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Abstract

In this paper we give a common fixed point type generalization
for some multi-valued contractive mappings on complete metric spaces.
Our results extend some recent results of Y. Feng, S. Liu[ Y. Feng and
S. Liu, Fixed point theorem of multi-valued contractive mappings, J.
Math. Anal. Appl. 317(2006)103-112], N. Mizoguchi, W. Takahashi[N.
Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued map-
pings on complete metric spaces, J. Math. Anal. Appl. 141(1989)177-
188], D. Klim, D. Wardowski[D. Klim, D. Wardowski, Fixed point the-
orems for set valued contractions in complete metric spaces, J. Math.
Anal. Appl. 334(2007)132-139]. We show that some common fixed
point contraction theorems for multi-valued mappings are straightfor-
ward consequence of our results.
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1 Introduction

Throughout this paper we denote by NN the set of positive integers and by R
the set of real numbers.

Let(X, d) be a metric space, we denote by CB(X), Cl(X)and N(X) the
class of all nonempty closed and bounded, all nonempty and closed and all
nonempty subsets of X respectively.

Let H be the Hausdorff metric with respect to d, that is

H(A, B) = maz{supd(z, A),supd(y, B)},
yeEA

zeB

for all A, B in CB(X). where d(z, A) = inf,c4 d(z,y).

Nadler [1] Extended the Banach contraction theorem for multi-valued map-
pings and Nadler’s fixed point theorem has been extended in many directions.
The following generalization was given by Mizoguchi and Takahashi [2].
Theorem 1.(Mizoguchi,Takahashi [2]) Let (X, d) be a complete metric space
and let T : X — CB(X). If there exist a function « : [0,00) — [0,1) such
that limsup,__,,, a(r) <1 for all ¢ € [0,00) and

H(Txz, Ty) < a(d(z,y))d(z,y),
for all x,y € X, then T has a fixed point.

Another proof of the above theorem was given by Dafer and Kaneko[3] and
recently another proof for this theorem was given by T. Suzuki [4].

Y. Feng and S. Liu [5] proved the following theorem.
Theorem 2. (Feng, Liu [5]) Let (X,d) be a complete metric space and let
T:X — CB(X). If there exist b, ¢ € (0, 1)such that ¢ < b and for any z € X
there is y € T'x satisfying the following conditions:

e bd(z,y) < d(x,Tx),
e d(y, Ty) < cd(z,vy).

Then T has a fixed point in X provided the function D(z) = d(z, Tx) is lower
semi-continuous.

Recently D. Klim and D. Wardowski [6] extended Feng and Liu’s theorem in
the following sense.

Theorem 3.( Klim, Wardowski [6]) Let (X, d) be a complete metric space and
let T: X — CIl(X) . Assume the following conditions hold.

For each z € X there is y € T'x such that :

o bd(z,y) <d(x,Tx),



e d(y, Ty) < a(d(z,y))d(z,y),

where o : [0,00) — [0,b) is such that limsup,_,, o(r) < b for all t €
[0,00). Then 7T has a fixed point in X provided D(z) = d(z,Tz) is lower
semi-continuous.

M. Berinde and V. Brinde [7] extended Mizoguchi and Takahashi’s theorem as
follows.

Theorem 4. Let (X, d) be a complete metric space, L > 0 and let T: X —
CB(X) be a generalized (a, L) contraction, i.e., a mapping for which there
exists a function a : [0,00) — [0, 1) satisfying limsup,__,, a(r) < 1, for
every t € [0,00) such that

H(Tz,Ty) < a(d(z,y))d(z,y) + Ld(y, Tx),

for all z,y € X. Then T has at least one fixed point.

2 Main Results

First we prove two common fixed point theorem of multi-valued contractive
mappings on complete metric spaces.

Theorem 2.1. Let (X,d) be a complete metric space and let f,g : X —
Cl(X). If there exist constant b € (0, 1), non negative real numbers (3, such
that b+ 26 4+ 2y < 1 and a function a : X — [0, b) such that f, g satisfy the
following conditions :

d(y, gy) < ald(z,y))d(z,y) + pld(x, fr) +d(y, gy)} +vd(z, gy), (1)

for all y € I} and,

d(z, fr) < a(d(z,y))d(z,y) + B{d(z, fr) + d(y,gy)} +d(y, fr), (2)

for all x € gy, where

Iy ={y € fo:bd(z,y) < d(z, fr)}.

