
Nonlinear 
Analysis 

PERGAMON Nonlinear Analysis 39 (2000) 61 1-627 
www .elsevier.nl/locate/na 

The Knaster-Kuratowski and Mazurkiewicz theory 
in hyperconvex metric spaces and some of its 

applications1 

W.A. K i r k a . * ,  Brailey Sims b,  George Xian-Zhi Yuanc 
" Dc~~1(rrtn7c~r1t of :Mathc,ri7crtics, Tlic, Chi~.c,r.sitj. of Ioivcr, Io11.u City, IA, 52242-1419, USA 

Deyurtlilerit qf' Mcrtlrer?itrtics, Tlre Ciricersifl. u j  ~l'r.~vccr.r.tle, ,l;e~vcustle, 2308, Austr~uliu 
" Depurtr?zrrit o f  ~Mutlretriutic.i, Tlrr Urrirersify of Quem.slund, Biithtrrlr, 4072, Au.~troliu 

Receixled 22 December 1997: accepted 5 January 1998 

I(E?'ltord~: Hyperconvex space; Admissible set; Generalized metric KKM Mapping; Finite inter- 
section property; Minimax inequality: Best approximation; Nonexpansive mapping; Noncompact- 
ness measure; Fixed point; Saddle point and Nash equilibria 

1. Introduction 

Sine [30] and Soardi [33] proved independently that the fixed point property for 
nonexpansive mappings holds in bounded hyperconvex spaces. Since then hyperconvex 
inetric spaces have been widely studied and many interesting results for nonexpansive 
mappings have been established within this framework, e.g., see Baillon [2], Goebel 
and Kirk [13], Khamsi et al. [19,20], Kirk [22,23], Lin and Sine [27], Sine [3 1,321 and 
others. More recently, Khasmi [IS] established a hyperconvex version of the famous 
KKM-Fan principle due to Fan [S]. Kirk [22] has obtained a constructive fixed point 
theorein which arises from interval analysis in compact hyperconvex inetric spaces; 
and also Kirk and Shin [24] have established a number of fixed point theorems for 
both condensing and ilonexpansive mappings in hyperconvex spaces. In this paper, we 
first establish a characterization of the Knaster-Kuratowski and Mazurkiewicz principle 
in hyperconvex inetric spaces which in turn leads to a characterization theorem for a 
family of subsets with the finite intersection property in such a setting. As applications 
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we give hyperconvex versions of Fan's celebrated minimax principle and Fan's best 
approximation theorem for set-valued mappings. These in turn are applied to obtain 
fom~ulations of the Browder-Fan fixed point theorem and the Schauder-Tychonoff fixed 
point theorem in hypercoilvex metric spaces for set-valued mappings. Finally. existence 
theorems for saddle points, intersection theorems and Nash equilibria are also obtained. 
Our results unify and extend several of the results cited above. 

The basic definition is due to Aronszajn and Panitchpakdi [I]. (B(x, r )  denotes the 
closed ball centered at s E X  with radius r > 0.) 

Definition 1.1 .  A metric space (X.d) is said to be a I IJ -~cJ~-( 'o~~I~c.Y space if for any 
collection of points {I,) of X and any collection {I;) of nonnegative real numbers for 
which d (x , ,y )  5 5 + I);, it is the case that n, B(x,:t;) # O. 

