Fixed point and common fixed point theorems of contractive multivalued mappings on complete metric spaces

H. KHANDANI^a, S.M. VAEZPOUR^b, B. SIMS^{c,*}

 ^a Dept. of Math., Science and Research Branch, Islamic Azad University(IAU), Tehran, Iran khandani.hassan@yahoo.com
 ^b Dept. of Math., Amirkabir University of Technology, Tehran, Iran Vaez@aut.ac.ir

^{b,c} School of Math. and Phys. Sci., The University of Newcastle, NSW, Australia Brailey.Sims@newcastle.edu.au

Abstract

In this paper we give a common fixed point type generalization for some multi-valued contractive mappings on complete metric spaces. Our results extend some recent results of Y. Feng, S. Liu[Y. Feng and S. Liu, Fixed point theorem of multi-valued contractive mappings, J. Math. Anal. Appl. 317(2006)103-112], N. Mizoguchi, W. Takahashi[N. Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141(1989)177-188], D. Klim, D. Wardowski[D. Klim, D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl. 334(2007)132-139]. We show that some common fixed point contraction theorems for multi-valued mappings are straightforward consequence of our results.

Keywords. common fixed point, multi-valued map .

^{*}Corresponding author. Fax: +61-249216898.

1 Introduction

Throughout this paper we denote by N the set of positive integers and by R the set of real numbers.

Let(X, d) be a metric space, we denote by CB(X), Cl(X) and N(X) the class of all nonempty closed and bounded, all nonempty and closed and all nonempty subsets of X respectively.

Let H be the Hausdorff metric with respect to d, that is

$$H(A,B) = \max\{\sup_{x\in B} d(x,A), \sup_{y\in A} d(y,B)\},\$$

for all A, B in CB(X). where $d(x, A) = \inf_{y \in A} d(x, y)$.

Nadler [1] Extended the Banach contraction theorem for multi-valued mappings and Nadler's fixed point theorem has been extended in many directions. The following generalization was given by Mizoguchi and Takahashi [2]. **Theorem 1.**(Mizoguchi, Takahashi [2]) Let (X, d) be a complete metric space and let $T : X \longrightarrow CB(X)$. If there exist a function $\alpha : [0, \infty) \longrightarrow [0, 1)$ such that $\limsup_{r \longrightarrow t+} \alpha(r) < 1$ for all $t \in [0, \infty)$ and

$$H(Tx, Ty) \le \alpha(d(x, y))d(x, y),$$

for all $x, y \in X$, then T has a fixed point.

Another proof of the above theorem was given by Dafer and Kaneko[3] and recently another proof for this theorem was given by T. Suzuki [4].

Y. Feng and S. Liu [5] proved the following theorem.

Theorem 2. (Feng, Liu [5]) Let (X, d) be a complete metric space and let $T: X \longrightarrow CB(X)$. If there exist $b, c \in (0, 1)$ such that c < b and for any $x \in X$ there is $y \in Tx$ satisfying the following conditions:

- $bd(x,y) \le d(x,Tx)$,
- $d(y,Ty) \leq cd(x,y)$.

Then T has a fixed point in X provided the function D(x) = d(x, Tx) is lower semi-continuous.

Recently D. Klim and D. Wardowski [6] extended Feng and Liu's theorem in the following sense.

Theorem 3.(Klim, Wardowski [6]) Let (X, d) be a complete metric space and let $T: X \longrightarrow Cl(X)$. Assume the following conditions hold. For each $x \in X$ there is $y \in Tx$ such that :

• $bd(x,y) \le d(x,Tx),$

• $d(y,Ty) \le \alpha(d(x,y))d(x,y),$

where $\alpha : [0, \infty) \longrightarrow [0, b)$ is such that $\limsup_{r \longrightarrow t^+} \alpha(r) < b$ for all $t \in [0, \infty)$. Then T has a fixed point in X provided D(x) = d(x, Tx) is lower semi-continuous.

