

Nonlinear Analysis 50 (2002) 1085-1091

www.elsevier.com/locate/na

Fixed point theorems for mappings of asymptotically nonexpansive type

Gang Li^{a,1}, Brailey Sims^{b,*}

^aDepartment of Mathematics, Yangzhou University, Yangzhou 225002, People's Republic of China ^bDepartment of Mathematics, University of Newcastle, NSW 2308, Australia

Received 20 October 2000; accepted 22 January 2001

Keywords: Fixed point; Asymptotically nonexpansive type mapping; Uniform normal structure

1. Introduction

Let C be a nonempty subset of a Banach space X and let $T: C \to C$ be a mapping. Then T is said to be asymptotically nonexpansive [6] if there exists a sequence (k_n) of real numbers with $\lim_{n\to\infty} k_n = 1$ such that

 $||T^n x - T^n y|| \le k_n ||x - y||$ for x, y in C and n = 1, 2, ...

If this is valid for n = 1 with $k_1 = 1$ (and hence $k_n = 1$ for all n) then T is said to be nonexpansive. If for each x in C, we have

$$\limsup_{n\to\infty}\sup_{y\in C}(\|T^nx-T^ny\|-\|x-y\|)\leq 0,$$

then T is said to be of asymptotically nonexpansive type [8].

In 1965, Kirk [7] proved that if C is a weakly compact convex subset of a Banach space with normal structure, then every nonexpansive self-mapping T of C has a fixed point. A nonempty convex subset C of a normed linear space is said to have normal structure if each bounded convex subset K of C consisting of more than one point contains a nondiametral point. That is, a point $x \in K$ such that $\sup\{||x - y||: y \in K\} < \sup\{||u - v||: u, v \in K\} = \operatorname{diam} K$. Seven years later, in 1972, Goebel and Kirk [6] proved that if the space X is assumed to be uniformly convex, then every

^{*} Corresponding author. Tel.: +61-49-21-5526.

E-mail addresses: yzlgang@pub.yz.jsinfo.net (G. Li), bsims@maths.newcastle.au (B. Sims).

¹ This work is supported by National Natural Science Foundation of China.

asymptotically nonexpansive self-mapping T of C has a fixed point. This was extended to mappings of asymptotically nonexpansive type by Kirk in [8]. More recently these results have been extended to wider classes of spaces, see for example [2,5,9,11,12]. In particular, Lim and Xu [12] and Kim and Xu [9] have demonstrated the existence of fixed points for asymptotically nonexpansive mappings in Banach spaces with uniform normal structure, see also [4] for some related results. However, whether normal structure implies the existence of fixed points for mappings of asymptotically nonexpansive type is a natural question that remains open.

The present paper answers a question raised by Kim and Xu in [9]. It extends results in their paper and [12] to mappings of asymptotically nonexpansive type and so represents a further step toward a resolution of the question raised above.

2. Main theorems

In this section, let X be a Banach space, let C be a nonempty bounded subset of X and let $T: C \to C$ be a mapping of asymptotically nonexpansive type. For each $x \in C$ and $n \ge 1$, put

$$r_n(x) = \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|) \vee 0.$$

Then for each $x \in C$,

$$\lim_{n \to \infty} r_n(x) = 0. \tag{1}$$

Let *E* be a nonempty bounded closed convex subset of a Banach space *X* and let $d(E) = \sup\{||x - y||: x, y \in E\}$ be the diameter of *E*. For each $x \in E$, let $r(x, E) = \sup\{||x - y||: y \in E\}$ and let $r(E) = \inf\{r(x, E): x \in E\}$, the Chebyshev radius of *E* relative to itself. The normal structure coefficient of *X* is defined to be

 $\tilde{N}(X) = \sup\{r(E)/d(E): E \text{ is a bounded closed convex subset}$ of X with $d(E) > 0\}.$

Note, the normal structure coefficient $\tilde{N}(X)$, introduced by Maluta [13], is the reciprocal of N(X) defined by Bynum in [3]. A space X for which $\tilde{N}(X) < 1$ is said to have uniform normal structure. It is known that a space with uniform normal structure is reflexive and that all uniformly convex or uniformly smooth Banach spaces have uniform normal structure.

Theorem 2.1. Suppose X is a Banach space with uniform normal structure, C is a nonempty bounded subset of X, and $T: C \to C$ is an asymptotically nonexpansive type mapping such that T is continuous on C. Further, suppose that there exists a nonempty closed convex subset E of C with the following property (P):

 $x \in E$ implies $\omega_w(x) \subset E$,

where $\omega_w(x)$ is the weak ω -limit set of T at x; that is, the set $\left\{ y \in X: \ y = weak - \lim_i T^{n_i} x \text{ for some } n_i \uparrow \infty \right\}.$

Then T has a fixed point in E.