Then f, g have a common fixed point provided I(z) = d(zx, fz) is lower
semi-continuous.
Proof. First we show that every fixed point of f is a fixed point of ¢ and
conversely. Let z € fz |, by putting z =y = z in (1) we get

d(z, 92) < a(d(z,2))d(z, 2)+0{d(z, f2)+d(z, 92)}+7d(z, g2) = (B+7)d(2, 92).



Since 47 < 1 hence d(z,gz) = 0. A similar argument shows that every fixed
point of g is also a fixed point of f, define :

A= U ®)
b+ B+7y
AT Ty W

By assumption 0 < A < 1 so we can choose b < § < 1 such that % < 1, let
y € fx from (1) we have:

d(y, gy) < ald(x,y))d(z,y) + B{d(x, fr) + d(y,gy)} + vd(z, gy)

< a(d(z,y))d(z,y) + S{d(z, fx) + d(y, gy) } + vd(z,y) + vd(y, gy)-
Which in turn yields

d(y, gy) < Ald(z,y))d(z,y), ()
for all y € I°. Similarly we get
d(z, fz) < A(d(z,y))d(z,y), (6)

for all x € gy. Let zyp € X, since § < 1 there exist z; € fxy such that
dd(xg, 21) < d(wo, fxo). Since b < § we have z; € I? and from (5) we get
d(xy1,921) < A(d(21,20))d(21, 20), hence there is z9 € gry such that d(xy, z5) <
Ad(xy,x0), and from (6) we have

d(xg, frs) < A(d(2g, 21))d(20, 21) < A%d(21,70) < ?Ad(:vo, fxo) < Ad(zg, fro).
So there is z3 € fxo such that d(xq, x3) < Ad(xs,z1).

Continuing this process we can iteratively choose a sequence {z,,}° , such that
ZTop € gToy_1 and T9,q1 € fxa, for which the followings hold for all nonnegative
integers n € N. Either z,,; = z, for some nonnegative integer n, in which
case the proof is completed, or x, 11 # x, for all nonnegative integers n, then

0d(Tan, Tant1) < d(Tan, [T20), (7)
d(T2n+1, Tont2) < Ad(Tan, Tant1), (8)
d(Tan+2, [T2nt2) < Ad(22n, fon). (9)
From (9) we get
d(xon, froe,) < A™d(xo, fxo), (10)

for all n=1, 2,3,.. and from (10) we get

Z d(Tp, Tpy1) = Z d(Ton, Tons1) + Z d(Tons1, Tonto)

n=0 n=0 n=0



XA
d(xQna fon) + Z gd<w2n7 f'an) < Q.
n=0

Sl

00
<2
n=0

Hence the sequence {x,,}2° is Cauchy and since X is complete, there is some
z € X such that lim, .z, = 2. Now D(z) = d(z, fx) is lower semi-
continuous and from (10) we get

d(z, fz) < lTiLrE&f d(xon, froe,) = 0.

Since fz is closed z € fz, so by first part of the proof z is also a fixed point
of g and the proof is complete. m

By putting 3 = v = 0 in above theorem we have the following corollary.
Corollary 2.2. Let (X,d) be a complete metric space and let f,g : X —
Cl(X). If there exist constant b € (0,1) and a : X — [0,b) and f, g satisfy
the following conditions :

d(y, gy) < ald(z,y))d(z,y), (11)
for all y € I} where I = {y € fz :bd(z,y) < d(z, fr)}, and
d(z, fr) < ald(z,y))d(z,y), (12)

for all x € gy.
Then f, g have a common fixed point provided D(z) = d(z, fx) is lower
semi-continuous.

The following theorem generalize theorem 2.1 of D. Klim and D. Wardowski
6].
Theorem 2.3. Let (X,d) be a complete metric space and let f,g : X —
Cl(X) . If there exists a constant b € (0, 1) such that f, g satisfy the following
conditions:
for all x € X there is y € gx such that

e bd(z,y) < d(z, fz),

e d(y, fy) < ald(z,y))d(z,y),

where o : X — [0, ) is such that limsup,_,,, a(t) < b for every r € [0, 00).