M. Berinde and V. Brinde [7] extended Mizoguchi and Takahashi's theorem as follows.

Theorem 4. Let (X, d) be a complete metric space, $L \ge 0$ and let $T : X \longrightarrow CB(X)$ be a generalized (α, L) contraction, i.e., a mapping for which there exists a function $\alpha : [0, \infty) \longrightarrow [0, 1)$ satisfying $\limsup_{r \longrightarrow t^+} \alpha(r) < 1$, for every $t \in [0, \infty)$ such that

$$H(Tx, Ty) \le \alpha(d(x, y))d(x, y) + Ld(y, Tx),$$

for all $x, y \in X$. Then T has at least one fixed point.

2 Main Results

First we prove two common fixed point theorem of multi-valued contractive mappings on complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$. If there exist constant $b \in (0, 1)$, non negative real numbers β, γ such that $b + 2\beta + 2\gamma < 1$ and a function $\alpha : X \longrightarrow [0, b)$ such that f, g satisfy the following conditions :

$$d(y,gy) \le \alpha(d(x,y))d(x,y) + \beta\{d(x,fx) + d(y,gy)\} + \gamma d(x,gy), \quad (1)$$

for all $y \in I_b^x$ and,

$$d(x, fx) \le \alpha(d(x, y))d(x, y) + \beta\{d(x, fx) + d(y, gy)\} + \gamma d(y, fx), \quad (2)$$

for all $x \in gy$, where

$$I_b^x = \{ y \in fx : bd(x, y) \le d(x, fx) \}.$$

Then f, g have a common fixed point provided I(x) = d(x, fx) is lower semi-continuous.

Proof. First we show that every fixed point of f is a fixed point of g and conversely. Let $z \in fz$, by putting x = y = z in (1) we get

$$d(z,gz) \leq \alpha(d(z,z))d(z,z) + \beta\{d(z,fz) + d(z,gz)\} + \gamma d(z,gz) = (\beta + \gamma)d(z,gz).$$

Since $\beta + \gamma < 1$ hence d(z, gz) = 0. A similar argument shows that every fixed point of g is also a fixed point of f, define :

$$A(t) = \frac{\alpha(t) + \beta + \gamma}{1 - (\beta + \gamma)},\tag{3}$$

$$A = \frac{b + \beta + \gamma}{1 - (\beta + \gamma)}.$$
(4)

By assumption 0 < A < 1 so we can choose $b < \delta < 1$ such that $\frac{A}{\delta} < 1$, let $y \in fx$ from (1) we have:

$$d(y,gy) \le \alpha(d(x,y))d(x,y) + \beta\{d(x,fx) + d(y,gy)\} + \gamma d(x,gy)$$
$$\le \alpha(d(x,y))d(x,y) + \beta\{d(x,fx) + d(y,gy)\} + \gamma d(x,y) + \gamma d(y,gy).$$

Which in turn yields

$$d(y, gy) \le A(d(x, y))d(x, y), \tag{5}$$

for all $y \in I_x^b$. Similarly we get

$$d(x, fx) \le A(d(x, y))d(x, y), \tag{6}$$

for all $x \in gy$. Let $x_0 \in X$, since $\delta < 1$ there exist $x_1 \in fx_0$ such that $\delta d(x_0, x_1) < d(x_0, fx_0)$. Since $b < \delta$ we have $x_1 \in I_{x_0}^b$ and from (5) we get $d(x_1, gx_1) \leq A(d(x_1, x_0))d(x_1, x_0)$, hence there is $x_2 \in gx_1$ such that $d(x_1, x_2) < Ad(x_1, x_0)$, and from (6) we have

$$d(x_2, fx_2) \le A(d(x_2, x_1))d(x_2, x_1) < A^2 d(x_1, x_0) < \frac{A}{\delta} A d(x_0, fx_0) < A d$$

So there is $x_3 \in fx_2$ such that $d(x_2, x_3) < Ad(x_2, x_1)$.

