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Abstract. In 2005 Dalby and Sims showed that a weakly orthogonal Banach
lattice with uniformly monotone norm satisfies Opial’s condition. This short
paper improves this result by showing that these Banach lattices satisfy the
stronger uniform Opial’s condition.

1. Introduction

A Banach space has the weak fixed point property if every nonexpansive mapping
on every nonempty weak compact convex set has a fixed point. Weak orthogonality
and the uniform Opial condition are two of a number of Banach space properties
that have been investigated for their connection to the weak fixed point property.
These properties have a common thread of linking, in one form or another, weakly
convergent sequences and the norm topology.

Weak orthogonality was defined and used in [4] where the order properties of Banach
lattices were shown to play a key role in fixed point theory. This property led to the
definition of the closely related concept of WORTH in Banach spaces. WORTH,
in conjunction with a number of geometric properties of Banach spaces, has been
shown to imply the weak fixed point property.

There are three versions of Opial’s condition; weak Opial, Opial and uniform Opial.
Again, these conditions have played a role in fixed point theory. It is the latter,
uniform Opial, that mainly concerns us here.

The concept of a uniform monotone norm in a Banach lattice, X, was used by Elton
et al. [9] to show that such an X has the weak fixed point property provided that l1
is not finitely represented in X. This result is a generalisation of Maurey’s theorem
[12] that reflexive subpaces of L1 have the fixed point property.

In [7] Dalby and Sims showed that a weakly orthogonal Banach lattice with uni-
formly monotone norm satisfies Opial’s condition. This paper improves this result
by showing that such Banach lattices enjoy the stronger property of uniform Opial’s
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condition. The proof is based partially on the proof of theorem 3.3 of Dhompongsa
and Kaewcharoen [8] which is in turn based partially on a proof in Dalby [6].

Now for the definitions of these and related properties. Here X is an infinite di-
mensional separable real Banach space.

Definition 1.1 (Opial, 13). A Banach space, X, has Opial’s condition if (xn)
converges weakly to 0 (xn ⇀ 0), then

lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn − x‖ for all x 6= 0.

Definition 1.2 (Prus, 14). A Banach space, X, has the uniform Opial property if
for every c > 0 there is an r > 0 such that

1 + r ≤ lim inf
n→∞

‖xn + x‖

for each x ∈ X with ‖x‖ ≥ c, and each sequence (xn) with xn ⇀ 0, and lim infn→∞ ‖xn‖ ≥
1.

Definition 1.3 (Lin, Tan and Xu, 11). Opial’s modulus is

rX(c) := inf{lim inf
n→∞

‖xn − x‖ − 1 : c ≥ 0, ‖x‖ ≥ c, xn ⇀ 0 and lim inf
n→∞

‖xn‖ ≥ 1}.

That is, rX(c) is the infimum of the r that work in definition 1.2.

X has the uniform Opial condition if and only if r(c) > 0 for c > 0.

Definition 1.4 (Sims, 16). A Banach space, X, has WORTH if for every weak null
sequence and every x ∈ X

lim
n→∞

|‖xn − x‖ − |xn + x‖| = 0.

This property was also introduced by Rosenthal [15] and Cowell and Kalton [5].

Definition 1.5 (Sims, 16). A Banach lattice, X, is weakly orthogonal if whenever
xn ⇀ 0 then

lim
n→∞

‖|xn| ∧ |x|‖ = 0 for all x ∈ X

Note that a slightly weaker version of this property was used by Borwein and Sims
in [4].

Finally,

Definition 1.6 (Katznelson and Tzafriri, 10). A Banach lattice, X, has uniformly
monotone norm if there exists a strictly increasing continuous function δ on [0,1]
with δ(0) = 0 so that if x, y ≥ 0 with 1 = ‖y‖ ≥ ‖x‖ then ‖x+ y‖ ≥ 1 + δ(‖x‖).

Here we have used the definition used in [10]. The notion of a uniformly mono-
tone norm was introduced in 1967 by Birkoff [3] using a slightly different, though
equivalent (see Akcoglu and Suchestion [1]), formulation.
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2. Results

First a small result to clear the way for the proof of the main theorem.

Proposition 2.1. Let X be a weakly orthogonal Banach lattice then X has WORTH.

Proof. Let (xn) be a weak null sequence in X and x ∈ X. Then using weak orthog-
onality

lim
n→∞

‖|xn| ∧ |x|‖ = 0

In Banach lattices 2 (|a| ∧ |b|) = ||a+ b| − |a− b|| so

lim
n→∞

‖|xn + x| − |xn − x|‖ = 0,

from which WORTH follows. �

Theorem 2.2. Let X be a weakly orthogonal Banach lattice with uniformly mono-
tone norm then X satisfies the uniform Opial’s condition.

