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Abstract. Let C be a bounded closed convex subset of a uniformly convex Banach
space X and let T be an asymptotically nonexpansive in the intermediate mapping

from C into itself. In this paper, we first provide a ergodic retraction theorem and a

mean ergodic convergence theorem. Using this result, we show that the set F (T ) of
fixed points of T is a sunny, nonexpansive retract of C if the norm of X is uniformly

Gâteaux differentiable. Moreover, we discuss the strong convergence of the sequence

{xn} defined by xn = anx+ (1− an)T (µ)xn for n = 0, 1, 2, . . . , where x ∈ C, µ is a
Banach limit on l∞ and an is a real sequence in (0, 1].

1. Introduction

Let C be a nonempty subset of a Banach space X. a mapping T : C 7→ C is said
to be

(a) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for x, y ∈ C.
(b) asymptotically nonexpansive [19] if there exists a sequence {kn} such that

lim sup
n→∞

kn ≤ 1 and ‖Tnx− Tny‖ ≤ kn‖x− y‖ for x, y ∈ C and n ∈ N .

(c) asymptotically nonexpansive in the intermediate if

lim sup
n→∞

[ sup
x,y∈C

[‖Tnx− Tny‖ − ‖x− y‖] ≤ 0.

(d) asymptotically nonexpansive type [19] if for each x in C,

lim sup
n→∞

sup
y∈C

[‖Tnx− Tny‖ − ‖x− y‖] ≤ 0.
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It is easily seen that (a) ⇒ (b) ⇒ (c) ⇒ (d) and that both the inclusions are
proper (cf. [19, p. 112] ). We denote F (T ) by the set of fixed points of T.

Let C be a bounded closed convex subset of a Banach space X. Let T be a
nonexpansive mapping from C into itself and let x be an element of C and for each
t with 0 < t < 1, let xt be the unique point of C which satisfies xt = tx+ (1− t)xt.
Browder [ 5 ] showed that {xt} converges trongly to the element of F (T ) which
is nearest to x in F (T ) as t ↓ 0 in the case when X is a Hilbert space. Reich [
30 ] extended Browder’s result to the case when X is a uniformly smooth Banach
space and he showed that F (T ) is a sunny, nonexpansive retract of C, i.e., there is
a nonexpansive retraction P from C onto F (T ) such that P (Px+ t(x−Px)) = Px
for each x ∈ C and t ≥ 0 with Px + t(x − Px) ∈ C. Recently, using an idea of
Browder [ 5 ], Shimizu and Takahashi [ 32 ] studied the convergence of another
approximating sequence for an asymptotically nonexpansive mapping in a Hilbert
space. This result was extended to a Banach space by Shioji and Takahashi [ 33 ].

On the other hand, Baillon [ 1 ] proved the first nonlinear mean ergodic theorem
for nonexpansive mappings in a Hilbert space: Let C be a nonempty closed convex
subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself.
If the set F (T ) of fixed points of T is nonempty, then the Cesáro means

Sn(x) =
1
n

n−1∑
k=0

T kx

converge weakly as n → ∞ to a fixed point y of T for each x ∈ C. In this case,
putting y = Px for each x ∈ C, P is a nonexpansive retraction of C onto F (T ).

In recent years much effort has devoted to studying nonlinear ergodic theory for
(asymptotically) nonexpansive mappings and semigroups. See [ 1-3, 15-18, 20-29,
34 ]. Most of the work was carried out in a uniformly convex Banach space X whose
norm is either Frechet differentiable or satisfies Opial’s condition. In this paper, we
first prove an ergodic retraction theorem and an mean ergodic convergence theorems
for non-lipschitzian mapping in a uniformly convex Banach space without using the
Frechet differentiable norm, which includes many known results as special cases.
Using this result, we show that the set F (T ) is a sunny, nonexpansive retract of
C if the norm of X is uniformly Gâteaux differentiable. Moreover, we discuss the
strong convergence of the sequence {xn} defined by xn = an + (1− an)T (µ)xn for
n = 0, 1, 2, . . . , where x ∈ C, µ is a Banach limit on l∞ and an is a real sequence
in (0, 1].

2. Preliminaries and Notations

Let X be a Banach space. We recall that the modulus of convexity of X is the



Nonlinear Ergodic Theorems 3

function δX defined on [0, 2] by

δX(ε) = inf
{

1− 1
2
‖x+ y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x− y‖ ≥ ε

}
.