Continuing this process we can iteratively choose a sequence $\{x_n\}_{n=0}^{\infty}$ such that $x_{2n} \in gx_{2n-1}$ and $x_{2n+1} \in fx_{2n}$ for which the followings hold for all nonnegative integers $n \in N$. Either $x_{n+1} = x_n$ for some nonnegative integer n, in which case the proof is completed, or $x_{n+1} \neq x_n$ for all nonnegative integers n, then

$$\delta d(x_{2n}, x_{2n+1}) < d(x_{2n}, fx_{2n}), \tag{7}$$

$$d(x_{2n+1}, x_{2n+2}) < Ad(x_{2n}, x_{2n+1}),$$
(8)

$$d(x_{2n+2}, fx_{2n+2}) < Ad(x_{2n}, fx_{2n}).$$
(9)

From (9) we get

$$d(x_{2n}, fx_{2n}) \le A^n d(x_0, fx_0), \tag{10}$$

for all n=1, 2, 3, ... and from (10) we get

$$\sum_{n=0}^{\infty} d(x_n, x_{n+1}) = \sum_{n=0}^{\infty} d(x_{2n}, x_{2n+1}) + \sum_{n=0}^{\infty} d(x_{2n+1}, x_{2n+2})$$

$$\leq \sum_{n=0}^{\infty} \frac{1}{\delta} d(x_{2n}, fx_{2n}) + \sum_{n=0}^{\infty} \frac{A}{\delta} d(x_{2n}, fx_{2n}) < \infty.$$

Hence the sequence $\{x_n\}_{n=0}^{\infty}$ is Cauchy and since X is complete, there is some $z \in X$ such that $\lim_{n \to \infty} x_n = z$. Now D(x) = d(x, fx) is lower semicontinuous and from (10) we get

$$d(z, fz) \le \liminf_{n \to \infty} d(x_{2n}, fx_{2n}) = 0$$

Since fz is closed $z \in fz$, so by first part of the proof z is also a fixed point of g and the proof is complete.

By putting $\beta = \gamma = 0$ in above theorem we have the following corollary. **Corollary 2.2.** Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$. If there exist constant $b \in (0, 1)$ and $\alpha : X \longrightarrow [0, b)$ and f, g satisfy the following conditions :

$$d(y, gy) \le \alpha(d(x, y))d(x, y), \tag{11}$$

for all $y \in I_b^x$ where $I_b^x = \{y \in fx : bd(x, y) \le d(x, fx)\}$, and

$$d(x, fx) \le \alpha(d(x, y))d(x, y), \tag{12}$$

for all $x \in gy$.

Then f, g have a common fixed point provided D(x) = d(x, fx) is lower semi-continuous.

The following theorem generalize theorem 2.1 of D. Klim and D. Wardowski [6].

Theorem 2.3. Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$. If there exists a constant $b \in (0, 1)$ such that f, g satisfy the following conditions:

for all $x \in X$ there is $y \in gx$ such that

- $bd(x,y) \le d(x,fx)$,
- $d(y, fy) \le \alpha(d(x, y))d(x, y),$

where $\alpha : X \longrightarrow [0, b)$ is such that $\limsup_{t \longrightarrow r_+} \alpha(t) < b$ for every $r \in [0, \infty)$.

Then f, g have a common fixed point provided D(x) = d(x, fx) is lower semi-continuous.

Proof. Let $x_0 \in X$, since gx_0 is nonempty there is $x_1 \in gx_0$ and by assumption we have:

• $bd(x_0, x_1) \le d(x_0, fx_0),$

• $d(x_1, fx_1) \le \alpha(d(x_0, x_1))d(x_0, x_1).$

Continuing this process we can choose an iterative sequence $\{x_n\}_{n=0}^{\infty}$ such that the following conditions hold for $n \in N$.