This definitio~l can be seen as equivalently a binary intersection property plus metric 
convexity in the sense that for each given x, y E X  and r E [O. 11, there exists z E,Y such 
that d(x,z)  -- rd(x. 11) and d(!,.z) = ( I  -r)d(x, p). The corresponding linear theory for 
hyperconves spaces can be found ill Lacey [25]. As Sine [32] points out. the nonlinear 
theory is still developing. Hyperconvex spaces can have quite strange aspects. For 
example, a hyperconvex subset need not be convex in even R2 (with the I, norm). 
Also convex sets in linear spaces may fail to be hyperconvex (but for this one must 
go to at least R3, e.g.. see Sine [32]). Some nice spaces such as Hilbert space fail to 
be hyperconvex. Howe\:er hyperconvexity enjoys some properties similar to convexity 
arid others much like compactness. More convincing analogies hold for hyperconvex 
sets which are ball intersections. The Nachbi~i-Kelley-Goodiler and Hasu~ni Theorem 
in Lacey [25, p. 921 (see also Isbell [16]. Nachbin [28] or Kelley [17]) says that a 
Banach space is hyperconvex if and only if i t  is linearly isometric to C(K),  where C ( K )  
is the space of all continuous real functions defined on some stonian space K (i.e., K 
is Hausdorff. compact and extremally disconnected). Thus, the space 1,(1) for any set 
I and the space L,(p) for a finite measure p are examples of hypercoilvex spaces. 
Secondly, order intervals in L, are hyperconvex, but weak compact conves sets of 
L ,  need not be hyperconvex. Moreover, hyperconvex sets of L ,  may not be convex 
(e.g., see Lin and Sine [27, p. 9431). On the other hand any hyperconvex space (indeed 
any metric space) embeds isometrically in some l,(I), e.g., see Lacey (251 or Khamsi 
[18, pp. 300-3011. 

The relationship between hyperconvex metric spaces and nonexpansive mappiilgs is 
an important one as shown independently by the work of Sine [30] arid Soardi [33]. 
On the other hand, we also know how important the famous Fan-KKM principle is 
in the study of nonlinear analysis, in particular for the study of topological fixed 
point theoiy, e.g.. see [3,5-12,14,26.29,34-371 and references therein. 111 [18] Khamsi 
iiltroduced a version of the KKM principle in hyperconvex spaces and as an application, 
he gave hyperconvex versions of Fan's best approximation theorein for single-valued 
mappings and the Schauder-Tychonoff fixed point theorem. The main thrust of this 
paper is in the same direction, i.e., our aiin is to give a coinprehensive study of 
KKM theory in hyperconvex spaces and its related applications to fixed point theorems, 
to characterize the KKM principle in hyperconvex spaces, to obtain Fan's minimax 
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principle in hyperconvex spaces. the existence of saddle points, the intersection of sets 
and the existence of Nash equilibria in game theory. Tn order to study the KKM theory 
in hyperconvex spaces. we first recall some notation and basic facts about hyperconvex 
spaces which \vill be used later in the paper. 

Definition 1.2. Let A be a bounded subset of a metric space ( M . d ) .  Then: 
( 1  ) co(A)  = n { B  c M :  B is a closed ball in h.1 such that .-I c B); 
( 2  ) . d ( M )  = { A  c M : A  = co(A)} ,  i.e., A E . d ( M )  if and only if A is an intersection of 

closed balls. In this case, we shall say that A is an ad17zi.v.vihle subset of iM. We 
also note that if M is a hyperconvex space, then each admissible set in M is also 
hyperconvex. 

For convenience we summarize the following facts. 

Proposition 1 .1 .  Let 1Z.i hc a nzrtric ,vpucr. Tlze~z: 
( 1 )  Tlzerr r r i~ t s .  an irzckx set 1 and a 11ut~ira1 i.sonzetr.ic r~l iheddi~g fj.0111 M to 1,(1). 
( 2 )  I f '  M i.s I~jpercorzcr.~, tlzm it is c.or~zpletc. 
( 3 )  M is hjperconcrx f and only f f o r  each metric sprier N ulzicll corrtirins it1 

i.r.o~?zet~.ica//j~, there exists lr ~zonc.vpansi~~r rrtr,uction I -  : N + M ;  i. r . ,  r is nonrx- 
prznsice and r ( x )  = x  for eaclz x E M .  In pul-ticular. i f N  is a ~ l o r r i ~ ~ d  splrcr.,fi)r anj, 
Izoncnrj7t.v .filrittl .set o f '  points 1.2,. . . , yIl c M ) ,  ~ - ( c o n c { ~ . ~ .  . . . , y , , ) )  c c o { y l ,  
,yz,.  . . . y,,); 11'lzere c o { v l .  y? ,  . . . . j;,) is given hy Dqfirzition i .2 rrho~e. 