Then f, g have a common fixed point provided D(z) = d(z, fx) is lower
semi-continuous.
Proof. Let x5 € X, since gxg is nonempty there is 1 € gxy and by assumption
we have:

° bd(i‘o,Il) < d(lL‘o,fl’o),



o d(xy, fr1) < ald(zg, x1))d(zo, x1).

Continuing this process we can choose an iterative sequence {z, }°° , such that
the following conditions hold for n € N.

® Tpi1 € GTn,
[ bd(l’n,l'n+1) S d(l'na fxn)’

L4 d(anrl, fCCnH) < Oé(d(iﬂm $n+1))d($m$n+1)-

With the same argument as used in the proof of theorem 2.1 of [5] we deduce
that lim,, .. d(x,, fr,) = 0 and {z,}22, is a Cauchy sequence and since X
is complete so it converges to some point z € X. Now

0<d(z, fz) <liminf, _.od(xy,, fr,) =0,

and fz is closed, so z € fz. It is easy to see that every fixed point of f is
a fixed point of g and the proof is complete . m
Theorem 2.4. Let (X,d) be a complete metric space and let f,g : X —
Cl(X) and « : [0,00) — [0,1) be a function such that limsup, ., o(t) <1
for all r € [0, 00) and f, g satisfy the following conditions :

d(y, gy) < a(d(x,y))d(x,y) (13)

for all y € fx and
d(z, fz) < a(d(z, y))d(z, y) (14)
for all z € gy.

Then f and g have a common fixed point provided D(z) = d(z, fx) is lower
semi-continuous.
Proof. (This proof is inspired by T. Suzuki [4]). Define 3 : [0,00) — [0,1)
by
B(t) = 1 +2oz(t).
Then limsup,__,,, 5(r) <1, a(t) < B(t) < 1 for all t € [0, 00).
Let zp € X and z; € fxq from (13) we have,

d(zy, gr1) < a(d(xo, v1))d(w0, 71)
So there exists x5 € gx; such that:

d(z1,72) < B(d(x0, 71))d(20, 71),

since x9 € gx; hence from (14) we have
(s, fr2) < ald(wo, 71))d(xo, 71).
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Continuing this process we can choose an iterative sequence {x,,}°°, such that
Ton € gTan—1, Tant1 € [T2n and,

(i1, Tnga) < B(d(Tn-T011))d(Tn, Tpir). (15)

Since [(t) < 1 for all t € [0,00) so {d(zp, Tni1)}5%, is a decreasing sequence
in R and must converge to some nonnegative real number d € R.

Since limsup, 4, B(t) < 1, we can choose r € [0,1) and v € N such that

B(d(xp, Tni1)) < 1 for every n > v. Hence
Vi (d(n, wni1)) < By (d(wn, Tnga)) + 208, 07" (d(21, 20)) < 00,

So {x,} is a Cauchy sequence and since X is complete, it converges to some
z € X and since To,11 € fron,

d(z, fz) < limin f—ood(Ton, fro,) <

limin fr—.oo (d(@2n, Tont+1) + d(Tont1, fr2,)) =0,

hence z € fz and by putting z = y = 2z in (13) we get
d(z,92) < ald(z,2))d(z, 2),
so z € gz and this completes the proof. m

Theorem 4 of M. Berinde and V. Berinde [7] is a straightforward conse-
quence of the following corollary which is obtained by simply taking f = g in
Theorem 2.4.

Corollary 2.5. Let (X, d) be a complete metric space and let f : X — CI(X)
and o : X — [0,1) be a function such that limsup, ., a(t) < 1 for all
r € [0,00) and f satisfy:

d(y, fy) < ald(z, y))d(z,y), (16)

for all y € fz.
Then f has a fixed point provided I = d(z, fx) is lower semi-continuous.

Some common fixed point theorems can be easily proved by using the
theorem 2.4. We state some of them by way of illustration.
Corollary 2.6. Let (X,d) be a complete metric space and let f,g : X —
Cl(X) and « : [0,00) — [0,1) be a function such that limsup, ., a(t) <1
for all r € [0, 00) and f, g satisfy the following conditions:

e d(y, [y) < ald(z,y))d(x, gx) for all y € gz,



o d(x,gz) < a(d(z,y))d(y, fy) for all x € fy.

Then fixed point sets of f and g coincide and will be nonempty if either d(z, fx)
or d(z, gzx) is lower semi-continuous.
Proof. If y € gx then,

d(y, fy) < a(d(z,y))d(z, gz) < a(d(z,y))(d(z,y)+d(y, gx)) = a(d(z,y))d(z, ).

