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Abstract

In this paper we give a common fixed point type generalization
for some multi-valued contractive mappings on complete metric spaces.
Our results extend some recent results of Y. Feng, S. Liu[ Y. Feng and
S. Liu, Fixed point theorem of multi-valued contractive mappings, J.
Math. Anal. Appl. 317(2006)103-112], N. Mizoguchi, W. Takahashi[N.
Mizoguchi, W. Takahashi. Fixed point theorem for multi-valued map-
pings on complete metric spaces, J. Math. Anal. Appl. 141(1989)177-
188], D. Klim, D. Wardowski[D. Klim, D. Wardowski, Fixed point the-
orems for set valued contractions in complete metric spaces, J. Math.
Anal. Appl. 334(2007)132-139]. We show that some common fixed
point contraction theorems for multi-valued mappings are straightfor-
ward consequence of our results.
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1 Introduction

Throughout this paper we denote by N the set of positive integers and by R
the set of real numbers.

Let(X, d) be a metric space, we denote by CB(X), Cl(X)and N(X) the
class of all nonempty closed and bounded, all nonempty and closed and all
nonempty subsets of X respectively.
Let H be the Hausdorff metric with respect to d, that is

H(A,B) = max{sup
x∈B

d(x,A), sup
y∈A

d(y,B)},

for all A,B in CB(X). where d(x,A) = infy∈A d(x, y).

Nadler [1] Extended the Banach contraction theorem for multi-valued map-
pings and Nadler’s fixed point theorem has been extended in many directions.
The following generalization was given by Mizoguchi and Takahashi [2].
Theorem 1.(Mizoguchi,Takahashi [2]) Let (X, d) be a complete metric space
and let T : X −→ CB(X). If there exist a function α : [0,∞) −→ [0, 1) such
that lim supr−→t+ α(r) < 1 for all t ∈ [0,∞) and

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X, then T has a fixed point.

Another proof of the above theorem was given by Dafer and Kaneko[3] and
recently another proof for this theorem was given by T. Suzuki [4].

Y. Feng and S. Liu [5] proved the following theorem.
Theorem 2. (Feng, Liu [5]) Let (X, d) be a complete metric space and let
T : X −→ CB(X). If there exist b, c ∈ (0, 1)such that c < b and for any x ∈ X
there is y ∈ Tx satisfying the following conditions:

• bd(x, y) ≤ d(x, Tx),

• d(y, Ty) ≤ cd(x, y).

Then T has a fixed point in X provided the function D(x) = d(x, Tx) is lower
semi-continuous.
Recently D. Klim and D. Wardowski [6] extended Feng and Liu’s theorem in
the following sense.
Theorem 3.( Klim, Wardowski [6]) Let (X, d) be a complete metric space and
let T : X −→ Cl(X) . Assume the following conditions hold.
For each x ∈ X there is y ∈ Tx such that :

• bd(x, y) ≤ d(x, Tx),
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• d(y, Ty) ≤ α(d(x, y))d(x, y),

where α : [0,∞) −→ [0, b) is such that lim supr−→t+ α(r) < b for all t ∈
[0,∞). Then T has a fixed point in X provided D(x) = d(x, Tx) is lower
semi-continuous.
M. Berinde and V. Brinde [7] extended Mizoguchi and Takahashi’s theorem as
follows.
Theorem 4. Let (X, d) be a complete metric space, L ≥ 0 and let T : X −→
CB(X) be a generalized (α,L) contraction, i.e., a mapping for which there
exists a function α : [0,∞) −→ [0, 1) satisfying lim supr−→t+ α(r) < 1, for
every t ∈ [0,∞) such that

H(Tx, Ty) ≤ α(d(x, y))d(x, y) + Ld(y, Tx),

for all x, y ∈ X. Then T has at least one fixed point.

2 Main Results

First we prove two common fixed point theorem of multi-valued contractive
mappings on complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X). If there exist constant b ∈ (0, 1), non negative real numbers β, γ such
that b+ 2β + 2γ < 1 and a function α : X −→ [0, b) such that f, g satisfy the
following conditions :

d(y, gy) ≤ α(d(x, y))d(x, y) + β{d(x, fx) + d(y, gy)}+ γd(x, gy), (1)

for all y ∈ Ixb and,

d(x, fx) ≤ α(d(x, y))d(x, y) + β{d(x, fx) + d(y, gy)}+ γd(y, fx), (2)

for all x ∈ gy, where

Ixb = {y ∈ fx : bd(x, y) ≤ d(x, fx)}.

