Fixed point and common fixed point theorems of contractive multivalued mappings on complete metric spaces

H. Khandani ${ }^{a}$, S.M. Vaezpour ${ }^{b}$, B. Sims ${ }^{c, *}$
${ }^{a}$ Dept. of Math., Science and Research Branch, Islamic Azad University(IAU), Tehran, Iran
khandani.hassan@yahoo.com
${ }^{b}$ Dept. of Math., Amirkabir University of Technology, Tehran, Iran
Vaez@aut.ac.ir
${ }^{b, c}$ School of Math. and Phys. Sci., The University of Newcastle, NSW, Australia
Brailey.Sims@newcastle.edu.au

Abstract

In this paper we give a common fixed point type generalization for some multi-valued contractive mappings on complete metric spaces. Our results extend some recent results of Y. Feng, S. Liu[Y. Feng and S. Liu, Fixed point theorem of multi-valued contractive mappings, J. Math. Anal. Appl. 317(2006)103-112], N. Mizoguchi, W. Takahashi[N. Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141(1989)177188], D. Klim, D. Wardowski[D. Klim, D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl. 334(2007)132-139]. We show that some common fixed point contraction theorems for multi-valued mappings are straightforward consequence of our results.

Keywords. common fixed point, multi-valued map .

[^0]
1 Introduction

Throughout this paper we denote by N the set of positive integers and by R the set of real numbers.

Let (X, d) be a metric space, we denote by $C B(X), C l(X)$ and $N(X)$ the class of all nonempty closed and bounded, all nonempty and closed and all nonempty subsets of X respectively.
Let H be the Hausdorff metric with respect to d, that is

$$
H(A, B)=\max \left\{\sup _{x \in B} d(x, A), \sup _{y \in A} d(y, B)\right\},
$$

for all A, B in $C B(X)$. where $d(x, A)=\inf _{y \in A} d(x, y)$.
Nadler [1] Extended the Banach contraction theorem for multi-valued mappings and Nadler's fixed point theorem has been extended in many directions. The following generalization was given by Mizoguchi and Takahashi [2].
Theorem 1.(Mizoguchi,Takahashi [2]) Let (X, d) be a complete metric space and let $T: X \longrightarrow C B(X)$. If there exist a function $\alpha:[0, \infty) \longrightarrow[0,1)$ such that $\lim \sup _{r \rightarrow t+} \alpha(r)<1$ for all $t \in[0, \infty)$ and

$$
H(T x, T y) \leq \alpha(d(x, y)) d(x, y)
$$

for all $x, y \in X$, then T has a fixed point.
Another proof of the above theorem was given by Dafer and Kaneko[3] and recently another proof for this theorem was given by T. Suzuki [4].
Y. Feng and S. Liu [5] proved the following theorem.

Theorem 2. (Feng, Liu [5]) Let (X, d) be a complete metric space and let $T: X \longrightarrow C B(X)$. If there exist $b, c \in(0,1)$ such that $c<b$ and for any $x \in X$ there is $y \in T x$ satisfying the following conditions:

- $b d(x, y) \leq d(x, T x)$,
- $d(y, T y) \leq c d(x, y)$.

Then T has a fixed point in X provided the function $D(x)=d(x, T x)$ is lower semi-continuous.
Recently D. Klim and D. Wardowski [6] extended Feng and Liu's theorem in the following sense.
Theorem 3.(Klim, Wardowski [6]) Let (X, d) be a complete metric space and let $T: X \longrightarrow C l(X)$. Assume the following conditions hold.
For each $x \in X$ there is $y \in T x$ such that :

- $b d(x, y) \leq d(x, T x)$,
- $d(y, T y) \leq \alpha(d(x, y)) d(x, y)$,
where $\alpha:[0, \infty) \longrightarrow[0, b)$ is such that $\limsup _{r \rightarrow t+} \alpha(r)<b$ for all $t \in$ $[0, \infty)$. Then T has a fixed point in X provided $D(x)=d(x, T x)$ is lower semi-continuous.
M. Berinde and V. Brinde [7] extended Mizoguchi and Takahashi's theorem as follows.
Theorem 4. Let (X, d) be a complete metric space, $L \geq 0$ and let $T: X \longrightarrow$ $C B(X)$ be a generalized (α, L) contraction, i.e., a mapping for which there exists a function $\alpha:[0, \infty) \longrightarrow[0,1)$ satisfying $\lim \sup _{r \rightarrow t+} \alpha(r)<1$, for every $t \in[0, \infty)$ such that

$$
H(T x, T y) \leq \alpha(d(x, y)) d(x, y)+L d(y, T x)
$$

for all $x, y \in X$. Then T has at least one fixed point.

