$$
\begin{aligned}
& \text { tremorbectean }
\end{aligned}
$$

8. Page 9 , to: In general, $S \cap L$ is only a subset of the set of fixed points

- of $T_{S, L}$. While in your setting it is clear that here $S \cap L$ is unique in the positive open halfspace, it is not clear to me why the set of fixed points of $T_{S, L}$ is unique there. So I don't see why you can speak of an "isolated fixed point of $T_{S, L}$ " without further justification. Cozedn't ${ }^{\prime}$. Page 9, line +4: Please replace ". Then" by ". Then".

10. Page 10, Theorem 2: In what sense do you use the adjective "critical" here? Presumably not in the sense of having-gradients-cqual-to-zero, in which case it is more clear to delete "criticial".

11. Page 14, top, regarding the following

$$
x_{n+1}(2)-1=x_{n}(2)\left(1-1 / \rho_{n}\right)>1,0
$$

(a) Should the last " 1 " be " 0 "?
(b) If so, why is $x_{n}(2)>0$? I don't see this. Is it part of the assympcion on the starting point, i.c., $x_{0}(2)>0$. If so, Theorem 4 on that page needs to be modified accordingly.
12. Page 14. Therm 5
(a) Replace " $h>1$ " by " $a>1$ ".
(b) "Initial point $x_{n}(2)$ ": $x_{n}(2)$ is not a point to me, but rather a

(d) The statement is confusing to me: "divergence at an(?) at least linear rate" suggests to me that the quotient is bigger than 1. In the proof, it becomes clear that you mean the difference of ? consecutive iterates.| Why not state the inequality and remove 1 - any ambiguity?
(c) In the proof, replace " $>\alpha-1$ as $x_{n}(2)<\rho_{n}$ " 2 y " $\geq \alpha-1$ as $x_{n}(2) \leq$
 ρ_{n} " which show that-nothing has to be assumed about $x_{n}(2)$ in the statement.
13. Page 15. Section 6, fourth paragraph, "all non-zero points on this line remain fixed under $T_{S . L}{ }^{\prime \prime}$: This is not correct, it is only true for all L points of the form λb, where $\lambda>0$, due to the evaluation of $\|\lambda b\|$.