To prove the theorem we use the following lemma from [14].

Lemma 1. Let C be a nonempty subset of a Banach space X and let T be a mapping of asymptotically nonexpansive type C. Suppose there exists a nonempty bounded closed convex subset E of C with the property (P). Then there is a closed convex nonempty subset K of C and a $\rho \ge 0$ such that:

(i) if $x \in K$, then every weak limit point of $(T^n x)$ is contained in K;

(ii) $\rho_x(y) = \rho$ for all $x, y \in K$, where ρ_x is the functional defined by

$$\rho_x(y) = \limsup_{n \to \infty} \|T^n x - y\|, \quad y \in X.$$

Proof of Theorem 1. Let K, ρ_x and ρ be as in Lemma 1. Let x be any element in K and let G be a sub-semigroup of \mathbb{N} . That is, $G = \{in_0: i \in \mathbb{N}\}$ for some $n_0 \in \mathbb{N}$. For each $i \in G$, consider the sequence $(T^j x)_{i \leq j \in G}$. From the definition of $\tilde{N}(X)$, we have a $y_i \in \overline{co}\{T^j x: i \leq j \in G\}$ (here, \overline{co} denotes the closed convex hull) such that

$$\limsup_{j \in G} \|T^j x - y_i\| \leq \tilde{N}(X) \mathcal{A}((T^j x)_{i \leq j \in G}),$$
(2)

where $A(z_n)$ is the asymptotic diameter of the sequence (z_n) ; that is, the number

 $\lim_{i \to \infty} (\sup\{||z_i - z_j||: i, j \ge n\}).$

Since X is reflexive, (y_i) admits a subsequence $(y_{i'})$ converging weakly to some $x^* \in X$. From 2 and the w-l.s.c. of the functional $\limsup_{i \in G} ||T^i x - y||$, it follows that

$$\limsup_{j \in G} \|T^j x - x^*\| \leq \tilde{N}(X) \mathcal{A}((T^j x)_{j \in G}).$$
(3)

It is easily seen that $x^* \in \bigcap_{i \in G} \overline{co} \{T^j x: i \leq j \in G\}$ and that

$$\|z - x^*\| \leq \limsup_{j \in G} \|z - T^j x\| \quad \text{for all } z \in X.$$
(4)

Using property (P) and the fact that $\bigcap_{i \in G} \overline{co} \{T^j x: i \leq j \in G\} = \overline{co} \omega_w \{T^j x: j \in G\}$, which is easy to prove by using the Separation Theorem (cf. [1]), we get that x^* actually lies in K. We claim that:

there exists $x \in K$ such that $\omega(x) \neq \emptyset$, where $\omega(x)$ is the strong ω -limit set of T at x, and $\rho = 0$.

To derive a contradiction, we suppose that (1) is not true. In particular then, for any sub-semigroup G of N and for any $x, y \in K$, we have that $D = \limsup_{j \in G} ||T^jx - y||$ is strictly greater than zero. Let r_0 be a positive number chosen so that $r = (2r_0 + 1)$ $\tilde{N}(X) < 1$, this is possible since by assumption $\tilde{N}(X) < 1$. Now, take any x_0 in K and put $G_0 = \mathbb{N}$, then from 3 and 4 there exists $x_1 \in K$ with

$$0 < D_0 = \limsup_{j \in G_0} \|T^j x_0 - x_1\| \leq \tilde{N}(X) \mathcal{A}((T^j x_0)_{j \in G_0})$$

and

$$||z-x_1|| \leq \limsup_{j \in G_0} ||z-T^j x_0|| \quad \text{for all } z \in X.$$

It then follows from 1 that there exists $n_0 \in \mathbb{N}$ such that

 $r_n(x_1) < r_0 D_0$ for all $n \ge n_0$.

Put $G_1 = \{in_0: i \in \mathbb{N}\}$, it is a sub-semigroup of \mathbb{N} . It follows that there exists $x_2 \in K$ such that

$$0 < D_1 = \limsup_{j \in G_1} ||T^j x_1 - x_2|| \le \tilde{N}(X) \mathcal{A}((T^j x_1)_{j \in G_1})$$

and

$$||z - x_2|| \leq \limsup_{j \in G_1} ||z - T^j x_1||$$
 for all $z \in X$.