Proof. The uniformly monotone norm means that X has order continuous norm.
See, for example, [2], [9] or [10].

Dalby and Sims [7; proposition 3.2] showed that a Banach lattice with order con-
tinuous norm is weakly orthogonal if and only if the lattice operations are weak
sequentially continuous. This will be used below.

Assume that X does not satisfy the uniform Opial’s condition then there exists a
c > 0 with r(c) = 0 where r(·) is Opial’s modulus.

Thus, given ε > 0 there exists a weak null sequence (xn) with lim infn→∞ ‖xn‖ ≥ 1
and x ∈ X with ‖x‖ ≥ c where lim infn→∞ ‖xn + x‖ − 1 < ε.

Proposition 3.5 in Dalby and Sims [7] showed that a Banach lattice with these
properties satisfies Opal’s condition. So

lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn + x‖.
This leads to

1 ≤ lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn + x‖ ≤ 1 + ε.

Weak lower semicontiuity of the norm means that

c ≤ ‖x‖ ≤ lim inf
n→∞

‖xn + x‖ ≤ 1 + ε.

Now, let δ be the function associated with the uniform monotone norm then∥∥∥∥ |xn|‖xn‖
+
|x|

1 + ε

∥∥∥∥ ≥ 1 + δ

(
‖x‖

1 + ε

)
for all n.

So

lim inf
n→∞

∥∥∥∥ |xn|‖xn‖
+
|x|

1 + ε

∥∥∥∥ ≥ 1 + δ

(
‖x‖

1 + ε

)
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lim inf
n→∞

∥∥∥∥|xn|+ ‖xn‖ |x|1 + ε

∥∥∥∥ ≥ lim inf
n→∞

‖xn‖
(

1 + δ

(
‖x‖

1 + ε

))
≥ 1 + δ

(
c

1 + ε

)
.

Now

lim inf
n→∞

∥∥∥∥|xn|+ ‖xn‖ |x|1 + ε

∥∥∥∥ ≤ lim inf
n→∞

‖|xn|+ |x|‖+ lim sup
n→∞

∥∥∥∥−|x|+ ‖xn‖ |x|1 + ε

∥∥∥∥ .
Consider lim infn ‖|xn|+ |x|‖. Because the lattice operations are weak sequentially
continuous we have |xn| ⇀ 0 and weak orthogonality can be employed. By propo-
sition 2.1 weak orthogonality implies WORTH which means

lim inf
n
‖|xn|+ |x|‖ = lim inf

n
‖|xn| − |x|‖ .

Banach lattice properties can now used, namely ||a| − |b|| ≤ |a − b| ≤ |a| + |b|, to
show

lim inf
n
‖|xn|+ |x|‖ = lim inf

n
‖|xn| − |x|‖

≤ lim inf
n
‖xn − x‖

≤ lim inf
n
‖|xn|+ |x|‖ .

Thus

lim inf
n
‖|xn|+ |x|‖ = lim inf

n
‖xn − x‖ = lim inf

n
‖xn + x‖ ,

where the last equality follows from property WORTH.

Finally, putting all this together.

1 + δ

(
c

1 + ε

)
≤ lim inf

n→∞

∥∥∥∥|xn|+ ‖xn‖ |x|1 + ε

∥∥∥∥
≤ lim inf

n→∞
‖xn + x‖+ lim sup

n→∞

∥∥∥∥−|x|+ ‖xn‖ |x|1 + ε

∥∥∥∥
≤ 1 + ε+ lim sup

n→∞

∣∣∣∣−1 +
‖xn‖
1 + ε

∣∣∣∣ ‖x‖
= 1 + ε+ lim sup

n→∞

(
1− ‖xn‖

1 + ε

)
‖x‖

≤ 1 + ε+ lim sup
n→∞

(
1− ‖xn‖

1 + ε

)
(1 + ε)

≤ 1 + ε+ 1 + ε− lim inf
n→∞

‖xn‖

≤ 2 + 2ε− 1

= 1 + 2ε

So for all ε > 0, δ
(

c
1+ε

)
≤ 2ε.

Taking ε → 0 and using the continuity of δ we obtain δ(c) ≤ 0. This contradicts δ
being strictly increasing and δ(0) = 0.

Thus X enjoys uniform Opial’s condition.
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