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ABSTRACT 

T h e  homotopic invariance of fixed points of set-valued contractions and nonexpansive 
mappings is studied. As application, nonlinear alternative principles are given. A Leray- 
Schauder alternative and an antipodal theorem for set-valued nonexpansive mappings are 
also included. 

1. Introduction 

Let U be a nonempty bounded open subset of a Banach space X containing the 
origin and f : + X a contraction. It  is known that either f has a fixed point 
in U or there exists X E (0 , l )  such that Xf has a fixed point on the boundary aU 
of U .  This kind of property is known as an alternative principle. To the best of 
our knowledge, Leray and Schauder [16] in 1934 were the first to establish such 
an alternative principle for nonlinear operators in Banach spaces. Since then, the 
Leray-Schauder type of alternative principle, its various extensions and variants 
have played a basic role in numerous applications of nonlinear analysis. In this 
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direction, Granas and his school have made extensive studies, see Granas [ll-141, 
Frigon [6], Frigon and Granas [7], Frigon et al. [a] and references therein; see also 
T.C. Lim [17] for a stability result. 

It  is the objective of the present paper to study the homotopic invariance of the 
fixed point theory of set-valued mappings. This will be done first for contractions 
and then for nonexpansive mappings in Banach spaces having Opial's property. 
Alternative principles for multivalued nonexpansive mappings are established and a 
Leray-Schauder alternative and an antipodal theorem for set-valued nonexpansive 
mappings are given. We would like to point out here that there is a gap in the 
proof of Theorem 4.6 [6] (That y E U must be verified to assert that y belongs to 
the asymptotic center A(U, {x,}).) It  therefore remains an open question whether 
the conclusion of Theorem 4.6 [6] is true. 

2. Preliminaries 
Let (X,  d) be a metric space with distance d. Let U be a subset of X .  We shall 

denote by dU the boundary of U in X and by B ( x , r )  (B(x , r ) )  the open (closed) 
ball in X with center x and radius r .  The symbol C ( X )  will stand for the collection 
of nonempty closed subsets of X and K ( X )  for the collection of nonempty compact 
subsets of X .  Let D be the (generalized) Hausdorff metric on C ( X )  induced by d; 
namely, for A, B E C ( X ) ,  we have 

D(A, B)  := max sup d(x, A), sup d(x, B)  
{ r  EB zEA 

where d(x, C) = infCEc d(x, c) is the distance from a point x to a subset C of X .  
Given a number X E ..[O, 1). Recall that a set-valued mapping T : U -+ C ( X )  is 

called a A-contraction if 

D(Tx,  Ty) I Xd(x, y) Vx, Y E U. 

If (2.1) holds with X = 1, then T is said to be nonexpansive. 
Recall that a Banach space X is said to satisfy Opial's property [21] if given any 

sequence {x,} in X with x, - xo, it follows that 

limsup 112, - xoll < limsup 112, - xll Vx E X \ {xo}. 
n+w n+w 

Here we use - to denote weak convergence and will use + to denote strong con- 
vergence. 

We recall the demiclosedness principle for single-valued nonexpansive mappings. 
Assume C is a closed convex subset of a Banach space X .  A mapping f : C + X 
is said to be demiclosed (at y) if for any sequence {x,} in C ,  we have 

x n 2 x  and f(x,) + y + f (x )  = y. 

It  is known that for every (single-valued) nonexpansive mapping T : C + X ,  I - T 
is demiclosed if the underlying Banach space X is either uniformly convex [I] or 



has Opial's property [3]. Demiclosedness plays an important role in the fixed point 
theory of (single-valued) nonexpansive mappings. The counterpart for set-valued 
mappings is defined as follows. 

Definition 2.1. Let C be a nonempty closed convex subset of a Banach space 
X and f : C + C ( X )  a set-valued mapping. Then f is said to satisfy the d e m i -  
c losedness  pr inciple  on C (or f is said to be demic losed  on C) if the graph of f ,  

G( f )  := {(x, y) E X x X : x E C, y E f (x)) 

is closed in the product topology of u ( X , X * )  x (X,  1 1  . (I), where u (X ,  X') and 1 1  . 1 1  
denote the weak and strong topology, respectively. 

