Report on J. Borwein and B. Sims, "The Douglas-Rachford Algorithm in the Absence of Convexity"

The authors study the behaviour of the Douglas-Rachford algorithm for finding the intersection of two sets in the instance when one of two sets is a line, or a line segment, and the other set is a ring. For this example, the iterates of the Douglas Rachford algorithm can be written as steps in a defence equation, leading to an analysis of the the Douglas-Rachford algorithm as a dynamical system. Specific comments follow.
-1. document was not compiled enough to synchronize references. so I am not certain that these are consistent or complete.
2. Spelling errors throughout (egg. Spiralling, whet, Spiting, Ratchford).
3. ph $1+13$: It seems that an opportunity is lost to at least mention one large "pathology" of \checkmark nonconvex projections by excluding the point $x=0$ from the discussion, i.e. single-valuedness of the projectors. Perhaps a very brief mention that by excluding the origin you are ensuring
 that the projector and reflector corresponding to the circle/sphere is single-valued? Also. by excluding the origin from the discussion, you are excluding all initial points whose iterates pass through the origin (item below).
4. pt. Remark 1: "divide-and-concur", though not so named by its inventor", is due to Pierre. Citation [9] should be replaced by author $=$ G. Pieria.
title $=$ Eclatement de contraintes en parallel pour la minimisation dune forme quadrat que. journal $=$ Lecture Notes in Computer Science.
publisher $=$ Springer Verlag,
address $=$ New York,
\because year $=1976$.

- \quad volume $=41$.
pages $=200-218$
Else "repackaged" it in [9], but the idea is well established and common practice in the mathematics literature.
? 5. p. . Example 1: I do not really understand the point of this example. Averaged reflections P were never under consideration.
[6. p6. Fig.3: the points do not match the description - the very first move, if really a reflection across the line segment, would be in a direction northwest from the initial point with midpoint at the right endpoint of the linesegment. Similarly with the third move. It appears that the algorithm thinks it's working on a line, not a line segment.

7. pf, Fig.3: Why show altemating reflections? It is known that this does not converge even in the convex case. Averaging, or the addition of a Krasnoselski-Mam relaxation, is important for restoring firm nonexpansiveness of the fixed point mapping in the convex case
8. p8, Theorem 1: should f be a mapping from $N \times \mathbb{R}^{n} \neq \mathbb{R}^{n}$ instead of \mathbb{R}^{m} ?
9. p 8 , Theorem 1: if you use n for the dimension of the domain and range, please use a different index for the iterate (instead of n).

10. p9. $1+2, T_{y}(x)$: This is the first time this notation is used, and it docent t match $T_{S, L}$ very well. Consider an alternative notation?