A Banach space X is said to be uniformly convex if δX(ε) > 0 for all 0 < ε ≤ 2. We
need the following characterization of uniform convexity for a Banach space.

Proposition 1 ( cf. [ 36 ]). Let p > 1 and r > 0 be two real numbers. Then a
Banach space X is uniformly convex if and only if there exists a continuous, strictly
increasing, and convex function g : [0,∞)→ [0,∞), depending on p and r, g(0) = 0,
such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y||p −Wp(λ)g(‖x− y‖)

for all x, y ∈ Br and 0 ≤ λ ≤ 1, where Wp(λ) = λ(1 − λ)p + λp(1 − λ) and Br is
the closed ball centered at the origin and with radius r.

Throughout this paper X denotes a uniformly convex real Banach space, C a non-
empty bounded closed convex subset of X, and T an asymptotically nonexpansive
in the intermediate sense. Put

cn = sup
x,y∈C

(‖Tnx− T y‖ − ‖x− y‖) ∨ 0,

we have
lim
n→∞

cn = 0. (2.1)

We denote by 4n the set {λ = (λ1, . . . , λn) : λi ≥ 0,
∑n
j=1 λj = 1} for n ∈ N , the

set of all nonnegative integers. For a subset D of X, we denote by coD and coD,
the convex hull and convex closed hull of D respectively.

Let µ be a continuous linear functional on l∞ and let a = (a0, a1, . . . ) ∈ l∞, we
write µ(n)(an) instead of µ(a). For n ∈ N , we can define a point evaluation δn by
δn(a) = an for each a ∈ l∞. A convex combination of point evaluations is called a
finite mean on N . Let X∗ be the dual space of X. The value of y ∈ X∗ at x ∈ X
will be denoted by 〈x, y〉. Since X is reflexive, for any continuous linear functional
µ and x ∈ C there exists a unique element T (µ)x in X such that

〈T (µ)x, x∗〉 = µ(n)〈Tnx, x∗〉

for all x∗ ∈ X∗. We write T (µ)x by µ(n)〈Tnx〉. Also, if µ is a finite mean on N ,
say

µ =
n∑
i=1

aiδni(ti ∈ N , ai ≥ 0, i = 1, 2, · · · , n,
n∑
i=1

ai = 1),
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then

T (µ)x =
n∑
i=1

aiT
nix.

Now, for each m ∈ N , we can defined bounded linear operator rm in l∞ by
(rm)(an) = (an+m). We call µ a Banach limit if µ satisfies ‖µ‖ = µ(1) = 1 and
µ = r∗nµ for each n ∈ N , where r∗n is the conjugate operator of rn. For a Banach
limit, we know that

lim inf
n→∞

an ≤ µ(n)(an) ≤ lim sup
n→∞

an for all (a0, a1, . . . ) ∈ l∞ (2.2)

The duality mapping J from X into X∗ will be defined by

J(x) = {y ∈ X∗ : 〈x, y〉 = ‖x‖2 = ‖y‖2},

for each x ∈ X. X is said to be smooth if for each x, y ∈ B1, the limit

lim
t→o

‖x+ ty‖ − ‖x‖
t

(2.3)

exists. The norm of X is said to be uniformly Gâteaux differentiable if for each
y ∈ B1, the limit (2.3) exists uniformly for x ∈ B1. The norm of X is said to be
uniformly Fréchet differentiable if for each x ∈ B1, the limit (2.3) exists uniformly
for y ∈ B1. X is said to be uniformly smooth if (2.3) exists uniformly for x, y ∈ B1.
It is well known that if X is smooth then the duality mapping is single-valued
and norm to weak star continuous. In the case when the norm of X is uniformly
Gâteaux differentiable, we know the following [ 35, Lemma 1 ]:

Proposition 2. Let C be a convex subset of a Banach space X whose norm is
uniformly Gâteaux differentiable. Let {xn} be a bounded subset of X, let z be a
point of C and let µ be a Banach limit. Then

µ(n)‖xn − z‖2 = min
y∈C

µ(n)‖xn − y‖2

if and only if
µ(n)〈y − z, J(xn − z)〉 ≤ 0 for all y ∈ C.