An equivalent description is that a set-valued mapping T : C + C ( X )  is demi- 
closed if and only if for any sequence {x,) in C weakly convergent to xo and {y,) 
strongly convergent to yo with y, E f (x,) for each n E N, it follows that yo E f (so). 

The demiclosedness principle for multivalued mappings is more delicate than that 
for single-valued mappings. In fact, the only known class of Banach spaces in which 
the demiclosedness principle holds for multivalued nonexpansive mappings is the 
class of Banach spaces which satisfy Opial's property. This is a result of Lami-Dozo 
[15]. Here we include it as a lemma and its proof for completeness. However, in 
contrast to the single-valued case, it is still unknown whether the demiclosedness 
principle is valid for multivalued nonexpansive mappings in another important class 
of uniformly convex Banach spaces. 

Lemma 2.1. Assume that C is a closed convex subset of a Banach space X 
having Opial's property and T : C -+ K ( X )  is nonexpansive. Then I - T is 
demiclosed. 

Proof. Assume that {x,) c C converges weakly to x E C and that {y,) 
strongly converges to y, with y, E (I - T)x, for all n. Let z, E Tx, be such that 
yn = xn - z,. Take v, E T x  for which llz, - v, 1 1  = d(zn, Tx).  Since T x  is compact, 
we may assume that v, + v E Tx.  I t  follows that 

limsup Ilx, - (y + v)( (  = limsup 112, - v,ll 
n-tm n-im 

= lim sup d(z, , Tx) 
n-iw 

5 lim sup D(Tx,, Tx) 
n-im 

5 limsup Ilx, - XI[. 
n-iw 

Opial's property then implies that y + v = x and hence y = x - v E ( I  - T)x.  

Asymptotic centers play an important role in studies of the fixed point theory for 
both single-valued and multivalued nonexpansive mappings. Let C be a nonempty 
subset of a Banach space X and let {x,) be a bounded sequence in X. The number 

r(C,{x,)) := inf limsupllx, -xi1 : x E C} { n-iw 



and the set (possibly empty) 

are called the asymptotic radius and asymptotic center of {x,) in C ,  respectively. 
A sequence {x,) is said to be regular in C if r (C,  {x,)) = r(C, {x,,)) for all 
subsequences {x,,) of {x,). The following lemma was proved independently by K. 
Goebel [9] and T.C. Lim [18]. 

Lemma 2.2. Let C be a subset of a Banach space X .  Then every bounded 
sequence admits a subsequence which is regular in C .  

We shall need the following localization of the multivalued contraction principle 
[19] which may be found in quite many textbooks on nonlinear functional analysis; 
see, for example, Deimling [2, p. 3171. 

Lemma 2.3. Let (X,  d) be a complete metric space, x E X and r a given positive - 
number. Suppose T : B(x, r )  -+ C ( X )  is a A-contraction satisfying d(x,T(x)) < 
(1 - A)r. Then T has fixed point i in the ball B(x , r ) ,  i.e., i E T ( i )  and d(x, 2 )  5 r. 

3. Homotopic Invariance for Multivalued Contractions 
In this section, we shall establish the homotopic invariance for fixed points of 

set-valued contractions. We begin with the definition below. 

Definition 3.1. Let (X,  d) be a complete metric space and U a nonempty open 
subset of X .  Let T , G  : -+ C ( X )  be two multivalued contractions. Then T , G  
are said to be homotopic if there exists a function (which is called a homotopy) 
H : [O, 11 x -+ C(X)  such that 

(1) H(O,.) = T(-)  and H ( l , . )  = G(.); 
(2) x $! H ( t ,  x) for all x E dU and t E [0, :I], where dU is the boundary of U; 
(3) there exists a A E [O,1) such that H( t ,  .) is a A-contraction for all t E [0, 11; 

1.e.) 
D(H(t ,  2)) H( t ,  Y) l Ad(x, Y) vx, Y E U, 

(4) H ( t , x )  is equi-continuous in t E [O,1] over x E u. This means that for any 
E > 0 there is a 6 = 6 ( ~ )  > 0 such that whenever t , s  E [O, I.] with It - sl < 6, 
we have D(H( t ,  x), H(s ,  x)) < E for a1l.x E U. 

