonally convex
spaces need not be orthogonally convex.

Remark 8. The space E is orthogonally convex.

Proof. Let (Qr) be the sequence of the natural projections associated to
the basis (e,) of E. We put R, = Q1+ I — Qn.

It is easy to see that ||Q,|| = ||Rn|| = 1 for all n. Moreover if ||Qnz|| <
1 and ||[Rnz| < 1, then ||z|| < 23. It follows that the assumptions of
Theorem 2 [3] are satisfied. By this theorem E is orthogonally convex.
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