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1. Introduction 

Over the last two decades ultrapower techniques have become major tools for the 
development and understanding of metric fixed point theory. In this short chapter we 
develop the Banach space ultrapower and initiate its use in studying the weak fixed 
point property for nonexpansive mappings. For a more extensive and detailed treatment 
than is given here the reader is referred to  [l] and [21]. 

2. Ultrapowers of Banach spaces 

Throughout the chapter I will denote an index set, usually the natural numbers N, for 
most situations in metric fixed point theory. 

Definition 2.1 A filter on I is a nonempty family of subsets F C 2' satisfying 

(i) F is closed under taking supersets. That is, A E F and A c B c I ==+ B E F. 

(ii) F is closed under finite intersections: A, B E F ==+ A n B E F. 

Examples. 

(1) The power set of I ,  2', defines a filter. 

(2) The Fr6chet filter { A  c I : I\A is finite } 
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(3) For io E I, Fi0 := { A  c I : io E A}. Filt,ers of the form Fto for some io E I are 
t,ermed trivial, or non-free filters. 

(4) If ( I , )  is a lattice, then the family of supersets of sets of the form Mi, = { i  : 
i io} ,  for io E I, is a filt,er. To see this, note that Mi, n Mi, = Miovjo. 

A filter F is proper if it is not equal to 2', the power set of I. Equivalent conditions 
are: 0 @ F ,  or F has the finite intersection property; that is, all finite intersections of 
filter elements are nonempty. 

Throughout this chapter, we will take filt,er to mean proper filter. 

Definition 2.2 An ultrafilter U on I is a filter on I  which is maximal with respect 
to ordering of filters on I  by inclusion: that is, if U C_ F and F is a filter on I ,  then 
F = U. Zorn's lemma ensures that every filter has an extension to an ultrafilter. 

Lemma 2.3 A filter U C 2' i s  a n  ultrafilter o n  I if and only if for every A c I 
precisely one of A o r  I\A is i n  U. 

Proof. (+) We show that if I \ A @ U, then A E U. If I \ A @ U, then I  \ A has 
no subset which is an element of U; hence every element of U meets A. The family 
f3 = { A n  U : U E U} therefore has the finite intersection property and so its supersets 
form a filter FB. But U c FB, because U 2 U n A FB, and so by the maximality 
FB = U. Also, A = A n I E FB and so A E U. 

( )  Note: the condition automatically ensures U is proper because I E U and so 
0 = I \ I  @ U. Now, let F be a filter on I  with U C F ,  we show F = U. Assume not, 
then there exists A E F with A @ U. However, we then have I \ A E U F.  So both 
A and I  \ A belong to F which implies that 0 = A n  ( I  \ A) E F ,  contradicting F being 
proper. 

As a consequence of this lemma: For an ultrafilter U on I if A1 U A2 U . . . U A, E U 
then at  least one of the sets A1, Az ,  . . . , An is in U, and an ultrafilter is nontrivial 
(free) if and only if it contains no finite subsets . 

It will henceforth be a standing assumption that all the filters and ultrafilters with 
which we deal are nontrivial. 

We say U is countably complete if it is closed under countable intersections. Ultrafilters 
which are not countably complete are particularly useful for some purposes. It  is readily 
seen that  an ultrafilter U is countably incomplete if and only if there exist elements 
A,, A,, . . . , A,, . . . in U with 

m 

I = A , > A , > A ~ >  . . .  >A,> . . .  and n ~ ,  = 0. 
n=O 

We shall see that this structure allows us to  readily extend inductive and diagonal 
type arguments into ultrapowers. Every ultrafilt,er U over W is necessarily countably 
incomplete (consider the countable family of nested set,s A, := { n ,  n + 1 ,  n + 2, . . . } E 

U).  

One of the most exiting result about ultrafilters deal with compactness. Before we 
state this result, we will need to link ultrafilters with the concept of convergence in 
topological spaces. 



Definition 2.4 For a Hausdorff topological space ( R , I ) ,  an ultrafilter U on I ,  and 

if for every neighbourhood N of x0 we have {i E I : xi E N )  E U. 

Limits along U are unique and if U is on N and (x,) is a bounded sequence in R then 

lim inf x, 5 lim x, 5 lim sup x,. 
n U n 

Moreover, if C is a closed subset of 0 and C_ C ,  then limu xi belongs to C 
whenever it exists. 