Remark 3.1. F'rigon [6, Definition 3.21 uses a stronger condition than (4) above. 
She requires that there is a continuous increasing function cp : [O, 11 -+ W such that 
D(H( t ,  x ) ,  H(s ,  x)) 5 Icp(t) - cp(s)l for all t ,  s E [0, 11 and x E U .  Indeed, our 
condition (4) above is equivalent to the condition that 

is a continuous function in t ,  s E [ O , l ] ;  while F'rigon's condition is equivalent to the 
requirement that cp(t, s )  5 Icp(t) - cp(s)l, t ,  s E [O,1] for some increasing continuous 
function cp : [O, 11 -+ R. 



Lemma 3.1. Let U be a nonempty open subset of a complete metric space ( X ,  d ) .  
Let { T t } ~ < t < ~  be a family of A-contractions from U -+ C ( X ) ,  where A E [0, 1) .  
Suppose thG Tt is equi-continuous in t  E [O,1] over x  E U and for some t E [O, l] ,  
Tt has a fixed point. Assume 

inf d ( x ,  T t x )  > 0. 
~ E a u  
t E [ O , l I  

Then for each t E [0, 11, Tt has a fixed point and 

lim D(F(Ts ) ,  F ( T t ) )  = 0 ,  
s+t 

where F ( T t )  := { x  E : x  E T t x }  is the fixed point set of Tt .  

Proof. Let 
V = { t  E [O,1] : Tt has a fixed point in U } .  

Then V is nonempty by assumption. We shall show that V is actually the entire 
interval [ O , l ]  by verifying that V is both open and closed in [ O , l ] .  To see that V 
is open in [ O , l ] ,  we take any to  E V and xo E F(Tt,) .  As Tt, is fixed point free on 
aU,  we have xo E U and hence B ( z o ,  r )  C U for some r  > 0. Select q > 0 small 
enough so that D(Ttoxo,Ttxo)  < (1  - A)r for all t  E [O,1] such that It - to \  < q. I t  
then follows that for such t ,  

Therefore, Lemma 2.3 yields a fixed point for Tt in the ball B ( x o ,  r ) ,  which verifies 
that V is open. 

To prove that V is closed, we assume {t,} c V such that t ,  -+ t .  We are going to 
prove that F ( T t )  # 8.  Take any x, E F(Tt,)  and let qn = cp(tn,t) -+ 0 as n -+ cm, 
where cp(t, s) = s u p Z E ~  D(Ttx ,Ts ,  x ) .  We claim that 

inf d(x,, a U )  > 0.  
n> 1 

For otherwise we have a subsequence {x,,} of {x,} and a sequence { z i }  in aU such 
that 

1 
d ( x , , , ~ , ) < ~  \ b i > l .  

2 

We then arrive at the following contradiction: 

0 < inf d(x ,T tx )  5 liminf d(z i ,  T t ,  zi) 
Z E ~ U  t+M 

t E [ O , l I  

5 lim inf [d(zi ,  x,;) + d(xn, ,  Tt,, z i)]  
t+m 

5 lim inf D(Ttni x,,, Tt,, zi) 
i+m 

5 lim inf d(xn i ,  zi) = 0.  
t+M 



Therefore, {x,) is bounded away from a U  and hence we have some 6 > 0 for 
hich - 

B(x,, 6) C U Vn 2 1. 

ow for any fixed 0 < 6' < 6, we have an integer N big enough so that 

d(xn,Ttxn) 5 qn < (1 - X)bl Vn 2 N. 

Lemma 2.3 again ensures that Tt has a fixed point xt,, E B(x,, 6') for all n 2 N. 
Thus t belongs to V and V is closed. 

Finally to prove (3.2), we observe that the above argument gives us that  

I Since N  is independent of the choice x, E F(Ttn) ,  it follows that 

sup d(xn, F(Tt))  < (1 - X)6/ Vn 2 N. 
rnEF(Ttn ) 

Interchange t, and t to get 

sup d ( x , F ( T t n ) ) I ( l - X ) h l  V n 2 N .  
rEF(Tt) 

We therefore obtain that limtn_,t D(F(Ttn) ,  F(Tt ) )  = 0. 0 

Remark 3.2. I t  is not clear whether in Lemma 3.1 it is possible to weaken the 
assumption (3.1) to the assumption that every Tt (t E [O,l]) is fixed point free on 
aU.  A partial answer is given below in a Banach space with Opial's property. 