Let C be a convex subset of X, let K be a nonempty subset of C and let P
be a retraction from C onto K, i.e., Px = x for each x ∈ K. A retraction P is
said to be sunny if P (Px + t(x − Px)) = Px for each x ∈ C and t ≥ 0 with
Px + t(x − Px) ∈ C. If the sunny retraction P is also nonexpansive, then K is
said to be a sunny, nonexpansive retract of C. Concerning sunny, nonexpansive
retractions, we know the following [ 9, 29 ]:
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Proposition 3. Let C be a convex subset of a smooth space, let K be a nonempty
subset of C and let P be a retraction from C onto K. Then P is sunny and
nonexpansive if and only if

〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ K.
Hence there is at most one sunny, nonexpansive retraction from C onto K.

3. Main Theorems

In this section, we will state our main Theorems and some remarks. The proof
of Theorems will be given in the next section.

Theorem 1. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X, and let T be an asymptotically nonexpansive in the inter-
mediate sense mapping from C to itself. Then, for any Banach limit µ, the mapping
P defined by Px = T (µ)x is a retraction from C onto F (T ) satisfying the following
properties:

(i) P is nonexpansive;
(ii) PT = TP = P ;

(iii) Px ∈ ∩mco{Tnx : n ≥ m} for all x ∈ C.

From Theorem 1, if there exists a unique retraction from C onto F (T ) having
properties (i)− (iii) of Theorem 1. Then T (µ) = T (ν) for any Banach limits µ and
ν. By the proof of Theorem 2 of [ 16 ], we have following corollary.

Corollary 1. Let X,C and T be as in Theorem 1. Let Q = {qn,m}n,m∈N is a
strongly regular matrix. Suppose that there exists a unique retraction from C onto
F (T ) having properties (i)− (iii) of Theorem 1. Then for every x ∈ C,

w − lim
n→∞

∞∑
m=0

qn,mT
m+kx = y ∈ F (T ) uniformly in m ∈ N .

Now, using Theorem 1, we shall give a new approximating sequence for an non-
lipschitzian mapping.

Let {an} be a real sequence such that
0 < an ≤ 1, lim

n→∞
an = 0.

Let x be an element of C and let µ be a Banach limit, and let xn be the unique
point of C which satisfies

xn = anx+ (1− an)T (µ)xn (3.1)
We remark that (3.1) is well defined since the mapping Tn from C into itself defined
by Tnu = anx + (1 − an)T (µ)u satisfies ‖Tnu − Tnv‖ ≤ (1 − an)‖u − v‖ for each
u, v ∈ C.
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Theorem 2. Let C be a bounded convex subset of a uniformly convex Banach
space whose norm is uniformly Gâteaux differentiable, let T be an asymptotically
nonexpansive in the intermediate sense mapping from C into itself. Then F (T ) is
a sunny, nonexpansive retract of C.

Theorem 3. Let C be a bounded convex subset of a uniformly convex Banach
space whose norm is uniformly Gâteaux differentiable, let T be an asymptotically
nonexpansive in the intermediate sense mapping from C into itself and let P be the
sunny, nonexpansive retract from C onto F (T ). Let x be an element of C and let
{xn} be sequence of C which satisfies (3.1). Then {xn} converges strongly to Px.

4.Proof of Theorems

To simplify, in the following, for each ε ∈ (0, 1], we define

a(ε) =
ε2

10R
δX(

ε

R
) (4.1)

and
Nε = {nε ∈ N : cn+nε < a(ε) for each n ∈ N}, (4.2)

where δX is the modulus of convexity of the norm, d = 2 sup{‖x‖ : x ∈ C}, and
R = 4d+ 1. Noting that from (2.1), Nε is nonempty for each ε > 0, and if nε ∈ Nε,
then n+ nε ∈ Nε for each n ∈ N .

The following lemma shall play a crucial role in the proof of our main theorems.

Lemma 4.1. Let x be a element of C and let λ be a finite mean on N and let
εi ∈ (0, 1](i = 1, 2) be positive numbers. Then there exists nε2 ∈ N , where nε2 is
independent of ε1, such that

‖T lT (λ)Tnx− T (λ)T l+nx‖ < ε1 + ε2 (4.3)

for all n ≥ nε2 and l ∈ Nε1 .
Proof. We shall prove the Lemma by mathematical induction.

If λ = δm1 ,m1 ∈ N , then the assertion is clear. Now suppose that the assertion
holds for such λ =

∑k−1
i=1 aiδmi (mi ∈ N , (a1, a2, · · · , ak−1) ∈ 4k−1). Let

λ =
k∑
i=1

aiδmi (mi ∈ N , (a1, a2, · · · , ak) ∈ 4k).