Then f, g have a common fixed point provided I(x) = d(x, fx) is lower
semi-continuous.
Proof. First we show that every fixed point of f is a fixed point of g and
conversely. Let z ∈ fz , by putting x = y = z in (1) we get

d(z, gz) ≤ α(d(z, z))d(z, z)+β{d(z, fz)+d(z, gz)}+γd(z, gz) = (β+γ)d(z, gz).
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Since β+γ < 1 hence d(z, gz) = 0. A similar argument shows that every fixed
point of g is also a fixed point of f , define :

A(t) =
α(t) + β + γ

1− (β + γ)
, (3)

A =
b+ β + γ

1− (β + γ)
. (4)

By assumption 0 < A < 1 so we can choose b < δ < 1 such that A
δ
< 1, let

y ∈ fx from (1) we have:

d(y, gy) ≤ α(d(x, y))d(x, y) + β{d(x, fx) + d(y, gy)}+ γd(x, gy)

≤ α(d(x, y))d(x, y) + β{d(x, fx) + d(y, gy)}+ γd(x, y) + γd(y, gy).

Which in turn yields

d(y, gy) ≤ A(d(x, y))d(x, y), (5)

for all y ∈ Ibx. Similarly we get

d(x, fx) ≤ A(d(x, y))d(x, y), (6)

for all x ∈ gy. Let x0 ∈ X, since δ < 1 there exist x1 ∈ fx0 such that
δd(x0, x1) < d(x0, fx0). Since b < δ we have x1 ∈ Ibx0

and from (5) we get
d(x1, gx1) ≤ A(d(x1, x0))d(x1, x0), hence there is x2 ∈ gx1 such that d(x1, x2) <
Ad(x1, x0), and from (6) we have

d(x2, fx2) ≤ A(d(x2, x1))d(x2, x1) < A2d(x1, x0) <
A

δ
Ad(x0, fx0) < Ad(x0, fx0).

So there is x3 ∈ fx2 such that d(x2, x3) < Ad(x2, x1).
Continuing this process we can iteratively choose a sequence {xn}∞n=0 such that
x2n ∈ gx2n−1 and x2n+1 ∈ fx2n for which the followings hold for all nonnegative
integers n ∈ N . Either xn+1 = xn for some nonnegative integer n, in which
case the proof is completed, or xn+1 6= xn for all nonnegative integers n, then

δd(x2n, x2n+1) < d(x2n, fx2n), (7)

d(x2n+1, x2n+2) < Ad(x2n, x2n+1), (8)

d(x2n+2, fx2n+2) < Ad(x2n, fx2n). (9)

From (9) we get
d(x2n, fx2n) ≤ And(x0, fx0), (10)

for all n=1, 2,3,.. and from (10) we get

∞∑
n=0

d(xn, xn+1) =
∞∑
n=0

d(x2n, x2n+1) +
∞∑
n=0

d(x2n+1, x2n+2)
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≤
∞∑
n=0

1

δ
d(x2n, fx2n) +

∞∑
n=0

A

δ
d(x2n, fx2n) <∞.

Hence the sequence {xn}∞n=0 is Cauchy and since X is complete, there is some
z ∈ X such that limn−→∞ xn = z. Now D(x) = d(x, fx) is lower semi-
continuous and from (10) we get

d(z, fz) ≤ lim inf
n−→∞

d(x2n, fx2n) = 0.

Since fz is closed z ∈ fz, so by first part of the proof z is also a fixed point
of g and the proof is complete.

By putting β = γ = 0 in above theorem we have the following corollary.
Corollary 2.2. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X). If there exist constant b ∈ (0, 1) and α : X −→ [0, b) and f, g satisfy
the following conditions :

d(y, gy) ≤ α(d(x, y))d(x, y), (11)

for all y ∈ Ixb where Ixb = {y ∈ fx : bd(x, y) ≤ d(x, fx)}, and

d(x, fx) ≤ α(d(x, y))d(x, y), (12)

for all x ∈ gy.
Then f, g have a common fixed point provided D(x) = d(x, fx) is lower

semi-continuous.

The following theorem generalize theorem 2.1 of D. Klim and D. Wardowski
[6].
Theorem 2.3. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X) . If there exists a constant b ∈ (0, 1) such that f, g satisfy the following
conditions:
for all x ∈ X there is y ∈ gx such that

• bd(x, y) ≤ d(x, fx),

• d(y, fy) ≤ α(d(x, y))d(x, y),

where α : X −→ [0, b) is such that lim supt−→r+ α(t) < b for every r ∈ [0,∞).

Then f, g have a common fixed point provided D(x) = d(x, fx) is lower
semi-continuous.
Proof. Let x0 ∈ X, since gx0 is nonempty there is x1 ∈ gx0 and by assumption
we have:

• bd(x0, x1) ≤ d(x0, fx0),
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• d(x1, fx1) ≤ α(d(x0, x1))d(x0, x1).