Theorem 3.1. Let U be a nonempty convex open subset of a Banach space X 
having Opial's property. Assume U is bounded weakly relatively compact (i.e., each 
bounded sequence in U admits a weakly convergent subsequence). Let {Tt)05t<l 
be a family of A-contractions from to K ( X )  which is equi-continuous in t E [ O , l ]  
over x E g. Assume that some Tt has a fixed point in U and every Tt is fixed point 
free on aU.  Then every Tt has a fixed point in U. 

Proof. Define the same set V as above. The openness of V is proved by exactly 
the same argument as above. To show the closedness of V, we assume {t,),"'=, c V 
and t, -+ to as n  -i m. Take any x, E F(Ttn) .  (Note that {x,) c U as every Ttn 
is fixed point free on aU.) For any x E U, by compactness, we have some y, E Ttox 
satisfying l\xn - y,lJ = d(xn, Tt,x). Let b = sup{))y)) : y E Ttox). It then follows 
that 

IIxnII 5 IIxn - Y ~ I I  + I I Y ~ I I  
I d(xn,Tt,x) + b 

- < D(Tt ,~nr  Ttox) + b 

I D(Tt,xn,Tt0xn) + D(Tt,xn,Ttox) + b 

I cp(tn, t o )  + Xllxn - xll + b. 



Hence llxn 1 1  5 (cp(t,, to) + A11x11 + b) and {x,) is bounded. Since U is bounded 
weakly relatively compact, we may assume that x, - t E ?7. Take t, E Ttoxn such 
that llx, - t,ll = d(xn,Ttoxn). Noting x, - x, E (I - Tto)xn and J(x, - x,ll 5 
~ ( t , ,  to) + 0, we get by the demiclosedness principle (Lemma 2.1) that x is a fixed 
point of Tto. 

4. Homotopic Invariance for Set-valued Nonexpansive Mappings 
F'rigon [6] was the first to investigate the homotopic invariance for set-valued non- 

expansive mappings. However, the proof of the main result of Section 4, Theorem 
4.6, of [6] contains a gap (on page 29, to ensure that the y belongs to the asymp- 
totic center A(D, {x,)), one must show that y lies in u ) .  Thus nothing has been 
established so far regarding the homotopic invariance of fixed points for set-valued 
nonexpansive mappings. As a matter of fact, even for single-valued nonexpansive 
mappings, fixed points are not homotopically invariant if we only require that the 
homotopy H be nonexpansive, as the following simple example shows. 

Example [6]. Let X = 1' and U = B(0, l ) .  Define a homotopy H : [O, 11 x + 
X by 

H(t ,x)  = (ta1x1,x2, ...), 
where a E R \ (0) is a fixed constant. It is easily seen that for each t E [ O , l ] ,  
H(t ,  .) is nonexpansive (actually, isometric) and IIH(t, x) - H(s, X) 1 1  5 la1 It - S I  for 
all x E and t,  s E [0, 11. It is also easily seen that H(t ,  .) has a fixed point if and 
only if t = 0 with x = 0 the only fixed point. 

Our results below show that we can obtain homotopic invariance by putting some 
additional conditions on the homotopy H .  

Theorem 4.1. Let C be a nonempty weakly compact convex subset of a Banach 
space X which has Opial's property. Suppose T, G : C + K(X)  are two set-valued 
nonexpansive mappings and there exists a set-valued homotopy H : [O, I.] x C + 
K(E)  such that 

(1) H(0, .) = T(.) and H(1,  .) = G(.); 
(2) for each t E [ O , l ] ,  H( t ,  .) is a set-valued nonexpansive mapping; 
(3) H(t,  x) is equi-continuous in t E [0, 11 over x E v; and 
(4) for each sequence {t,) in [0, 11 with infzEc d(x, H(x,  t,)) > 0 and limn,, t, = 

to, it follows that infzEc d(x, H(x, to)) .> 0. 
Then T has a fixed point in C if and only if G has a fixed point in C. 