Defining

µ =
1

1− ak

k−1∑
i=1

aiδmi ,
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we claim that
lim
n→∞

‖T (µ)Tnx− Tn+mkx‖ exists. (4.4)

Let ε > 0, from assumption of induction there exists n1 ∈ N such that

cn <
1
3
ε,

and

‖T (l)T (µ)Tnx− T (µ)Tn+lx‖ < 1
3
ε

for all n ≥ n1 and l ≥ n1. It follows that, for all n ≥ n1 and l ≥ n1,

‖T (µ)Tn+lx− Tn+l+mkx‖ ≤ ‖T (µ)Tn+lx− T lT (µ)Tnx‖
+ ‖T lT (µ)Tnx− Tn+l+mkx‖
≤ ‖T (µ)Tnx− Tn+mkx‖+ ε.

For fixed n ≥ n1, taking l→∞, we get

lim sup
l→∞

‖T (µ)T lx− T l+mkx‖ ≤ ‖T (µ)Tnx− Tn+mkx‖+ ε,

and hence

lim sup
l→∞

‖T (µ)T lx− T l+mkx‖ ≤ lim inf
n→∞

‖T (µ)Tnx− Tn+mkx‖+ ε,

Since ε > 0 is arbitrary, this implies (4.4) holds.
Put

r = lim
n→∞

‖T (µ)Tnx− Tn+mkx‖.

By assumption of induction again, for given ε2 > 0, there exists n2(= n2(λ, ε2))
such that ∣∣∣∣‖T (µ)Tnx− Tn+mkx‖ − r

∣∣∣∣< 1
2
a(ε2), (4.5)

and

‖T lT (µ)Tnx− T (µ)Tn+lx‖ < 1
2
a(ε2), (4.6)
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for all l, n ≥ n2. Now, we put nε2 = 2n2 ∈ N . Since for n ≥ nε,

‖T lT (µ)Tnx− T (µ)T l+nx‖ ≤ ‖T lT (µ)Tnx− T l+n2T (µ)Tn−n2x‖
+ ‖T l+n2T (µ)Tn−n2x− T (µ)T l+nx‖

≤ cl +
1
2
a(ε2)

+ ‖T (µ)Tnx− Tn2T (µ)Tn−n2‖
≤ cl + a(ε2)

it then follows from (4.2) and (4.5) that

‖T lT (µ)Tnx− T (µ)Tn+lx‖ < a(ε1) + a(ε2) (4.7)

for each l ∈ Nε1 and n ≥ nε2 . Put

x = (1− an)(T lT (λ)Tnx− T (µ)Tn+lx)

and
y = an(Tn+l+mkx− T lT (λ)Tnx).

It then follows from (4.4), (4.5), and (4.6) that, for l ∈ Nε1 and n ≥ nε2 ,

‖x‖ ≤ (1− an)(‖T lT (λ)Tnx− T lT (µ)Tnx‖
+ ‖T lT (µ)Tnx− T (µ)Tnx‖
≤ (1− an)(a(ε1) + a(ε2) + cl + ‖T (λ)Tnx− T (µ)Tnx‖)
≤ an(1− an)r + 2a(ε1) + 2a(ε2) (≤ R),

‖y‖ ≤ an(cl + ‖Tn+mkx− T (λ)Tnx‖)
≤ an(1− an)r + a(ε1) + a(ε2) (≤ R),

and
‖x− y‖ = ‖T lT (λ)Tnx− T (λ)T l+nx‖.

Suppose that
‖x− y‖ ≥ ε1 + ε2

for some l ∈ Gε1 and n ≥ nε2 . Then we shall give the contradiction in following two
cases.
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Case I. If 4an(1− an)r ≤ max{ε1, ε2}, then

‖x− y‖ ≤ ‖x‖+ ‖y‖ ≤ 2an(1− an)r + 3a(ε1) + 3a(ε2) < ε1 + ε2.

This is a contradiction.
Case II. If 4an(1− an)r > max{ε1, ε2}, then we have

‖anx+ (1− an)y‖ ≤ (an(1− an)r + 2a(ε1) + 2a(ε2))(1− 2an(1− an)δ(
ε1 + ε2
R

)),

by Lemma in [14]. And hence

an(1− an)‖T (µ)Tn+lx− Tn+l+mkx‖

≤ an(1− an)r + 2a(ε1) + 2a(ε2)− 2a2
n(1− an)2rδ(

ε1 + ε2
R

).