By 1 again, there exists $n_1 \in G_1$ such that

 $r_n(x_2) < r_0 D_1$ for all $n \ge n_1$.

Put $G_2 = \{in_1: i \in \mathbb{N}\}$, it is a sub-semigroup of G_1 . It follows that there exists $x_3 \in K$ such that

$$0 < D_2 = \limsup_{j \in G_2} \|T^j x_2 - x_3\| \leq \tilde{N}(X) A((T^j x_2)_{j \in G_2})$$

and

$$||z-x_3|| \leq \limsup_{j\in G_2} ||z-T^jx_2||$$
 for all $z \in X$.

We can repeat the above process to obtain a sequence $(x_n)_{n=1}^{\infty}$ in K and a series of semigroups $\{G_n\}_1^{\infty}$ with the properties:

(i)
$$\mathbb{N} = G_0 \supset G_1 \supset G_2 \supset \cdots$$
;
(ii) $D_n = \limsup_{i \in G_n} ||T^i x_n - x_{n+1}|| \le \tilde{N}(X)A((T^i x_n)_{i \in G_n});$
(iii) $||z - x_{n+1}|| \le \limsup_{i \in G_n} ||z - T^i x_n||$ for all $z \in X$;
(iv) $r_i(x_{n+1}) \le r_0 D_n$ for all $i \in G_{n+1}$.
Now for $i, j \in G_n$ with $i > j$, we have that $i - j \in G_n \subset G_{n-1}$ and from (iii)–(iv) that

$$\|T^{i}x_{n} - T^{j}x_{n}\| \leq r_{j}(x_{n}) + \|T^{i-j}x_{n} - x_{n}\| \\ \leq r_{j}(x_{n}) + \limsup_{m \in G_{n-1}} \|T^{i-j}x_{n} - T^{m}x_{n-1}\| \\ \leq r_{j}(x_{n}) + r_{i-j}(x_{n}) + \limsup_{m \in G_{n-1}} \|x_{n} - T^{m}x_{n-1}\| \\ \leq (2r_{0} + 1)D_{n-1}.$$

It follows from (ii) that

$$D_n \leqslant \tilde{N}(X)(2r_0+1)D_{n-1} = rD_{n-1} \leqslant \cdots \leqslant r^{n-1}D_1.$$

1088

Therefore, for each $i \in G_n$ and $n \ge 2$, we have

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq \|x_{n+1} - T^i x_n\| + \|T^i x_n - x_n\| \\ &\leq \|x_{n+1} - T^i x_n\| + \limsup_{m \in G_{n-1}} \|T^i x_n - T^m x_{n-1}\| \\ &\leq \|x_{n+1} - T^i x_n\| + r_i(x_n) + \limsup_{m \in G_{n-1}} \|x_n - T^m x_{n-1}\|. \end{aligned}$$

Consequently,

$$||x_{n+1} - x_n|| \leq D_n + D_{n-1} \leq (r^{n-1} + r^{n-2})D_1.$$

That is, (x_n) is a Cauchy sequence and there is $x \in K$ such that $x_n \to x$ strongly as $n \to \infty$. Since

$$\begin{aligned} |T^{j}x - x|| &\leq ||T^{j}x - T^{j}x_{n}|| + ||T^{j}x_{n} - x_{n+1}|| + ||x_{n+1} - x|| \\ &\leq r_{j}(x) + ||x - x_{n}|| + ||x - x_{n+1}|| + ||T^{j}x_{n} - x_{n+1}||, \end{aligned}$$

we have

$$\begin{split} \liminf_{j \to \infty} \|T^{j}x - x\| &\leq \|x - x_{n}\| + \|x - x_{n+1}\| + \liminf_{j \to \infty} \|T^{j}x_{n} - x_{n+1}\| \\ &\leq \|x - x_{n}\| + \|x - x_{n+1}\| + \limsup_{j \in G_{n}} \|T^{j}x_{n} - x_{n+1}\| \\ &= \|x - x_{n}\| + \|x - x_{n+1}\| + D_{n}. \end{split}$$

Taking $n \to \infty$, we get

 $\liminf_{j\to\infty}\|T^jx-x\|=0.$

This is a contradiction.