Proof. Without loss of generality, we may assume that T has a fixed point in 
C. We denote by V the set {t E [0, 11 : there exists x E C such that x E H(t ,x)) .  
In order to prove G has a fixed point, it suffices to show that V = [O, 11. First as 
T has a fixed point, V is nonempty. Also, it is not hard to see that V is closed. 
Indeed, assume that {t ,)~!,  c V converges to to. For each n E N, we can find 
some x, E C such that x, E H(t,,x,). As {x,)T=, is bounded, we may assume 
x, - xo E C. With cp defined as before, we see that 

d(xnl H(tol xn)) 5 D(H(tnl  xn), H(to1xn)) < ~ ( t n l t o ) .  



then follows that lim,,, d(x,, H(to,x,)) = 0. As X satisfies Opial's property, 
- H(to ,  -) satisfies the demiclosedness principle. We thus conclude by Lemma 2.1 
at xo E H( to ,  xo) which means to E V. Therefore V is closed. 
Next, we shall prove that V is open. Suppose not; then there exist to E V and a 
luence {t,) in [ O , l ]  \ V such that lim,,, t, = to. Since for each n ,  t, 4 V, we 

that d(x, H(t,, x))  > 0 for all x E C .  Now we claim that 

inf d(a, H(t,, a))  > 0. 
2 E C  

there exists a sequence {x,) c C such that lirn,,, d(x,, H(t,, x,)) = 
As { x , ) ~ = ~  is bounded, we may assume that x, xo E C. From the demi- 

of I - H(t,, .), it follows that xo E H( tn ,xo) .  This is a contradiction to  
e assumption that t, $ V. Therefore for each n, we have 

inf d(x, H(t,, x) )  =: 6, > 0. 
x E C  

ondition (4) then implies infZEc d(z, H( to ,  a ) )  > 0, which in turn implies to f V, 
ntradicting the fact that to E V. Therefore, V must be open and hence V = 
7 1 1 .  F 
Remark 4.1. In the above proof we see that the only reason for requiring 
to have the Opial property is to ensure that for each t E [O, I.], the mapping 

-+ K ( X )  is derniclosed. As the demiclosedness principle is valid for 
nonexpansive mappings in uniformly convex Banach spaces, the result 

Theorem 4.2. Let C be a nonempty bounded closed and convex subset of 
i uniformly convex Banach space X and let T , G  : C -+ X be two single-valued 
~onex~ans ive  mappings. Assume there exists a single-valued mapping H : [0, I] x 
7 -+ X with 

(1) H(O,.) = T(.) and H(1;) = G(.); 
(2) for each t E [0, 11, H( t ,  .) is a single-valued nonexpansive mapping; 
(3) H ( t ,  x) is equi-continuous in t E [O,1] over x E g; and 
(4) for each sequence {t,) in [0, 11 with infzEc d(x, H ( x , t n ) )  > 0 and limn,, t, = 

to, it follows that infzEc d(x, H(x , to) )  > 0. 

Then T has a fixed point in C if and only if G has a fixed point in C .  

If we further strengthen the homotopy H, we can drop the assumption (4) in 
Theorem 4.1. 

Theorem 4.3. Let X be a Banach space satisfying Opial's property and U a 
nonempty convex open subset of X containing the origin. Let F : g -+ K ( X )  be a 
nonexpansive mapping. Assume U is relatively weakly compact and assume there 
exists a homotopy H : [ O , l ]  x g -+ C ( X )  satisfying the conditions: 

(a) H(l,  .) = F; 
(b) H(0 ,  .) has a fixed point in U ;  



(c) for each t E [0, l ) ,  we have a At  E [O,1) such that H(s ,  .) is a &-contraction 
for all s E [0, t] ; 

(d) H( t ,  .) is equi-continuous in t E [O,1] over x E 0; 
(e) for each t E [O, I ) ,  H (t,  .) is fixed point free on aU.  

Then F has a fixed point. 

Proof.  Apply Theorem 3.1 to the homotopy H restricted to [0, t] x u to get a 
fixed point of H(s;) for each s E [0, t]. Taking t, t 1 yields a sequence {x,) in 
such that x, E H(t,,x,) for all n .  It  follows that 

Since {x,) is bounded and U is weakly compact, the demiclosedness of I- F implies 
that each weak cluster point of {x,) is a fixed point of F. 

Corollary 4.1 (Nonlinear  Alternat ive) .  Let X ,  U and F be as in Theorem 
4.3. Then either F has a fixed point, or there are some x E aU and some t E (0 , l )  
such that x E tFx .  

