THE WEAK* KARLOVITZ LEMMA FOR DUAL LATTICES Brailey Sims

We establish the Karlovitz lemma for a nonexpansive self mapping of a nonempty weak* compact convex set in a weak* orthogonal dual Banach lattice.

We say a Banach space has the weak fixed point property (w-fpp) if every nonexpansive self mapping of a nonempty weak compact convex subset has a fixed point. In the case of a dual space we say it has the w*-fpp if every nonexpansive self mapping of a nonempty weak*compact convex subset has a fixed point.

Let C be a nonempty weak (weak*) compact convex set and let $T: C \longrightarrow C$ be a nonexpansive mapping. The weak (weak*) compactness and Zorn's lemma ensure the existence of minimal nonempty weak (weak*) compact convex subsets of C which are invariant under T. For brevity we will refer to such a set as a weak (weak*) compact minimal invariant set for T. It is readily verified that a space (dual space) has the w-fpp (w*-fpp) if and only if every such weak (weak*) compact minimal invariant set has precisely one element.

Fundamental for establishing the w-fpp for certain spaces has been the result of Brodskii and Mil'man [2], Garkarvi [3] and Kirk [7] that any such weak (weak*) compact minimal invariant set D is diametral in the sense that, for all $x \in D$

$$\sup_{y \in D} ||x - y|| = \operatorname{diam} D := \sup_{x_1, x_2 \in D} ||x_1 - x_2||.$$

Another useful observation has been the existence in any nonempty closed convex subset of C which is invariant under T of an approximate fixed point sequence for T, that is a sequence $(a_n) \subset C$ for which

$$\|a_n - Ta_n\| \longrightarrow 0.$$

(Such a sequence may be constructed by choosing x_0 in the set and taking a_n to be the unique fixed point of the strict contraction $V_n x := (1-1/n)Tx + (1/n)x_0$, whose existence is ensured by the Banach contraction mapping theorem.)

Received 4th March 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

In the weak case deeper more recent results (for example, Maurey [9]; Borwein and Sims [1]; Lin [8]) have relied on the Karlovitz' lemma:

(1) If C is a nonempty weak compact convex set, $D \subseteq C$ is a minimal invariant set for the nonexpansive map $T : C \longrightarrow C$, and (a_n) is an approximate fixed point sequence for T in D, then

$$\lim_n \|x - a_n\| = \text{diam } D, \quad \text{for all } x \in D.$$

Proofs of this result (Karlovitz [5] and Goebel [4]) have involved an appeal to Mazur's theorem; that the weak and norm closures of a convex set coincide, and so left open the question of whether a similar result holds in the weak* case. This impediment to progress in the weak* case was attacked by Khamsi [6], who established a weak* Karlovitz lemma for stable duals and dual spaces with a shrinking strongly monotone Schauder basis.

The purpose of this note is to extend these results to a weak* Karlovitz lemma for weak* orthogonal dual Banach lattices.

By analogy with Borwein and Sims [1] we say that a dual lattice X is weak^{*} orthogonal if whenever (x_n) converges weak^{*} to 0 we have

$$\lim_{n} || |x_n| \wedge |x| || = 0, \text{ for all } x \in X.$$

In general it may be convenient to interpret (x_n) as a net. However in smoothable dual spaces, in particular separable dual spaces, sequences suffice.

Proofs of the Brodskii-Mil'man result and the Karlovitz lemma have directly, or indirectly, relied on an idea captured in the following lemma which was first made explicit in the weak case by Maurey [9] while proving the w-fpp for c_0 and reflexive subspaces of $\mathcal{L}_1[0,1]$.

LEMMA 1. Let T be a nonexpansive mapping of a nonempty weak (weak*) compact convex set and let D denote a minimal invariant set for T. If $\psi : D \longrightarrow \mathbf{R}$ is a weak (weak*) lower semi-continuous convex mapping with $\psi(Tx) \leq \psi(x)$ for all $x \in D$, then ψ is constant on D.

PROOF: Since D is weak (weak*) compact and ψ is weak (weak*) lower semicontininuous, ψ achieves its minimum on D. Let $x_0 \in D$ be such that $\psi(x_0) = \min \psi(D)$ and let $E = \{x \in D : \psi(x) = \psi(x_0)\}$; then E is a nonempty weak (weak*) closed convex set which is invariant under T. Thus, by minimality E = D, establishing the lemma.

To illustrate how the lemma may be used we prove the result of Brodskii – Mil'man in the weak* case. A substantially simplified version of the same argument establishes the corresponding result for weak compact sets. **THEOREM 2.** If D is a weak* compact minimal invariant set for a nonexpansive mapping T then D is diametral.