It then follows (4.5) that

0 ≤ 2a(ε1) + 3a(ε2)− 2a2
n(1− an)2rδ(

ε1 + ε2
R

).

If ε1 ≥ ε2, then a(ε1) ≥ a(ε2), 4an(1 − an)r > ε1, and an(1 − an) > ε1
R . It follows

that

0 < 5a(ε1)− ε21
2R

δ(
ε1
R

),

this contradicts (4.1). If ε1 < ε2, then we also have a contradiction in the same
way. This completes the proof. �

Since N is commutative semigroup, there exists a net {λα : α ∈ A} of finite
means on N such that

lim
α∈A
‖λα − r∗nλα‖ = 0 (4.8)

for every n ∈ N , where A is a directed set (see [ 12 ]).
For each ε > 0 and l ∈ N , we set

Fε(T l)) = {x ∈ C : ‖T lx− x‖ ≤ ε}.
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Lemma 4.2. For each 0 < ε < 1, there exist δ > 0 and l0 ∈ N such that

coFδ(T l)) ⊂ Fε(T l))

for each l ≥ l0.
Proof. Since X is uniformly convex, by [ 7, Theorem 1.1 ], for given ε > 0 we can
choose a positive integer p such that for each M ⊂ C,

coM ⊂ copM +Bε/4, (4.9)

where copM denotes the set of sums λ1x1 + · · ·+ λpxp with (λ1, . . . , λp) ∈ 4p and
xi ∈M, 1 ≤ i ≤ p. We first claim that

co2Fa( ε4 )(T l) ⊂ F ε
4
(T l)), (4.10)

for each l ∈ Ga( ε4 ), where a( ε4 ) and Ga( ε4 ) are defined in (3.1) and (3.2). In fact,
let x0, x1 ∈ Fa( ε4 )(T l) and xt = tx0 + (1 − t)x1 for some 0 < t < 1. Put x =
(1− t)(T lxt − x1) and y = t(x0 − T lxt). Then we have

‖x‖ ≤ (1− t)(‖T lxt − T lx1‖+ ‖T lx1 − x1‖)

≤ t(1− t)‖x0 − x1‖+ 2(1− t)a(
ε

4
) (≤ R)

‖y‖ ≤ t(1− t)‖x0 − x1‖+ 2ta(
ε

4
) (≤ R)

and
‖x− y‖ = ‖T lxt − xt‖

We show the claim in the following two cases.
Case I. If t(1− t)‖x0 − x1‖ ≤

ε

10
, then

‖T lxt − xt‖ = ‖x− y‖ ≤ ‖x‖+ ‖y‖
≤ 2t(1− t)‖x0 − x1‖+ 2a(ε/4)

<
ε

4
.

Case II. If t(1− t)‖x0 − x1‖ >
ε

10
, then t(1− t) > ε

5R
. Therefore we have

‖tx+ (1− t)y‖ ≤ (t(1− t)‖x0 − x1‖+ 2a(
ε

4
))(1− 2t(1− t)δX(

‖x− y‖
R

))

≤ t(1− t)‖x0 − x1‖+ 2a(
ε

4
)− 2t2(1− t)2‖x0 − x1‖δX(

‖x− y‖
R

)

≤ t(1− t)‖x0 − x1‖+ 2a(
ε

4
)− ε2

15R
δX(
‖x− y‖
R

)
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That is

δX

(
‖x− y‖
R

)
≤ 30R

ε2
a(
ε

4
) < δX(

ε

4R
).

It follows that
‖T lxt − xt‖ ≤

ε

4
.

This shows (4.10) holds. By induction, we also have

copFδ(T l) ⊂ F ε
4
(T l) (4.11)

for δ = a(p−1)(ε/4) and l ∈ Ga(p−1)(ε/4). From (4.9) and (4.11), we get

coFδ(T l) ⊂ F ε
4
(T l) +B ε

4
.

But
C ∩ (F ε

4
(T l) +B ε

4
) ⊂ Fε(T l))

because

‖T lx− x‖ ≤ ‖x− y‖+ ‖y − T ly‖+ ‖T ly − T lx‖
≤ 2‖x− y‖+ ‖y − T ly‖+ cl.

This completes the proof. �

Lemma 4.3. For each 0 < ε < 1 and l ∈ N ε
4
, there exist α ∈ A and nα ∈ N such

that
T (λα)Tn+nαx ⊂ Fε(T l) for all n ∈ N

Proof. For l ∈ N ε
4
, from (4.8), there exists α ∈ A such that

‖λα − r∗l λα‖ <
ε

R
.