- $x_{n+1} \in gx_n$,
- $bd(x_n, x_{n+1}) \le d(x_n, fx_n),$
- $d(x_{n+1}, fx_{n+1}) \le \alpha(d(x_n, x_{n+1}))d(x_n, x_{n+1}).$

With the same argument as used in the proof of theorem 2.1 of [5] we deduce that $\lim_{n \to \infty} d(x_n, fx_n) = 0$ and $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence and since X is complete so it converges to some point $z \in X$. Now

$$0 \le d(z, fz) \le liminf_{n \longrightarrow \infty} d(x_n, fx_n) = 0,$$

and fz is closed, so $z \in fz$. It is easy to see that every fixed point of f is a fixed point of g and the proof is complete.

Theorem 2.4. Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$ and $\alpha : [0, \infty) \longrightarrow [0, 1)$ be a function such that $\limsup_{t \longrightarrow r^+} \alpha(t) < 1$ for all $r \in [0, \infty)$ and f, g satisfy the following conditions :

$$d(y, gy) \le \alpha(d(x, y))d(x, y) \tag{13}$$

for all $y \in fx$ and

$$d(x, fx) \le \alpha(d(x, y))d(x, y) \tag{14}$$

for all $x \in gy$.

Then f and g have a common fixed point provided D(x) = d(x, fx) is lower semi-continuous.

Proof. (This proof is inspired by T. Suzuki [4]). Define $\beta : [0, \infty) \longrightarrow [0, 1)$ by

$$\beta(t) = \frac{1 + \alpha(t)}{2}.$$

Then $\limsup_{r \longrightarrow t+} \beta(r) < 1$, $\alpha(t) < \beta(t) < 1$ for all $t \in [0, \infty)$. Let $x_0 \in X$ and $x_1 \in fx_0$ from (13) we have,

$$d(x_1, gx_1) \le \alpha(d(x_0, x_1))d(x_0, x_1)$$

So there exists $x_2 \in gx_1$ such that:

$$d(x_1, x_2) \le \beta(d(x_0, x_1))d(x_0, x_1),$$

since $x_2 \in gx_1$ hence from (14) we have

$$d(x_2, fx_2) \le \alpha(d(x_0, x_1))d(x_0, x_1).$$

Continuing this process we can choose an iterative sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_{2n} \in gx_{2n-1}, x_{2n+1} \in fx_{2n}$ and,

$$d(x_{n+1}, x_{n+2}) \le \beta(d(x_n, x_{n+1}))d(x_n, x_{n+1}).$$
(15)

Since $\beta(t) < 1$ for all $t \in [0, \infty)$ so $\{d(x_n, x_{n+1})\}_{n=0}^{\infty}$ is a decreasing sequence in R and must converge to some nonnegative real number $d \in R$.

Since $\limsup_{t \to d+} \beta(t) < 1$, we can choose $r \in [0, 1)$ and $v \in N$ such that

 $\beta(d(x_n, x_{n+1})) < r$ for every $n \ge v$. Hence

$$\sum_{n=1}^{\infty} (d(x_n, x_{n+1})) \le \sum_{n=1}^{\nu} (d(x_n, x_{n+1})) + \sum_{n=\nu+1}^{\infty} r^n (d(x_1, x_0)) < \infty.$$

So $\{x_n\}$ is a Cauchy sequence and since X is complete, it converges to some $z \in X$ and since $x_{2n+1} \in fx_{2n}$,

$$d(z, fz) \leq liminf_{n \longrightarrow \infty} d(x_{2n}, fx_{2n}) \leq$$
$$liminf_{n \longrightarrow \infty} (d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, fx_{2n})) = 0,$$

hence $z \in fz$ and by putting x = y = z in (13) we get

$$d(z,gz) \le \alpha(d(z,z))d(z,z),$$

so $z \in gz$ and this completes the proof.