To prove (2), by Lemma 1, it is enough to show that if $\rho > 0$ then there exist $z, y \in K$ such that $\rho_y(z) = \limsup_{n \to \infty} ||z - T^n y|| < \rho$. To this end, by (1), there exists $x \in K$ such that $\omega(x) \neq \emptyset$. Let $y = \lim_i T^{n_i} x$ for some $n_i \uparrow \infty$. It is easily seen that $\{T^n y: n \ge 1\} \subset K$. Put

$$\rho_0 = \operatorname{diam}(\overline{co}\{T^n y: n \ge 1\}) = \operatorname{diam}(\{T^n y: n \ge 1\})$$

Since

$$\|T^{n}y - T^{m}y\| = \lim_{i \to \infty} \|T^{n+n_{i}}x - T^{m}y\|$$

$$\leq \limsup_{i \to \infty} \|T^{i}x - T^{m}y\|$$

$$= \rho,$$

we have $\rho_0 \leq \rho$. Since K has normal structure, there exists $z \in \overline{co}\{T^n y: n \ge 1\}$ such that

$$\sup_{n \ge 1} ||z - T^n y|| < \operatorname{diam}(\overline{co}\{T^n y: n \ge 1\}) \le \rho.$$

This proves (2).

By (2), $K = \{x\}$ and $T^n x \to x$ strongly as $n \to \infty$. Therefore, Tx = x by the continuity of T.

Corollary 1. Let C and X be as in Theorem 1 and let $T: C \rightarrow C$ be an asymptotically nonexpansive mappings. Suppose there exists a nonempty bounded closed convex subset E of C with the property (P). Then T has a fixed point.

Proof. This follows since an asymptotically nonexpansive mapping is of asymptotically nonexpansive type.

From Theorem 1 we readily capture the following result announced by Taehwa Kim, who also gives an alternative proof [10].

Corollary 2. Let X be a Banach space with uniform normal structure, let C be a bounded closed convex subset of X, and suppose $T: C \to C$ is a continuous mapping of asymptotically nonexpansive type. Then T has a fixed point.

We conclude the paper by stating the semigroup version of Theorem 1. The proof is similar to that of Theorem 1 and is therefore omitted.

Theorem 2.2. Suppose X is a Banach space with uniform normal structure, C is a nonempty bounded subset of X, and $\Im = \{T(t): t \ge 0\}$ is a semigroup of asymptotically nonexpansive type mappings on C such that T(t) is continuous on C for each $t \ge 0$. Suppose also that there exists a nonempty bounded closed convex subset E of C with the following property (P):

 $x \in E$ implies $\omega_w(x) \subset E$,

where $\omega_w(x)$ is the weak ω -limit set of $\{T(t)x\}$, i.e. the set

 $\left\{ y \in X: y = weak - \lim_{i} T(t_i)x \text{ for some } t_i \uparrow \infty \right\}.$

Then \Im has a common fixed point in E, i.e. there exists a $z \in E$ for which T(t)z = z for all $t \ge 0$.

References

- R.E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak-limit set, Israel J. Math. 29 (1978) 1–16.
- [2] R. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mapping in Banach spaces with the uniform Opial property, Nonlinear Anal. 21 (1995) 926–946.
- [3] W.L. Bynum, Normal structure coefficients for Banach space, Pacif. J. Math. 86 (1980) 427-436.
- [4] E. Casini, E. Maluta, Fixed points of uniformly Lipschitzian mappings in space with uniformly normal structure, Nonlinear Anal. TMA 9 (1985) 103-108.
- [5] J. Garcia-Falset, B. Sims, M.A. Smyth, The demiclosedness principle for mappings of asymptotically nonexpansive type, Houston J. Math. 22 (1996) 101-108.
- [6] K. Goebel, W. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
- [7] W. Kirk, A fixed point theorem for mappings which do not increase distances, Proc. Amer. Math. Soc. 72 (1965) 1004–1006.
- [8] W. Kirk, A fixed point theorem of non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974) 339-346.

- [9] T.H. Kim, H.K. Xu, Remarks on asymptotically nonexpansive mappings, Nonlinear Anal. TMA 41 (2000) 405–415.
- [10] Taehwa Kim, Fixed point theorems for non-Lipschitzian self-mappings and geometric properties of Banach spaces, preprint.
- [11] P.K. Lin, K.K. Tan, H.K. Xu, Demiclosedness principle and asymptotic behaviour for asymptotically nonexpansive mappings, Nonlinear Anal. TMA 24 (1995) 929–946.
- [12] T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. TMA 22 (1994) 1345–1355.
- [13] E. Maluta, Uniformly normal structure and related coefficients, Pacific J. Math. 111 (1984) 357-369.
- [14] H.K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. TMA 16 (1991) 1139-1146.