Remark 2.5 Let X be a metric space. If U is a7~ r~ltrafilter and limu x, = x, with 
(x,) c X ,  then there exists a subsequence of (x,) which converges to x.  

The next theorem is fundamental since it characterizes compactness by use of ultrafil- 
ters. 

Theorem 2.6 Let K be a Har~sdorff topological space. K is compact if and only i f  
limuxi exists for all C K and any ultrafilter U over I .  

When the space in question is a linear topological vector space, convergence over an 
ultrafilter has similar behaviour to traditional convergence. In particular, we have: 

Proposition 2.7 Let X be a linear topological vector space, and U an  r~ltrafilter over 
an index set I .  

(i) Suppose that (xi)icr and (yi)iEI are two subsets of X such that limu xi and limu y, 
exist. Then 

and limcuxi=cu limxi, 
U U 

for any scalar a E R. 

(ii) If X is  a Banach lattice and (xi)iEI is  a subset of positive elements of X ,  2.e. 
xi 2 0, then limu xi is also positive. 

Now we are ready to define the ultrapower of a Banach space. Let X be a Banach 
space and U an ultrafilter over an index set I .  We can form the substitution space 

&(X)  := {(xi)iE~ : \I(xi)(Iw := sup IJ~i l l  < 03). 
i E I  

Then, 
NU(X) := E e m ( x )  : i p  l l x i l l  = 0) 

is a closed linear subspace of Cw (X).  

Definition 2.8 The Banach space ultrapower of X over U is defined to be the Banach 
space quotient 

(X)u := e m ( x ) l N u ( x ) ,  



with elements denoted by   xi]^, where ( x i )  is a representative of the equivalence class. 
The quotient norm is canonically given by 

Remark 2.9 The mapping 3 : X --+ ( X ) U  defined by 

3 ( x )  := [x]  := [xiIu, where xi = x, for all i E I 

is an isometric embedding of X into ( X ) u .  Using the map 3, one may identify X with 
J ( X )  seen as a subspace of ( X ) U .  When it is clear we will omit mention of the map 
3 and simply regard X as a subspace of ( X ) u .  

In what follows, we describe some of the fundamental results related to ultrapowers. 
We will not be exhaustive and leave it to the interested reader to pursue the subject 
further by consulting 1211, for example. 

Proposition 2.10 Let ( X ) u  be an ultrapower of a Banach space X .  Then for any 
e > 0 and any finite dimensional subspace M of ( X ) U ,  there exists a subspace N of X 
with the same dimension and a linear map T : X o  + Yo such that 

( 1  - &)llxll 5 llT(x)ll 5 (1 + &)llxll 

holds for all x E X o  (Such a map is referred to as a &-isometry). 

Proof. Let dl) ,  x('), . . . , s(n) be a unit basis for M and choose representatives 

( x j * ) )  of r(k) such that r(*)  5 2, ( k  = 1,2,. . . , n) 11  /I 
Consider the vector space 

and define a linear map Ti : M + Mi by its action on the basis; 

Then, IITi(( 5 ZK, where 

For any x = xF=l X k  E M ,  we have 

= lim /iTixll 
U 



Now, let 6 be a positive number (to be chosen later) and let y('), y(2) ,  . . . , y(m) be a 
finit,e 6-net in the unit sphere of M and set 

then Iof 0 and for any i €10 and X E  M with llxll = 1 we have 

The conclusion now follows by taking 6 = 
E 

2(2K + 1) ' N := Mi and T := Ti. ¤ 

Any Banach space which enjoys a similar property as the one described above for 
(X)u is called finitely representable in X. Therefore, any ultrapower of X is finit,ely 
representable in X .  Note that we may avoid using the map T by introducing the 
so-called Banach-Mazur distance between normed spaces. 

Definition 2.11 Let X and Y be Banach spaces. The Banach-Mazur distance between 
X and Y is 

d(X, Y) = inf{llTII I I T - ' ~ ~  :: where T is an isomorphism from X ont,o Y} . 

When X and Y are not isomorphic we simply set d(X, Y) = m. 