( 4 )  M is hyprrconcex if. rrrltrl on!,, i f ' f o r  each n~etric. s/)ucr N which is co~ztainpcr' 
~iietricull~, in arzj. .ypucp D. und ulzy ~zorzrxpurzsic~ ~r~app i r~y  T : N - kl. thrre exist 
(lrz c,utrrz.viun T" : D - ,\I ~vhich is ~zonc~.uprnl.rice, i. e., T ( x )  = T * ( x )  .fOr eacli x E N .  

Proof. For example, see Proposition 1 of Khamsi [18, p. 3001. 

Let M be a metric space and consider the natural embedding into I , ( [ )  given by 
statement ( 1  ) in Proposition 1.1.  If M ,  := co(M ) E .d(1,(1)) clearly M ,  then is a 
hyperconvex subset of /,(I), and M ,  is also a convex subset of the linear space 
l x ( 1 ) .  

2. The KKM theory in hyperconvex metric spaces 

Let X be a nonempty set. We denote by . i i;(X) and 2X the family of all nonempty 
finite subsets of X and the family of all subsets of X. respectively. If A is a subset of 
a linear space E, the notation 'corzc(A)' always means the co1zcr.u /1z/11 of A. 

Let ( M , ( I )  be a metric space. Following Khamsi [20],  a subset S c IZI is said to be 
finite!,. ~iretric~lrllj. closed if for each F E . F ( M ) ;  the set c o ( F )  n S  is closed. Note that 
c o ( F )  is always defined and belongs to &(:\I ). Thus if S is closed in M it is obviously 
finitely metrically closed. We also recall that a family {.4,),6D of has the .finirc~ 
i~lter.sectio~i properij. if the intersection of each of its noneinpty finite subfamilies is 
not empty. 
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Definition 2.1. Let X be any nonempty set and let iil be a metric space. A set-valued 
mapping G : X  + 2"\{6) is said to be a gnlrr~ulizrd nlrtric KKM mapping ( G M K K M )  
if for each nonempty finite set {.yl.. . . ,x,) c X, there exists a set { y , ,  . . . , fi) of points 
of M, not necessarily all different, such that for each subset { , y i l , .  . . , ,yi,) of { , y l , .  . . , y,,} 
we have 

As a special case of a generalized metric KKM mapping, we have the following 
definition of KKM mappings given essentially by Khamsi in [18]. 

Definition 2.2. Let X be a nonempty subset of a metric space M .  Suppose G : X + 2" 
is a set-valued mapping with nonempty values. Then G is said to be a n~etric KKM 
( M K K M )  mapping if for each finite subset F E . F ( X ) ,  co (F)  C U,v,,G(x). 

Remark 2.1. It is clear tlzat each r?irrr.ic. KKM ttzcyping is u gerzeralized r~zetric KKlll  
nzapping hut in gerzeral the concersr is rlot tr.lre. W l ~ e n  X is a subset of a linear ,space 
M,  i f  'co' i,s repltrc.eti i1,ith 'conl:', tlze ~ ~ s u a l  'corlres Izull', irz a linear ,sprrce M,  rherl 
our dcfirzition of' GIZ,fKK;tf hccorzzes that qf' Clzurzg and Zlzang [5] a~zd Yzwn [36] (.we 
rr1.w Rardaro and Cepyitelli [3], Fan [12], Granus [14], Ltrssonde [26], Park [29], T L I ~ I  
and Yuan [34], T~lr(lfi1ur [35] urzd Y~wrz [36] for more rec.er7t tle~~elopr?zents in tlze 
study of KKM the or:^^ it? topological rector spaces). 

Now, we give a characterization of the generalized metric KKM mapping principle 
in hyperconvex metric spaces. 