So d(y, fy) < a(d(x,y))d(z,y) for every y € gx. Similarly d(z, gx) < a(d(x,y))d(z,y)
for all x € fy, now by theorem 2.4 the proof is complete. m

Corollary 2.7. Let (X,d) be a complete metric space and let f,g : X —
Cl(X) and f, g satisfy the following condition:

H(fz,gy) < ald(z,y))m(z,y)

where o : X — [0,1) is a function such that limsup,_,, a(t) < 1 for
all 7 € [0,00), m(x,y) = maz{d(x,y),d(z, fz),d(y, gy), “L25MLY for all
x,y € X. Then f, g have a common fixed point provided I = d(z, fx) is lower
semi-continuous.

Proof. Let y € fx then

d(y, gy) < H(fz,gy) <

d(z,y) +d(y, gy)}

a(d(x,y))maz{d(z,y),d(x,y) + d(y, fx),d(y, gy), 5

= Of(d(l‘, y))max{d(l', y), d(y, gy)7 d(x’ y> —;d(y’ gy) } _

a(d(z,y))maz{d(z,y),d(y, gy)},
if d(z,y) < d(y,gy) then d(y, gy) < a(d(z,y))d(y, gy), a contradiction. So

d(y, gy) < ald(z,y))d(z,y) (17)
for every y € fx, similarly we have
d(z, fr) < ald(z,y))d(z,y) (18)

for every x € gy.

So result follows by Theorem 2.4. m

Theorem 2.8. Let (X,d) be a complete metric space and let f,g : X —
Cl(X) be functions such that

H(fz,gy) < a(d(z,y))d(z,y) + B(d(z, y){d(z, fz) + d(y, gy)}

+y(d(z,y)){d(x, gy) + d(y, fr)}



for every z,y € X, where o, 3,7 : [0,00) — [0,1) are functions such that
0 < at)+20(t) + 2v(t) < 1 for every ¢ € [0,00) and

lim sup(a(t) + 5(t) + (1)) < lim sup(1 = (3(t) +7(¢)),

t—r+ —r+

for every r € [0,00),then f, g have a common fixed point provided D(z) =
d(x, fz) is lower semi-continuous.

Proof. Define 0 : [0,00) — [0,1) by 6(t) = % Let y € fz then like
above theorem we have

d(y,gy) < H(fz,gy) < a(d(z,y))d(z,y) + B(d(z,y))

x{d(x,y) + d(y, gy)} +v(d(z, y)){d(z,y) + d(y, gy),
so we have:

(1= (B +y)(d(z,)))d(y, gy) < (a+ B+ ) (d(z,y))d(z,y),
and this in turn yields:

d(y, gy) < 0(d(x,y))d(z,y) (19)
for every y € fx, similarly
d(x, fr) < 0(d(x, y))d(x,y) (20)

for every x € gy. Now from (19), (20) and theorem 2.4 the proof is follows. m
For completeness we extend theorem 4.2 and 4.3 of [3] as follows.
Theorem 2.9. Let (X, d) be a complete metric space and f,g: X — N(X)
be multi-valued mappings, let ¢ : X — R be bounded from below and lower
semi-continuous and let 7 : [0, 00) — [0, 00) be nondecreasing, continuous and
subadditive which n71({0}) = {0}, and satisfying the following conditions:

e For any x € X there is y € fx such that n(d(z,y)) < p(z) — ¢(y),

e For any x € X there is y € gx such that n(d(z,y)) < ¢(z) — ¢(y),

Then f and g have a common fixed point.
Proof. Like lemma 4.1 of [3] we know that 1 define a partial order on X
such that X has a maximal element with respect to it. Let xy be the maximal
element of X then by the above conditions there exists z € fxy and w € gxg
such that zo < z and zg < w, since z( is maximal we must have 2o = w = z
and the proof is complete.
Corollary 2.10. For (X,d), f, g, ¢ and n as above if n satisfies the stronger
conditions:

e Forany z € X and y € fz, n(d(z,y)) < ¢(z) — ¢(y),

< ¢(z)

then there is xy € X such that fxg = grg = {zo}.

e Forany z € X and y € gz, n(d(z, 1)) — e(y),

9
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