Therefore, X is finitely represent,able in Y if and only if for any E > 0 and any finite 
dimensional subspace Xo of X ,  there exists a subspace Yo of Y with the same dimension 
such that d(Xo, Yo) < l+e .  It is a stunningly useful fact that an ultrapower of a Banach 
space X can capture isometrically all the spaces finitely represented in X .  Indeed, we 
have 

Theorem 2.12 Let Y be a separable Banach space which is finitely represented in X .  
Then there is an isometric embedding of Y into the ultrapower (X)u  for each co~rntably 
incomplete ultrafilter U .  

Proof. Let U be a countably incomplete ultrafilter on I; that is, there is a countable 
chain I1 2 Iz 2 . . . with In E U and 

By the separability of Y we can find a linearly independent sequence ( ~ ( n ) ) z = ~  such 
that Y = ( { X ( ~ ) } , M _ ~ ) .  Since Y is finitely represented in X,  for each N in N, there 
exists a l/N-isometry 

TN : X N  -- ({~(n)}:=~) 4 X .  



Now define J : Y --t (X)u by its action on the x(m), 

where 

if i E I \ I,, 
if i E I,, where n 2 m and T,(z(m)) 

is the unique number such that i E I, \ I,+, 

Note that since I, = 8, xi is defined for each i E I .  To see that J is an isometry 
observe that; for 

K 

z = ) : x ~  ~ ( 7 7 ~ k )  (such x are dense in Y )  
k=l 

we have 

To see t.his, given E > 0, choose N > (I/&, maxkmk), then we have x E X N  and for 
i E IN E U ,  

Example 2.13 Ultrapowers of a Hilbert space It is known that a Banach space 
X is a Hilbert space if and only if 

for all x, y E X .  Let (X)u be an ultrapower of X and let. [(x,)] and [(yi)] be two 
elements in (X)u,  t.hen we have 

and 

Since 
lim llxi + yi1I2 + lim 11xi - yi1I2 = lim (IIxt +yZ1l2 + 11xi - y . 1 1 2 )  , 
U U U 



and using the Hilbert structure of X ,  we get 

lim u 11xi + yiI12 + lim u IIx; - yilI2 = lim u (211~~11~ + 211yi112) . 

Whence, 

which implies ( X ) u  is a fIilbert space. 

This example, though easy to  prove, is extremely rich in many ways. Indeed, what 
the reader should learn from it is that the ultrapower catches any finitely determined 
property satisfied by the Banach space. Maybe one of the most useful instances of this 
concerns lattice structure. If X  is a Banach lattice, then any ultrapower ( X ) u  is also a 
Banach lattice when the order is defined by taking 5 E ( X ) u  to  be positive if and only 
if one can find a representative, (xi), of 2 all of whose elements are positive in X .  In 
this case, ( X ) U  enjoys most of the important lattice properties satisfied by X .  

Also from the above example, we see that a nonreflexive Banach space can not be finitely 
represented in a Hilbert space. In other words, only reflexive Banach spaces may be 
finitely represented in a Hilbert space. This leads to the concept of a super-property. 

Definition 2.14 Let P be a property defined on a Banach space X. We say that X 
has the property " s u p e r - F  if every Banach space that is finitely representable in X  
has P .  

The following result is an immediate consequence of Proposition 2.10 and Theorem 
2.12. 

Theorem 2.15 If P is  a separably determined Bunach space property that  i s  inherited 
by subspaces, then  a Banach space X  has super-P if and only zf some ultrapozuer of X  
over a countably incomplete ultrafilter has P (and hence every ultrapower of X has P). 

Remark  2.16 Reflexivity satisfies the requirements of the above theorem. Thus, a 
Banach space X  is superreflexive if and only if some (and hence every) countably 
incomplete ultrapower of X is reflexive. 

We also note that Theorem 2.12 remains valid if we replace 'every countably incomplete 
ultrafilter' by 'there exists an ultrafilter', without the assumption that the property be 
separably determined. Thus, we always have: 

I f P  is a Banach space property that is inherited by subspaces, then a Banach space X  
has super-P if and only every ultrapower of X has P .  

In particular Hilbert spaces are superreflexive. One may think that these are the only 
examples of superreflexive Banach spaces. In the following example, we show that this 
is far from the case, indeed the family of superreflexive Ba~lach spaces is quite a rich 
0118. 

Example 2.17 Let X  be a Banach space. For any E > 0, define 

+ y(l : z, y E X  and llxll 5 1 , 1 1 ~ 1 1  I 1 


