Continuing this process we can choose an iterative sequence {xn}∞n=0 such that
the following conditions hold for n ∈ N .

• xn+1 ∈ gxn,

• bd(xn, xn+1) ≤ d(xn, fxn),

• d(xn+1, fxn+1) ≤ α(d(xn, xn+1))d(xn, xn+1).

With the same argument as used in the proof of theorem 2.1 of [5] we deduce
that limn−→∞ d(xn, fxn) = 0 and {xn}∞n=0 is a Cauchy sequence and since X
is complete so it converges to some point z ∈ X. Now

0 ≤ d(z, fz) ≤ liminfn−→∞d(xn, fxn) = 0,

and fz is closed, so z ∈ fz. It is easy to see that every fixed point of f is
a fixed point of g and the proof is complete .
Theorem 2.4. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X) and α : [0,∞) −→ [0, 1) be a function such that lim supt−→r+ α(t) < 1
for all r ∈ [0,∞) and f, g satisfy the following conditions :

d(y, gy) ≤ α(d(x, y))d(x, y) (13)

for all y ∈ fx and
d(x, fx) ≤ α(d(x, y))d(x, y) (14)

for all x ∈ gy.

Then f and g have a common fixed point provided D(x) = d(x, fx) is lower
semi-continuous.
Proof. (This proof is inspired by T. Suzuki [4]). Define β : [0,∞) −→ [0, 1)
by

β(t) =
1 + α(t)

2
.

Then lim supr−→t+ β(r) < 1, α(t) < β(t) < 1 for all t ∈ [0,∞).
Let x0 ∈ X and x1 ∈ fx0 from (13) we have,

d(x1, gx1) ≤ α(d(x0, x1))d(x0, x1)

So there exists x2 ∈ gx1 such that:

d(x1, x2) ≤ β(d(x0, x1))d(x0, x1),

since x2 ∈ gx1 hence from (14) we have

d(x2, fx2) ≤ α(d(x0, x1))d(x0, x1).
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Continuing this process we can choose an iterative sequence {xn}∞n=1 such that
x2n ∈ gx2n−1, x2n+1 ∈ fx2n and,

d(xn+1, xn+2) ≤ β(d(xn.xn+1))d(xn, xn+1). (15)

Since β(t) < 1 for all t ∈ [0,∞) so {d(xn, xn+1)}∞n=0 is a decreasing sequence
in R and must converge to some nonnegative real number d ∈ R.

Since lim supt−→d+ β(t) < 1, we can choose r ∈ [0, 1) and υ ∈ N such that

β(d(xn, xn+1)) < r for every n ≥ υ. Hence

Σ∞n=1(d(xn, xn+1)) ≤ Συ
n=1(d(xn, xn+1)) + Σ∞n=υ+1r

n(d(x1, x0)) <∞.

So {xn} is a Cauchy sequence and since X is complete, it converges to some
z ∈ X and since x2n+1 ∈ fx2n,

d(z, fz) ≤ liminfn−→∞d(x2n, fx2n) ≤

liminfn−→∞(d(x2n, x2n+1) + d(x2n+1, fx2n)) = 0,

hence z ∈ fz and by putting x = y = z in (13) we get

d(z, gz) ≤ α(d(z, z))d(z, z),

so z ∈ gz and this completes the proof.

Theorem 4 of M. Berinde and V. Berinde [7] is a straightforward conse-
quence of the following corollary which is obtained by simply taking f = g in
Theorem 2.4.
Corollary 2.5. Let (X, d) be a complete metric space and let f : X −→ Cl(X)
and α : X −→ [0, 1) be a function such that lim supt−→r+ α(t) < 1 for all
r ∈ [0,∞) and f satisfy:

d(y, fy) ≤ α(d(x, y))d(x, y), (16)

for all y ∈ fx.
Then f has a fixed point provided I = d(x, fx) is lower semi-continuous.

Some common fixed point theorems can be easily proved by using the
theorem 2.4. We state some of them by way of illustration.
Corollary 2.6. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X) and α : [0,∞) −→ [0, 1) be a function such that lim supt−→r+ α(t) < 1
for all r ∈ [0,∞) and f, g satisfy the following conditions:

• d(y, fy) ≤ α(d(x, y))d(x, gx) for all y ∈ gx,
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• d(x, gx) ≤ α(d(x, y))d(y, fy) for all x ∈ fy.

Then fixed point sets of f and g coincide and will be nonempty if either d(x, fx)
or d(x, gx) is lower semi-continuous.
Proof. If y ∈ gx then,

d(y, fy) ≤ α(d(x, y))d(x, gx) ≤ α(d(x, y))(d(x, y)+d(y, gx)) = α(d(x, y))d(x, y).