2 Main Results

First we prove two common fixed point theorem of multi-valued contractive mappings on complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$. If there exist constant $b \in(0,1)$, non negative real numbers β, γ such that $b+2 \beta+2 \gamma<1$ and a function $\alpha: X \longrightarrow[0, b)$ such that f, g satisfy the following conditions:

$$
\begin{equation*}
d(y, g y) \leq \alpha(d(x, y)) d(x, y)+\beta\{d(x, f x)+d(y, g y)\}+\gamma d(x, g y), \tag{1}
\end{equation*}
$$

for all $y \in I_{b}^{x}$ and,

$$
\begin{equation*}
d(x, f x) \leq \alpha(d(x, y)) d(x, y)+\beta\{d(x, f x)+d(y, g y)\}+\gamma d(y, f x) \tag{2}
\end{equation*}
$$

for all $x \in g y$, where

$$
I_{b}^{x}=\{y \in f x: b d(x, y) \leq d(x, f x)\} .
$$

Then f, g have a common fixed point provided $I(x)=d(x, f x)$ is lower semi-continuous.
Proof. First we show that every fixed point of f is a fixed point of g and conversely. Let $z \in f z$, by putting $x=y=z$ in (1) we get
$d(z, g z) \leq \alpha(d(z, z)) d(z, z)+\beta\{d(z, f z)+d(z, g z)\}+\gamma d(z, g z)=(\beta+\gamma) d(z, g z)$.

Since $\beta+\gamma<1$ hence $d(z, g z)=0$. A similar argument shows that every fixed point of g is also a fixed point of f, define :

$$
\begin{align*}
A(t) & =\frac{\alpha(t)+\beta+\gamma}{1-(\beta+\gamma)} \tag{3}\\
A & =\frac{b+\beta+\gamma}{1-(\beta+\gamma)} \tag{4}
\end{align*}
$$

By assumption $0<A<1$ so we can choose $b<\delta<1$ such that $\frac{A}{\delta}<1$, let $y \in f x$ from (1) we have:

$$
\begin{gathered}
\quad d(y, g y) \leq \alpha(d(x, y)) d(x, y)+\beta\{d(x, f x)+d(y, g y)\}+\gamma d(x, g y) \\
\leq \alpha(d(x, y)) d(x, y)+\beta\{d(x, f x)+d(y, g y)\}+\gamma d(x, y)+\gamma d(y, g y) .
\end{gathered}
$$

Which in turn yields

$$
\begin{equation*}
d(y, g y) \leq A(d(x, y)) d(x, y) \tag{5}
\end{equation*}
$$

for all $y \in I_{x}^{b}$. Similarly we get

$$
\begin{equation*}
d(x, f x) \leq A(d(x, y)) d(x, y) \tag{6}
\end{equation*}
$$

for all $x \in g y$. Let $x_{0} \in X$, since $\delta<1$ there exist $x_{1} \in f x_{0}$ such that $\delta d\left(x_{0}, x_{1}\right)<d\left(x_{0}, f x_{0}\right)$. Since $b<\delta$ we have $x_{1} \in I_{x_{0}}^{b}$ and from (5) we get $d\left(x_{1}, g x_{1}\right) \leq A\left(d\left(x_{1}, x_{0}\right)\right) d\left(x_{1}, x_{0}\right)$, hence there is $x_{2} \in g x_{1}$ such that $d\left(x_{1}, x_{2}\right)<$ $A d\left(x_{1}, x_{0}\right)$, and from (6) we have
$d\left(x_{2}, f x_{2}\right) \leq A\left(d\left(x_{2}, x_{1}\right)\right) d\left(x_{2}, x_{1}\right)<A^{2} d\left(x_{1}, x_{0}\right)<\frac{A}{\delta} A d\left(x_{0}, f x_{0}\right)<A d\left(x_{0}, f x_{0}\right)$.
So there is $x_{3} \in f x_{2}$ such that $d\left(x_{2}, x_{3}\right)<A d\left(x_{2}, x_{1}\right)$.
Continuing this process we can iteratively choose a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that $x_{2 n} \in g x_{2 n-1}$ and $x_{2 n+1} \in f x_{2 n}$ for which the followings hold for all nonnegative integers $n \in N$. Either $x_{n+1}=x_{n}$ for some nonnegative integer n, in which case the proof is completed, or $x_{n+1} \neq x_{n}$ for all nonnegative integers n, then