Theorem 4 of M. Berinde and V. Berinde [7] is a straightforward consequence of the following corollary which is obtained by simply taking f = g in Theorem 2.4.

Corollary 2.5. Let (X, d) be a complete metric space and let $f : X \longrightarrow Cl(X)$ and $\alpha : X \longrightarrow [0, 1)$ be a function such that $\limsup_{t \longrightarrow r+} \alpha(t) < 1$ for all $r \in [0, \infty)$ and f satisfy:

$$d(y, fy) \le \alpha(d(x, y))d(x, y), \tag{16}$$

for all $y \in fx$.

Then f has a fixed point provided I = d(x, fx) is lower semi-continuous.

Some common fixed point theorems can be easily proved by using the theorem 2.4. We state some of them by way of illustration.

Corollary 2.6. Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$ and $\alpha : [0, \infty) \longrightarrow [0, 1)$ be a function such that $\limsup_{t \longrightarrow r^+} \alpha(t) < 1$ for all $r \in [0, \infty)$ and f, g satisfy the following conditions:

• $d(y, fy) \le \alpha(d(x, y))d(x, gx)$ for all $y \in gx$,

• $d(x, gx) \le \alpha(d(x, y))d(y, fy)$ for all $x \in fy$.

Then fixed point sets of f and g coincide and will be nonempty if either d(x, fx) or d(x, gx) is lower semi-continuous. **Proof.** If $y \in gx$ then,

$$d(y, fy) \leq \alpha(d(x, y))d(x, gx) \leq \alpha(d(x, y))(d(x, y) + d(y, gx)) = \alpha(d(x, y))d(x, y).$$

So $d(y, fy) \leq \alpha(d(x, y))d(x, y)$ for every $y \in gx$. Similarly $d(x, gx) \leq \alpha(d(x, y))d(x, y)$ for all $x \in fy$, now by theorem 2.4 the proof is complete. **Corollary 2.7.** Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$ and f, g satisfy the following condition:

$$H(fx, gy) \le \alpha(d(x, y))m(x, y)$$

where $\alpha : X \longrightarrow [0,1)$ is a function such that $\limsup_{t \longrightarrow r+} \alpha(t) < 1$ for all $r \in [0,\infty)$, $m(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy)+d(y,fx)}{2}\}$ for all $x, y \in X$. Then f, g have a common fixed point provided I = d(x, fx) is lower semi-continuous.

Proof. Let $y \in fx$ then

$$\begin{split} d(y,gy) &\leq H(fx,gy) \leq \\ \alpha(d(x,y))max\{d(x,y), d(x,y) + d(y,fx), d(y,gy), \frac{d(x,y) + d(y,gy)}{2}\} \\ &= \alpha(d(x,y))max\{d(x,y), d(y,gy), \frac{d(x,y) + d(y,gy)}{2}\} = \\ &\quad \alpha(d(x,y))max\{d(x,y), d(y,gy)\}, \end{split}$$

if d(x,y) < d(y,gy) then $d(y,gy) \le \alpha(d(x,y))d(y,gy)$, a contradiction. So

$$d(y, gy) \le \alpha(d(x, y))d(x, y) \tag{17}$$

for every $y \in fx$, similarly we have

$$d(x, fx) \le \alpha(d(x, y))d(x, y) \tag{18}$$

for every $x \in gy$.

So result follows by Theorem 2.4. \blacksquare

Theorem 2.8. Let (X, d) be a complete metric space and let $f, g : X \longrightarrow Cl(X)$ be functions such that

$$H(fx, gy) \le \alpha(d(x, y))d(x, y) + \beta(d(x, y))\{d(x, fx) + d(y, gy)\} + \gamma(d(x, y))\{d(x, gy) + d(y, fx)\}$$

for every $x, y \in X$, where $\alpha, \beta, \gamma : [0, \infty) \longrightarrow [0, 1)$ are functions such that $0 \le \alpha(t) + 2\beta(t) + 2\gamma(t) < 1$ for every $t \in [0, \infty)$ and

$$\limsup_{t \to r+} (\alpha(t) + \beta(t) + \gamma(t)) < \limsup_{t \to r+} (1 - (\beta(t) + \gamma(t)),$$

for every $r \in [0, \infty)$, then f, g have a common fixed point provided D(x) = d(x, fx) is lower semi-continuous.