Proof .  The homotopy H : [O, 11 x -+ K ( X )  given by H( t ,  x) = t F x  satisfies 
the conditions (a)-(d) above. Thus either F has a fixed point, or the condition (e) 
above is violated. 

R e m a r k  4.2. For other alternative principles, homotopic invariance of fixed 
points of set-valued contractions and single-valued nonexpansive mappings in metric 
and Banach spaces and their various applications, the interested readers are referred 
to Dugundji and Granas [3], Frigon [6], Frigon and Granas [7], F'rigon et al. [a], 
Granas 111-141, Nussbaum [20] and references therein. 

5. A Leray-Schauder Al terna t ive  a n d  a n  Ant ipodal  T h e o r e m  

In this section, as applications of our alternative principles we establish a Leray- 
Schauder alternative and an antipodal theorem for set-valued nonexpansive map- 
pings in Banach spaces. We first have the following result. 

T h e o r e m  5.1 (Leray-Schauder Alternat ive) .  Let X be a reflexive Banach 
space which satisfies Opial's property or is uniformly convex. Suppose T : X -+ 
K ( X )  is a set-valued nonexpansive mapping and let ET = {x E X : x E XT(x) for 
some X E (0 , l ) ) .  Then either ET is unbounded or T has a fixed point. 

Proof.  Assume ET is bounded. Let T > 0 be large enough so that the open ball 
B(0, T)  contains ET. Then x $ AT(x) for any x E aB(0 ,  T)  and X E (0 , l ) .  

If X satisfies Opial's property, then T has a fixed point by Corollary 4.1 and the 
proof is finished. So assume that X is uniformly convex. For each integer n 2 1, the 
contraction (1 - :)T(.) : X -+ K ( X )  has a fixed point x, E X; thus x, = (1 - :)yn 
for some y, E Tx,. Since x, E ET for all n ,  {x,) (and {y,) as well) is bounded. 
Hence Ilx, - y,(( = l l y , l l  -+ 0 as n -+ m. I t  follows from Lemma 2.2 that {x,) 



a regular subsequence which we still denote by {x,).  Let z be the unique 
oint in the asymptotic center of {x,) in X .  By compactness we have, for each n, 
z, E T z  for which Ilyn-znll = d ( ~ , , , T z )  < D ( T x n , T z )  < Ilxn-zll. SinceTzis  

we may assume that zn + v E T z .  It  then follows that 

The uniqueness of the asymptotic center of {x,) in X guarantees that v = z and 
hence z E T z .  

As an immediate consequence of Theorem 5.1, we have the following: 

Corollary 5.1. Let X be a reflexive Banach space which satisfies Opial's prop- 
erty or is uniformly convex. Suppose T : X + X is a single-valued nonexpansive 
mapping and let ET = { x  E X : x = XT(x)  for some X E ( 0 , l ) ) .  Then either ET is 
unbounded or T has a fixed point. 

Finally we have the following result. 

Corollary 5.2. Let B ( 0 ,  T )  be an open ball of a reflexive Banach space X which 
satisfies Opial's property. Suppose T : B(0, T )  + X is a single-valued mapping such 
that T ( x )  = -T ( - x )  for all x E a B ( 0 ,  T ) .  Then T has a fixed point in B ( 0 ,  T ) .  

Proof. Since D ( T ( x ) , T ( - x ) )  = IIT(x) - T(-x)l l  5 Ilx - (-x)ll for each x E 
a B ( 0 ,  T ) ,  it follows that D(0,  T ( x ) )  = 110 - T(x)II 5 llxll for each x E a B ( 0 ,  T ) .  This 
easily implies that there are no x E a B ( 0 , r )  and X E ( 0 , l )  satisfying x E XTx. 
Thus by Corollary 4.1, T has a fixed point. 

The following example given by Rouhani shows that the set-version version of 
Corollary 5.2, in general, is not true. 

Example 5.1. Let X = R and consider a set-valued mapping T : [- 1,1] + K(R) 
defined by T ( x )  := [x  - a,  x + a] for each x E X .  Then obviously T is an odd set- 
valued and nonexpansive mapping, which is fixed point free (indeed we also have 
that D ( O , T ( x ) )  > llxll for each x E X ) .  

Remark 5.1. We note that Theorems 4.1 and 4.3 extend the corresponding 
results given by Dugundji and Granas [3] and ,Granas [14]. 
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