$$
\begin{gather*}
\delta d\left(x_{2 n}, x_{2 n+1}\right)<d\left(x_{2 n}, f x_{2 n}\right), \tag{7}\\
d\left(x_{2 n+1}, x_{2 n+2}\right)<A d\left(x_{2 n}, x_{2 n+1}\right), \tag{8}\\
d\left(x_{2 n+2}, f x_{2 n+2}\right)<\operatorname{Ad}\left(x_{2 n}, f x_{2 n}\right) . \tag{9}
\end{gather*}
$$

From (9) we get

$$
\begin{equation*}
d\left(x_{2 n}, f x_{2 n}\right) \leq A^{n} d\left(x_{0}, f x_{0}\right), \tag{10}
\end{equation*}
$$

for all $\mathrm{n}=1,2,3, .$. and from (10) we get

$$
\sum_{n=0}^{\infty} d\left(x_{n}, x_{n+1}\right)=\sum_{n=0}^{\infty} d\left(x_{2 n}, x_{2 n+1}\right)+\sum_{n=0}^{\infty} d\left(x_{2 n+1}, x_{2 n+2}\right)
$$

$$
\leq \sum_{n=0}^{\infty} \frac{1}{\delta} d\left(x_{2 n}, f x_{2 n}\right)+\sum_{n=0}^{\infty} \frac{A}{\delta} d\left(x_{2 n}, f x_{2 n}\right)<\infty .
$$

Hence the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is Cauchy and since X is complete, there is some $z \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=z$. Now $D(x)=d(x, f x)$ is lower semicontinuous and from (10) we get

$$
d(z, f z) \leq \liminf _{n \longrightarrow \infty} d\left(x_{2 n}, f x_{2 n}\right)=0 .
$$

Since $f z$ is closed $z \in f z$, so by first part of the proof z is also a fixed point of g and the proof is complete.

By putting $\beta=\gamma=0$ in above theorem we have the following corollary. Corollary 2.2. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$. If there exist constant $b \in(0,1)$ and $\alpha: X \longrightarrow[0, b)$ and f, g satisfy the following conditions :

$$
\begin{equation*}
d(y, g y) \leq \alpha(d(x, y)) d(x, y) \tag{11}
\end{equation*}
$$

for all $y \in I_{b}^{x}$ where $I_{b}^{x}=\{y \in f x: b d(x, y) \leq d(x, f x)\}$, and

$$
\begin{equation*}
d(x, f x) \leq \alpha(d(x, y)) d(x, y) \tag{12}
\end{equation*}
$$

for all $x \in g y$.
Then f, g have a common fixed point provided $D(x)=d(x, f x)$ is lower semi-continuous.

The following theorem generalize theorem 2.1 of D. Klim and D. Wardowski [6].
Theorem 2.3. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$. If there exists a constant $b \in(0,1)$ such that f, g satisfy the following conditions:
for all $x \in X$ there is $y \in g x$ such that

- $b d(x, y) \leq d(x, f x)$,
- $d(y, f y) \leq \alpha(d(x, y)) d(x, y)$,
where $\alpha: X \longrightarrow[0, b)$ is such that $\lim \sup _{t \longrightarrow r+} \alpha(t)<b$ for every $r \in[0, \infty)$.
Then f, g have a common fixed point provided $D(x)=d(x, f x)$ is lower semi-continuous.
Proof. Let $x_{0} \in X$, since $g x_{0}$ is nonempty there is $x_{1} \in g x_{0}$ and by assumption we have:
- $b d\left(x_{0}, x_{1}\right) \leq d\left(x_{0}, f x_{0}\right)$,
- $d\left(x_{1}, f x_{1}\right) \leq \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)$.