Theorem 2.1. Let X he a 1~017er311)~. set t1rid let M be a hyperconlqes nzetric s1,ace. 
S ~ ~ p p o x e  G : X + 2,"\{6) has jirzitelj. i~ietrically closed crrlues. Then tlze .firnzily {G(x): 
.u E X )  Iza.s tlze ,finite intersection property if and only iJ' the nzapyirzg G is u gener- 
ulired ~Fzetric K K M  nrupping. 

Proof. ,Vcressity: (Hyperconvexity is not needed for this implication.) If the family 
{G(s): x E .Y} has the finite intersection property then for each finite subset {I,, . . . .s,,) 
c X, n::, G ( s , )  # 8. Take any point x* E n:', G(xi) and set y, -x" for i = 1,. . . . n. 
Then for any 1 5 k < iz and any subsequence l,, , . . . , y,,; it follows that c ~ ) ( { j . ; , :  j = 

1;. . . , k } )  = CO( {x*}) = { s f )  C ~ f = ~  G(x,,).This proves that G is a GMKKM mapping. 
S~~ficier~c:l.: Suppose that G:  X + 2"\{6) is a GMKKM mapping and suppose the 

family {G(s ) : s  E X )  does not have the finite intersection property. Then there exists 
a nonempty finite set {.rl.. . . ,xl,) for which n:, G(x , )  = 8. Since G is a GMKKM 
mapping there exist corresponding points yl , .  . . .J;, of M such that for each subse- 

i, quence jl;, . . . . , xi,, , we have co({y , ,  , . . . , xi , ))  c U,=, G(.Y-,, ). Since M is hyperconvex 
there exists a nonexpansive retraction 7.:M, +M. In particular, if we identify M 
with its isometric copy in the Banach space M ,  then 1. iiiaps the linear span L 
of points ( j .1, .  . . , yn)  into hf. Let Y := c o ( { ~ ~ ~ ,  . . . , j;?)) and S := con t ( {y l . .  . .: J; ,}  ). 



Then r(S) C M (indeed, r (S)  c Y )  and i f s )  = x  for each x E M .  The assumption that 
G(,x) is finitely nletrically closed for each s E X implies that Y n G(xi) is closed for 
i = 1.. . . ,I?. Note also that Y n G(xi) # 0 since, in particular, yi E Y n G(xi). However, 
n:, G(x,) = l?, so for each s E S there exists i, E (1.. . . . n )  such that r(s)  $! Y n G(x,$). 
Hence clist(r(s), 1.' n G(si5 )) > 0. Therefore if the mapping f : S -- [0, x) is defined by 
setting 

for each .r E S,  it must be the case that f'(s) > O  for each s E S and also f is obviously 
continuous. 

Now define a (single-valued) mapping F : S - S by setting 

for each s E S .  Then F is also continuous. Since S is a bounded closed and convex 
subset of the finite-dimensional space L. by Brouwer's fixed point theorem there exists 
so E S such that F ( so )  =.yo; i.e.. 

then I # l?. and for each i E I, r(sq) $! Y n G(xi). Note that since r (S)  C Y by 
Proposition 1 . 1  (3). 7,(so) E Y.  (Indeed, so E conr{yl,. . . . y17}. To see this, note that 
B is a closed ball centered at a point of M which contains the set {yl,: j =  1 , .  . . , n } .  
Since r. is nonexpansive and leaves points of M fixed, it follows that r ( y )  E B. This in 
turn implies r ( y )  E co({l~,, , . . . . yi , ) ) ) .  Thus, it must be the case that ?"(so) $! G(.xi) for 
each i E I, i.e., 

?.(so) $! u G(.xL 1. 
! E l  

Then by definition of F ,  we have 

This in turn implies 7.(.Yo) E c,o({?.;, . . . . , j3,, 1). Thus we are able to conclude that ).(so) E 

~ ( { j i , .  . . . , j3i,}) C u:=, G(x,,)  and this coi~tradicts Eq. (2.3), completing the proof. 