PROOF: It suffices to verify that ψ defined by

$$oldsymbol{\psi}(oldsymbol{x}) := \sup\{\|oldsymbol{x}-oldsymbol{y}\|:oldsymbol{y}\in D\}$$

satisfies the hypotheses for Lemma 1, as then ψ is a constant on D with value equal to

$$\sup_{\boldsymbol{x}\in D} \psi(\boldsymbol{x}) = \sup_{\boldsymbol{x}\in D} \sup_{\boldsymbol{y}\in D} \|\boldsymbol{x}-\boldsymbol{y}\| = \mathrm{diam}\ (D).$$

To complete the proof we first note that, since $\|\cdot\|$ is a dual norm, ψ is the supremum of weak* lower semi-continuous functions and so is itself weak* lower semi-continuous. Next, observe that

$$\psi(x) = \sup_{y \in \operatorname{co} T(D)} \|x - y\|.$$

This follows, since by the minimality of D, we have $D = \overline{\operatorname{co}}^{w^*} T(D)$, so given $\varepsilon > 0$ there exists a $y_{\varepsilon} \in D$ with $\psi(x) - \varepsilon \leq ||x - y_{\varepsilon}||$ and a net $y_{\alpha} \rightharpoonup^{w^*} y_{\varepsilon}$ with $y_{\alpha} \in \operatorname{co} T(D)$. Thus,

$$\psi(x) - arepsilon \leqslant \|x - y_arepsilon\| \leqslant \liminf_lpha \|x - y_lpha\|$$

and so there exists a $y \in \operatorname{co} T(D)$ with $\psi(x) - 2\varepsilon \leq ||x - y||$ establishing the claim.

It now follows by standard convexity arguments that

$$\psi(x) = \sup_{y \in T(D)} \left\|x - y\right\|,$$

from which it is readily seen that $\psi(Tx) \leqslant \psi(x)$, completing the proof.

The Karlovitz' lemma for a weak compact minimal invariant set D follows from the weak lower semi-continuity of the function $\psi(x) := \limsup_n \|x - a_n\|$, where (a_n) is an approximate fixed point sequence for T in D, which in turn follows since the *epigraph* of ψ is a norm closed convex set and hence also weak closed by Mazur's theorem.

As the following result shows, Karlovitz' lemma also holds for a weak* compact minimal invariant set D whenever functions of the above form are weak* lower semicontinuous.

LEMMA 3. Let (a_n) be an approximate fixed point sequence for the nonexpansive mapping T in the weak* compact minimal invariant set D. If for each subsequence (y_k) of (a_n) the function

$$\psi(x) := \limsup_k \|x - y_k\|,$$

۵

is weak * lower semi-continuous on D, then

$$\lim_n \|x-a_n\| = \text{diam } (D), \quad \text{for all} \quad x \in D.$$

PROOF: Let (y_k) be any subsequence of the approximate fixed point sequence (a_n) then lemma 1 applies to show that $\psi(x) := \limsup_k \|x - y_k\|$ is constant on D with value c say. Now let (y_{k_α}) be a subnet with $y_{k_\alpha} \rightharpoonup^{w*} y_0$; then

$$c \ge \limsup_{lpha} \|x - y_{k_{lpha}}\| \ge \liminf_{lpha} \|x - y_{k_{lpha}}\| \ge \|x - y_{o}\|$$

 $c \ge \sup_{x \in D} \|x - y_{0}\| = \operatorname{diam}(D), \quad \text{by Theorem 2.}$

and so

Thus for each subsequence (y_k) of (a_n) we have

$$\limsup_{k} \|x - y_{k}\| = \operatorname{diam} (D),$$

for all x in D and the result follows.

Unfortunately in a dual space not all functions of the form $\psi(x) := \limsup_{n} \|x - y_n\|$, even when (y_n) is a norm one weak^{*} null sequence, need be weak^{*} lower semicontinuous.

EXAMPLE 4. In ℓ_{∞} define ψ by

$$\psi(x) := \limsup_{n} \|x - y_n\|,$$

 $y_n(i) = \begin{cases} 0, & i = 1, 2, \cdots, n-1, \\ -1, & i = n, \cdots \end{cases}$
 $x_n(i) := \begin{cases} 1, & i = 1, \cdots, n, \\ 0, & \text{otherwise,} \end{cases}$

where

Then for

we have
$$x_n \rightarrow^{w^*} x_{\infty} := (1, 1, \dots, 1, \dots)$$
, while $\psi(x_n) = 1 \not\rightarrow \psi(x_{\infty}) = 2$, so ψ is not weak^{*} lower semi-continuous.

The next example, due to Simon Fitzpatrick (private communication), shows that even in separable dual spaces such a ψ may not be weak* lower semi-continuous.

EXAMPLE 5. Equivalently renorm c_0 by

$$\|(x(i))\| = \sup\{|x(1) - x(i) + x(j)|: 1 \leq i \leq j\},$$

and let X be its dual space $(\ell_{\infty}, \|\cdot\|^*)$.

[4]

The natural basis vectors, $e_n := (\delta_{ni})_{i=1}^{\infty}$, $n = 1, 2, \dots$, form a norm one weak* null sequence in X and we define ψ by

$$\psi(x) := \limsup_n \|x - e_n\|^*$$
.