Continuing this process we can choose an iterative sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that the following conditions hold for $n \in N$.

- $x_{n+1} \in g x_{n}$,
- $b d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, f x_{n}\right)$,
- $d\left(x_{n+1}, f x_{n+1}\right) \leq \alpha\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right)$.

With the same argument as used in the proof of theorem 2.1 of [5] we deduce that $\lim _{n \rightarrow \infty} d\left(x_{n}, f x_{n}\right)=0$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence and since X is complete so it converges to some point $z \in X$. Now

$$
0 \leq d(z, f z) \leq \operatorname{limin} f_{n \rightarrow \infty} d\left(x_{n}, f x_{n}\right)=0
$$

and $f z$ is closed, so $z \in f z$. It is easy to see that every fixed point of f is a fixed point of g and the proof is complete.
Theorem 2.4. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$ and $\alpha:[0, \infty) \longrightarrow[0,1)$ be a function such that $\lim \sup _{t \longrightarrow r+} \alpha(t)<1$ for all $r \in[0, \infty)$ and f, g satisfy the following conditions :

$$
\begin{equation*}
d(y, g y) \leq \alpha(d(x, y)) d(x, y) \tag{13}
\end{equation*}
$$

for all $y \in f x$ and

$$
\begin{equation*}
d(x, f x) \leq \alpha(d(x, y)) d(x, y) \tag{14}
\end{equation*}
$$

for all $x \in g y$.
Then f and g have a common fixed point provided $D(x)=d(x, f x)$ is lower semi-continuous.
Proof. (This proof is inspired by T. Suzuki [4]). Define $\beta:[0, \infty) \longrightarrow[0,1)$ by

$$
\beta(t)=\frac{1+\alpha(t)}{2} .
$$

Then $\lim \sup _{r \rightarrow t+} \beta(r)<1, \alpha(t)<\beta(t)<1$ for all $t \in[0, \infty)$.
Let $x_{0} \in X$ and $x_{1} \in f x_{0}$ from (13) we have,

$$
d\left(x_{1}, g x_{1}\right) \leq \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)
$$

So there exists $x_{2} \in g x_{1}$ such that:

$$
d\left(x_{1}, x_{2}\right) \leq \beta\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)
$$

since $x_{2} \in g x_{1}$ hence from (14) we have

$$
d\left(x_{2}, f x_{2}\right) \leq \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)
$$

Continuing this process we can choose an iterative sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{2 n} \in g x_{2 n-1}, x_{2 n+1} \in f x_{2 n}$ and,

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right) \leq \beta\left(d\left(x_{n} \cdot x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right) . \tag{15}
\end{equation*}
$$

Since $\beta(t)<1$ for all $t \in[0, \infty)$ so $\left\{d\left(x_{n}, x_{n+1}\right)\right\}_{n=0}^{\infty}$ is a decreasing sequence in R and must converge to some nonnegative real number $d \in R$.

Since $\lim \sup _{t \rightarrow d+} \beta(t)<1$, we can choose $r \in[0,1)$ and $v \in N$ such that

$$
\begin{aligned}
& \beta\left(d\left(x_{n}, x_{n+1}\right)\right)<r \text { for every } n \geq v \text {. Hence } \\
& \quad \sum_{n=1}^{\infty}\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \sum_{n=1}^{v}\left(d\left(x_{n}, x_{n+1}\right)\right)+\sum_{n=v+1}^{\infty} r^{n}\left(d\left(x_{1}, x_{0}\right)\right)<\infty .
\end{aligned}
$$