So d(y, fy) ≤ α(d(x, y))d(x, y) for every y ∈ gx. Similarly d(x, gx) ≤ α(d(x, y))d(x, y)
for all x ∈ fy, now by theorem 2.4 the proof is complete.
Corollary 2.7. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X) and f, g satisfy the following condition:

H(fx, gy) ≤ α(d(x, y))m(x, y)

where α : X −→ [0, 1) is a function such that lim supt−→r+ α(t) < 1 for

all r ∈ [0,∞), m(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2

} for all
x, y ∈ X. Then f, g have a common fixed point provided I = d(x, fx) is lower
semi-continuous.
Proof. Let y ∈ fx then

d(y, gy) ≤ H(fx, gy) ≤

α(d(x, y))max{d(x, y), d(x, y) + d(y, fx), d(y, gy),
d(x, y) + d(y, gy)

2
}

= α(d(x, y))max{d(x, y), d(y, gy),
d(x, y) + d(y, gy)

2
} =

α(d(x, y))max{d(x, y), d(y, gy)},

if d(x, y) < d(y, gy) then d(y, gy) ≤ α(d(x, y))d(y, gy), a contradiction. So

d(y, gy) ≤ α(d(x, y))d(x, y) (17)

for every y ∈ fx, similarly we have

d(x, fx) ≤ α(d(x, y))d(x, y) (18)

for every x ∈ gy.
So result follows by Theorem 2.4.
Theorem 2.8. Let (X, d) be a complete metric space and let f, g : X −→
Cl(X) be functions such that

H(fx, gy) ≤ α(d(x, y))d(x, y) + β(d(x, y)){d(x, fx) + d(y, gy)}

+γ(d(x, y)){d(x, gy) + d(y, fx)}
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for every x, y ∈ X, where α, β, γ : [0,∞) −→ [0, 1) are functions such that
0 ≤ α(t) + 2β(t) + 2γ(t) < 1 for every t ∈ [0,∞) and

lim sup
t−→r+

(α(t) + β(t) + γ(t)) < lim sup
t−→r+

(1− (β(t) + γ(t)),

for every r ∈ [0,∞),then f, g have a common fixed point provided D(x) =
d(x, fx) is lower semi-continuous.

Proof. Define θ : [0,∞) −→ [0, 1) by θ(t) = (α+β+γ)(t)
(1−(β+γ))(t)

. Let y ∈ fx then like
above theorem we have

d(y, gy) ≤ H(fx, gy) ≤ α(d(x, y))d(x, y) + β(d(x, y))

×{d(x, y) + d(y, gy)}+ γ(d(x, y)){d(x, y) + d(y, gy),

so we have:

(1− (β + γ)(d(x, y)))d(y, gy) ≤ (α + β + γ)(d(x, y))d(x, y),

and this in turn yields:

d(y, gy) ≤ θ(d(x, y))d(x, y) (19)

for every y ∈ fx, similarly

d(x, fx) ≤ θ(d(x, y))d(x, y) (20)

for every x ∈ gy. Now from (19), (20) and theorem 2.4 the proof is follows.
For completeness we extend theorem 4.2 and 4.3 of [3] as follows.

Theorem 2.9. Let (X, d) be a complete metric space and f, g : X −→ N(X)
be multi-valued mappings, let ϕ : X −→ R be bounded from below and lower
semi-continuous and let η : [0,∞) −→ [0,∞) be nondecreasing, continuous and
subadditive which η−1({0}) = {0}, and satisfying the following conditions:

• For any x ∈ X there is y ∈ fx such that η(d(x, y)) ≤ ϕ(x)− ϕ(y),

• For any x ∈ X there is y ∈ gx such that η(d(x, y)) ≤ ϕ(x)− ϕ(y),

Then f and g have a common fixed point.
Proof. Like lemma 4.1 of [3] we know that η define a partial order on X
such that X has a maximal element with respect to it. Let x0 be the maximal
element of X then by the above conditions there exists z ∈ fx0 and w ∈ gx0

such that x0 ≤ z and x0 ≤ w, since x0 is maximal we must have x0 = w = z
and the proof is complete.
Corollary 2.10. For (X, d), f , g, ϕ and η as above if η satisfies the stronger
conditions:

• For any x ∈ X and y ∈ fx, η(d(x, y)) ≤ ϕ(x)− ϕ(y),

• For any x ∈ X and y ∈ gx, η(d(x, y)) ≤ ϕ(x)− ϕ(y),

then there is x0 ∈ X such that fx0 = gx0 = {x0}.
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