Then taking $x_n := e_n - e_1$ we have $x_n \rightharpoonup^{w^*} - e_1$, while

$$\psi(x_j) = \limsup_n \|e_j - e_1 + e_n\|^*$$
$$= 1$$
$$\not \rightarrow \psi(-e_1) = \limsup_n \|e_1 + e_n\|^* = 2.$$

Thus ψ is not weak* lower semi-continuous.

On the other hand, we now show that in a weak^{*} orthogonal dual lattice such a function ψ is always weak^{*} lower semi-continuous.

LEMMA 6. Let X be a weak* orthogonal dual Banach lattice and let $y_n \rightarrow w^* 0$ with $||y_n|| \leq 1$. Then

$$\psi(x) := \limsup_n \|x - y_n\|$$
,

is weak* lower semi-continuous.

PROOF: It suffices to show that for each λ the sub-level set

$$D_{\lambda}:=\{x:\psi(x)\leqslant\lambda\}$$

is weak* closed. Thus, suppose $(x_{\alpha}) \subseteq D_{\lambda}$ with $x_{\alpha} \to^{w^*} x$, we must show that $x \in C_{\lambda}$. Now given $\varepsilon > 0$ we may by the weak* orthogonality choose α_0 'sufficiently large' so that $|| |x| \wedge |x_{\alpha_0} - x| || < \varepsilon/3$. Then, for all sufficiently large *n* we have $||x_{\alpha_0} - y_n|| \leq \psi(x_{\alpha_0}) + \varepsilon/3$ and $|| |y_n| \wedge |x_{\alpha_0} - x| || \leq \varepsilon/3$, and so, since

$$egin{aligned} |x-y_n| &\leqslant |(x-y_n)+(x_{lpha_0}-x)|+|x-y_n|\wedge |x_{lpha_0}-x|\ &= |x_{lpha_0}-y_n|+|x-y_n|\wedge |x_{lpha_0}-x|\ &\leqslant |x_{lpha_0}-y_n|+|x|\wedge |x_{lpha_0}-x|+|y_n|\wedge |x_{lpha_0}-x|\,,\ &\|x-y_n\| &\leqslant (\psi(x_{lpha_0})+arepsilon/3)+arepsilon/3+arepsilon/3\ &\leqslant \lambda+arepsilon. \end{aligned}$$

we have

It follows that $\psi(x) = \limsup_{n} ||x - y_n|| \leq \lambda$, as required.

We now obtain our main result as a corollary to Lemma 6 and Lemma 3, where by a suitable dilation and translation we may assume without loss of generality that (a_n) is weak* null with $||a_n|| \leq 1$.

0

THEOREM 7. Let X be a weak* orthogonal dual Banach lattice and let (a_n) be an approximate fixed point sequence for the nonexpansive mapping T in the weak* compact minimal invariant set D, then

$$\lim_{n} \|x - a_n\| = \text{diam} (D), \quad \text{for all} \quad x \in D.$$

Since the condition of Opial is a geometric analogue of weak orthogonality, Sims [10], we are led to ask: is a weak* Karlovitz' lemma true for dual spaces satisfying the weak* Opial condition?

We conclude by observing that this result combined with analogous arguments in the weak* case to those in Sims [10] establish the weak*- fpp for weak* orthogonal dual lattices, a result which in part subsumes the conclusions of Soardi [11], and Khamsi [6].

References

- J. Borwein and B. Sims, 'Non-expansive mappings on Banach lattices and related topics', Houston J. Math. 10 (1984), 339-355.
- [2] M.S. Brodskii and D.P. Mil'man, 'On the center of a convex set', Dokl. Akad. Nauk. SSSR 59 (1948), 837-840.
- [3] A.L. Garkavi, 'The best possible net and the best possible cross-section of a set in a normed linear space', Amer. Math. Soc. Trans. Ser. 2 39 (1964), 111-131.
- [4] K. Goebel, 'On the structure of minimal invariant sets for nonexpansive mapings', Ann. Univ. Mariae Curie-Sktodowska Sect A (Lublin) 9 (1975), 73-77.
- [5] L.A. Karlovitz, 'Existence of fixed points of nonexpansive mappings in a space without normal structure', Pacific J. Math. 66 (1976), 153-159.
- [6] M.A. Khamsi, 'On the weak*-fixed point property', Contemp. Math. 85 (1989), 325-337.
- [7] W.A. Kirk, 'A fixed point theorem for mappings which do not increase distances', Amer. Math. Monthly 72 (1965), 1004-1006.
- [8] P-K. Lin, 'Unconditional bases and fixed points of nonexpansive mappings', Pacific J. Math. 116 (1985), 69-76.
- [9] B. Maurey, 'Seminaire d'Analyse Fonctionnelle', Exposé No. VIII (1980).
- [10] B. Sims, 'Orthogonality and fixed points of nonexpansive maps', Proc. Centre Math. Anal. Aust. Nat. Uni. 20 (1988), 178–186.
- [11] P. Soardi, 'Existence of fixed points of nonexpansive mappings in certain Banach lattices', Proc. Amer. Math. Soc. 73 (1979), 25-29.

Deaprtment of Mathematics The University of Newcastle New South Wales 2308 Australia