So $\left\{x_{n}\right\}$ is a Cauchy sequence and since X is complete, it converges to some $z \in X$ and since $x_{2 n+1} \in f x_{2 n}$,

$$
\begin{gathered}
d(z, f z) \leq \liminf _{n \longrightarrow \infty} d\left(x_{2 n}, f x_{2 n}\right) \leq \\
\liminf _{n \longrightarrow \infty}\left(d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, f x_{2 n}\right)\right)=0
\end{gathered}
$$

hence $z \in f z$ and by putting $x=y=z$ in (13) we get

$$
d(z, g z) \leq \alpha(d(z, z)) d(z, z)
$$

so $z \in g z$ and this completes the proof.
Theorem 4 of M. Berinde and V. Berinde [7] is a straightforward consequence of the following corollary which is obtained by simply taking $f=g$ in Theorem 2.4.
Corollary 2.5. Let (X, d) be a complete metric space and let $f: X \longrightarrow C l(X)$ and $\alpha: X \longrightarrow[0,1)$ be a function such that $\lim \sup _{t \rightarrow r+} \alpha(t)<1$ for all $r \in[0, \infty)$ and f satisfy:

$$
\begin{equation*}
d(y, f y) \leq \alpha(d(x, y)) d(x, y) \tag{16}
\end{equation*}
$$

for all $y \in f x$.
Then f has a fixed point provided $I=d(x, f x)$ is lower semi-continuous.
Some common fixed point theorems can be easily proved by using the theorem 2.4. We state some of them by way of illustration.
Corollary 2.6. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$ and $\alpha:[0, \infty) \longrightarrow[0,1)$ be a function such that $\lim \sup _{t \longrightarrow r+} \alpha(t)<1$ for all $r \in[0, \infty)$ and f, g satisfy the following conditions:

- $d(y, f y) \leq \alpha(d(x, y)) d(x, g x)$ for all $y \in g x$,
- $d(x, g x) \leq \alpha(d(x, y)) d(y, f y)$ for all $x \in f y$.

Then fixed point sets of f and g coincide and will be nonempty if either $d(x, f x)$ or $d(x, g x)$ is lower semi-continuous.
Proof. If $y \in g x$ then,
$d(y, f y) \leq \alpha(d(x, y)) d(x, g x) \leq \alpha(d(x, y))(d(x, y)+d(y, g x))=\alpha(d(x, y)) d(x, y)$.
So $d(y, f y) \leq \alpha(d(x, y)) d(x, y)$ for every $y \in g x$. Similarly $d(x, g x) \leq \alpha(d(x, y)) d(x, y)$ for all $x \in f y$, now by theorem 2.4 the proof is complete.
Corollary 2.7. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$ and f, g satisfy the following condition:

$$
H(f x, g y) \leq \alpha(d(x, y)) m(x, y)
$$

where $\alpha: X \longrightarrow[0,1)$ is a function such that $\lim \sup _{t \longrightarrow r+} \alpha(t)<1$ for all $r \in[0, \infty), m(x, y)=\max \left\{d(x, y), d(x, f x), d(y, g y), \frac{d(x, g y)+d(y, f x)}{2}\right\}$ for all $x, y \in X$. Then f, g have a common fixed point provided $I=d(x, f x)$ is lower semi-continuous.
Proof. Let $y \in f x$ then

$$
\begin{gathered}
d(y, g y) \leq H(f x, g y) \leq \\
\alpha(d(x, y)) \max \left\{d(x, y), d(x, y)+d(y, f x), d(y, g y), \frac{d(x, y)+d(y, g y)}{2}\right\} \\
=\alpha(d(x, y)) \max \left\{d(x, y), d(y, g y), \frac{d(x, y)+d(y, g y)}{2}\right\}= \\
\alpha(d(x, y)) \max \{d(x, y), d(y, g y)\}
\end{gathered}
$$

if $d(x, y)<d(y, g y)$ then $d(y, g y) \leq \alpha(d(x, y)) d(y, g y)$, a contradiction. So

$$
\begin{equation*}
d(y, g y) \leq \alpha(d(x, y)) d(x, y) \tag{17}
\end{equation*}
$$

for every $y \in f x$, similarly we have

$$
\begin{equation*}
d(x, f x) \leq \alpha(d(x, y)) d(x, y) \tag{18}
\end{equation*}
$$

for every $x \in g y$.
So result follows by Theorem 2.4.
Theorem 2.8. Let (X, d) be a complete metric space and let $f, g: X \longrightarrow$ $C l(X)$ be functions such that

$$
\begin{gathered}
H(f x, g y) \leq \alpha(d(x, y)) d(x, y)+\beta(d(x, y))\{d(x, f x)+d(y, g y)\} \\
+\gamma(d(x, y))\{d(x, g y)+d(y, f x)\}
\end{gathered}
$$

for every $x, y \in X$, where $\alpha, \beta, \gamma:[0, \infty) \longrightarrow[0,1)$ are functions such that $0 \leq \alpha(t)+2 \beta(t)+2 \gamma(t)<1$ for every $t \in[0, \infty)$ and

$$
\limsup _{t \rightarrow r+}(\alpha(t)+\beta(t)+\gamma(t))<\limsup _{t \longrightarrow r+}(1-(\beta(t)+\gamma(t))
$$

for every $r \in[0, \infty)$, then f, g have a common fixed point provided $D(x)=$ $d(x, f x)$ is lower semi-continuous.