As an app!icatio~l of Theorem 2.1 we have the following characterization giving 
the existence of a noi~empt)~ intersection for the values of a set-valued mapping in a 
h>,percolwex metric space. 



Theorem 2.2. Let X  be u rzon-er~zptj- set and M he a 11j~percorzces metric spuce. 
Stlppo.re G : X  I 2"\{@} is u set-zlulued r~inpping 11.itl1 nor~enzpty closed zlul~re~ and 
su1)po.w tlzc~rc~ cjsists xo E X  stlch tllut G(xO) i.s co11111trc1. Tllcn nl,,G(x)# @ zf N I I ~  

only {f tl1e ~ii(il)l)irl(g G is o ~jenerulized 111~1tl.i~ KKi\l 111trppi11(/. 

Proof. N r c r s s i f ~ ~ :  Since n , eXG(x)  # a, it follows that the family {G(x):s  E X }  has the 
finite intersection property. Since G(x) is closed for each . \-EX it is finitely metrically 
closed. Thus by Theorem 2.1, G is a generalized metric KKM mapping. 

Sufic.ienc~.: Since G is a generalized metric KKM mapping, it follows by Theo- 
rem 2.1 that the family {G(.x): x E X )  has the finite intersection property. Rewriting 
this as { G ( s )  11 (so):  ,x E X )  and noting G(xo) is compact, we have 

This con~pletes the proof. 

As a special cases of Theorem 2.1 we also have the following result which evtends 
Theorem 3 of Khamsi [18, p. 3031. 

Corollary 2.3. Let X  be n rzonerril)r,~, srrbsc~t c ! f '  rr hjpri.c.oncex r~zc~tric .sptic.c~ hi. Sup- 
pose G : X  + 2-"\{@) is a merric KKi\l r1l(rl)l)irzg 11.ith finitel?, ~rzetricullj~ closed ccll~rcs. 
Tlierz the .fifriiilj. {G(x): .u E X )  1zu.r tlrr ,firlitc bitcr.sectiorz propertjl. 

Definition 2.3. Let X be a nonempty set and let Y be a topological space. A inapping 
G : X  I 2' is said to be rrunsfkr c~loscd rolued if for each (x, ?.) E X  x Y with y @ G(x), 
there exist x' E X  and a nonempty open neighborhood N ( y )  of y such that j.' @ G(xf)  
for all ,I,' E N(, I . ) .  

Definition 2.4. Let Y be a nonempty set and X  a topological space. A mapping 
F X  -2' IS said to be trarzsfer operz rrz~er~ecl ~ulued if for each (x, J ) E X  x Y with 
J E F(x ) ,  there exists y' E Y and a nonempty open neighborhood N(x) of x such that 
j f  E F(z )  for all z E N(x) 

Remark 2.2. Let X he u rzoner?zptj' ,set arzd Y u ropok~~jic~trl sj)rrr.e. Supl~ose G : X  - 
2'. Tlre~z it is cleur to see tlr(rt G is trarz,fer clo.rec/ t\rrllret/ it'urlci orzlj. i f  rrhe rirrypirrg 
F : Y - 2X defined hj. F(J . )  = X\G-' ( j - )  jor each 1.  E Y i.r rrtrri.yfi.r ope17 irircrscd 
cul~rcd 

Tllc j ~ l l o ~ ~ ~ i n g  sirill~le P . Y U I I I ~ I ~  S I I O I I ~ S  tlruf .sef-t'nl~rcd 11irrpl7irzq.s 11.itlz t r (rrz .~t~ O ~ P I I  

irzcc.r,serl zlu1zfr.s 111uj. 11ot he operz irzzlersed ~(rllred. 
Let X  := [O, I] [/lid tlze set-rulzfcd ~ ~ ( f j ~ p i n g  F : X  2.' be dc(firzeti b ~ -  

[.\-, 1 ] i f '  s is rutioriul, 
F(r) = 

[O. 1 ] i f  s i.7 irrtrfior?ul 


