Proof. Define $\theta : [0, \infty) \longrightarrow [0, 1)$ by $\theta(t) = \frac{(\alpha + \beta + \gamma)(t)}{(1 - (\beta + \gamma))(t)}$. Let $y \in fx$ then like above theorem we have

$$\begin{aligned} &d(y, gy) \le H(fx, gy) \le \alpha(d(x, y))d(x, y) + \beta(d(x, y)) \\ &\times \{d(x, y) + d(y, gy)\} + \gamma(d(x, y))\{d(x, y) + d(y, gy), \end{aligned}$$

so we have:

 $(1 - (\beta + \gamma)(d(x, y)))d(y, gy) \le (\alpha + \beta + \gamma)(d(x, y))d(x, y),$

and this in turn yields:

$$d(y, gy) \le \theta(d(x, y))d(x, y) \tag{19}$$

for every $y \in fx$, similarly

$$d(x, fx) \le \theta(d(x, y))d(x, y) \tag{20}$$

for every $x \in gy$. Now from (19), (20) and theorem 2.4 the proof is follows.

For completeness we extend theorem 4.2 and 4.3 of [3] as follows. **Theorem 2.9.** Let (X, d) be a complete metric space and $f, g: X \longrightarrow N(X)$ be multi-valued mappings, let $\varphi: X \longrightarrow R$ be bounded from below and lower semi-continuous and let $\eta: [0, \infty) \longrightarrow [0, \infty)$ be nondecreasing, continuous and subadditive which $\eta^{-1}(\{0\}) = \{0\}$, and satisfying the following conditions:

- For any $x \in X$ there is $y \in fx$ such that $\eta(d(x, y)) \leq \varphi(x) \varphi(y)$,
- For any $x \in X$ there is $y \in gx$ such that $\eta(d(x,y)) \leq \varphi(x) \varphi(y)$,

Then f and g have a common fixed point.

Proof. Like lemma 4.1 of [3] we know that η define a partial order on X such that X has a maximal element with respect to it. Let x_0 be the maximal element of X then by the above conditions there exists $z \in fx_0$ and $w \in gx_0$ such that $x_0 \leq z$ and $x_0 \leq w$, since x_0 is maximal we must have $x_0 = w = z$ and the proof is complete.

Corollary 2.10. For (X, d), f, g, φ and η as above if η satisfies the stronger conditions:

- For any $x \in X$ and $y \in fx$, $\eta(d(x, y)) \le \varphi(x) \varphi(y)$,
- For any $x \in X$ and $y \in gx$, $\eta(d(x, y)) \le \varphi(x) \varphi(y)$,

then there is $x_0 \in X$ such that $fx_0 = gx_0 = \{x_0\}$.

References

- S. B. Nadler. jr., Multi-valued contraction mappings, Pacific. J. Math. 30(1969) 475-488.
- [2] N. Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141(1989) 177-188.
- [3] P. Z. Dafer, H. Kaneko, Fixed point of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192(1995) 655-666.
- [4] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340(2008) 752-755.
- [5] Y. Feng and S. Liu, Fixed point theorem of multi-valued contractive mappings, J. Math. Anal. Appl. 317(2006) 103-112.
- [6] D. Klim, D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl. 334(2007) 132-139.
- [7] M. Berinde, V. Berinde, On a general class of multivalued weakly picard mappings, J. Math. Anal. Appl. 326(2007) 772-782.