Proof. Define $\theta:[0, \infty) \longrightarrow[0,1)$ by $\theta(t)=\frac{(\alpha+\beta+\gamma)(t)}{(1-(\beta+\gamma))(t)}$. Let $y \in f x$ then like above theorem we have

$$
\begin{aligned}
& d(y, g y) \leq H(f x, g y) \leq \alpha(d(x, y)) d(x, y)+\beta(d(x, y)) \\
& \times\{d(x, y)+d(y, g y)\}+\gamma(d(x, y))\{d(x, y)+d(y, g y),
\end{aligned}
$$

so we have:

$$
(1-(\beta+\gamma)(d(x, y))) d(y, g y) \leq(\alpha+\beta+\gamma)(d(x, y)) d(x, y)
$$

and this in turn yields:

$$
\begin{equation*}
d(y, g y) \leq \theta(d(x, y)) d(x, y) \tag{19}
\end{equation*}
$$

for every $y \in f x$, similarly

$$
\begin{equation*}
d(x, f x) \leq \theta(d(x, y)) d(x, y) \tag{20}
\end{equation*}
$$

for every $x \in g y$. Now from (19), (20) and theorem 2.4 the proof is follows.
For completeness we extend theorem 4.2 and 4.3 of [3] as follows.
Theorem 2.9. Let (X, d) be a complete metric space and $f, g: X \longrightarrow N(X)$ be multi-valued mappings, let $\varphi: X \longrightarrow R$ be bounded from below and lower semi-continuous and let $\eta:[0, \infty) \longrightarrow[0, \infty)$ be nondecreasing, continuous and subadditive which $\eta^{-1}(\{0\})=\{0\}$, and satisfying the following conditions:

- For any $x \in X$ there is $y \in f x$ such that $\eta(d(x, y)) \leq \varphi(x)-\varphi(y)$,
- For any $x \in X$ there is $y \in g x$ such that $\eta(d(x, y)) \leq \varphi(x)-\varphi(y)$,

Then f and g have a common fixed point.
Proof. Like lemma 4.1 of [3] we know that η define a partial order on X such that X has a maximal element with respect to it. Let x_{0} be the maximal element of X then by the above conditions there exists $z \in f x_{0}$ and $w \in g x_{0}$ such that $x_{0} \leq z$ and $x_{0} \leq w$, since x_{0} is maximal we must have $x_{0}=w=z$ and the proof is complete.
Corollary 2.10. For $(X, d), f, g, \varphi$ and η as above if η satisfies the stronger conditions:

- For any $x \in X$ and $y \in f x, \eta(d(x, y)) \leq \varphi(x)-\varphi(y)$,
- For any $x \in X$ and $y \in g x, \eta(d(x, y)) \leq \varphi(x)-\varphi(y)$,
then there is $x_{0} \in X$ such that $f x_{0}=g x_{0}=\left\{x_{0}\right\}$.

References

[1] S. B. Nadler. jr., Multi-valued contraction mappings, Pacific. J. Math. 30(1969) 475-488.
[2] N. Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141(1989) 177-188.
[3] P. Z. Dafer, H. Kaneko, Fixed point of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192(1995) 655-666.
[4] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340(2008) 752-755.
[5] Y. Feng and S. Liu, Fixed point theorem of multi-valued contractive mappings, J. Math. Anal. Appl. 317(2006) 103-112.
[6] D. Klim, D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl. 334(2007) 132-139.
[7] M. Berinde, V. Berinde, On a general class of multivalued weakly picard mappings, J. Math. Anal. Appl. 326(2007) 772-782.

[^0]: *Corresponding author. Fax: +61-249216898.