By Lemma 4.1, there is an nα ∈ N such that

‖T lT (λα)Tn+nαx− T (λα)T l+n+nαx‖ < ε

2
for all n ∈ N . It follows that

‖T lT (λα)Tn+nαx− T (λα)Tn+nαx‖ ≤ ‖T lT (λα)Tn+nαx− T (λα)T l+n+nαx‖
+ ‖T (λα)T l+n+nαx− T (λα)Tn+nαx‖

≤ ε

2
+ d‖λα − r∗l λα‖

< ε

This completes the proof. �
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Lemma 4.4. Let µ be a Banach limit, and x ∈ C. Then

T (µ)x ∈ F (T )
⋂ ⋂

m∈N
co{Tnx : n ≥ m}.

proof. We only need to prove that T (µ)x is the fixed point of T . Let ε > 0, then
we can choose l0 ∈ N such that

F ε
2
(T l) ⊂ Fε(T l) for all l ≥ l0.

By Lemma 4.2, there exists an δ > 0 and l1 ≥ l0 such that

coFδ ⊂ F ε
2
(T l) for all l ≥ l1.

it follows that
coFδ(T l) ⊂ Fε(T l) for all l ≥ l1.

By Lemma 4.3, there exist l2 ≥ l1 and for each l ≥ l2, there exist α ∈ A and nα ∈ N
such that

T (λα)Tn+nαx ⊂ Fδ(T l)

for all n ∈ N . It follows that

T (µ)x = µn〈T (λα)Tn+nαx〉 ⊂ coFδ(T l) ⊂ Fε(T l)

This implies that T lT (µ)x → T (µ)x strongly as l → ∞. Since TN is continuous
for some n ∈ N , we have TNT (µ)x = liml→∞ TNT lT (µ)x = T (µ)x. This implies
that T (T (µ)x) = T 1+lN (T (µ)x) → T (µ)x as l → ∞. That is T (µ)x ∈ F (T ). This
completes the proof. �

Now we can give the proof of Theorem 1.

Proof of Theorem 1. Let µ be a Banach limit,for x ∈ C, put Px = T (µ)x. It
then follows from Lemma 4.4 that P is a retraction from C onto F (T ) and Px ∈
∩mco{Tnx : n ≥ m} for all x ∈ C. For x, y ∈ C and m ∈ N , we have

‖Px− Py‖ = ‖µ(n)Tn+mx− µ(n)Tn+my‖ ≤ ‖x− y‖+ cm(x).

Which proves (i). Finally, since Px ∈ F (T ), TPx = Px is obvious. That PTx = Px
follows from the following reasoning:

PTx = T (µ)Tx = µ(n)TnTx = µ(n)Tn+1x = T (u)x = Px.

�

To continue the proof of Theorem 3, we also need some Lemmas.
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Lemma 4.5. [11]. Let X be a real Banach space, then for all x, y ∈ X

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉

for all j(x+ y) ∈ J(x+ y).

We now turn to the proofs of Theorem 2 and Theorem 3. In the rest of this
section, let x ∈ C and {an}, {xn} and µ be as in (3.1).

Lemma 4.6. Let xni be a subsequence of {xn} and µ be a Banach limit. Then
there exists the unique element z of C satisfying

µi‖xni − z‖2 = min
y∈C

µi‖xni − y‖2 (4.15)

and the point z is a fixed point of T .

Proof. Let f be a real valued function on C defined by

f(y) = µi‖xni − y‖2 for each y ∈ C.

Then we know from [ 31 ] that f is continuous and convex and satisfies lim‖y‖→∞ f(y) =
∞. Therefore there exists a unique z ∈ C such that f(z) = min{f(y) : y ∈ C}. Now
, we show that z is a fixed point of T . by the proof of Lemma 4.4 it is enough to
show that liml→∞ T lz = z. To this end, from Property 1 we have, for each l ∈ N ,

‖xni −
T lz + z

2
‖2 ≤ 1

2
‖xni − T lz‖2 +

1
2
‖xni − z‖2 −

1
4
g(‖T lz − z‖).

That is
g(‖T lz − z‖) ≤ 2(f(T lz)− f(z)).

since we have from Lemma 4.4 and (3.2) that

‖xni − T lz‖ ≤ ani‖x− T lz‖+ (1− ani)‖T (µ)xni − T lz‖
≤ ani‖x− T lz‖+ (1− ani)(cl + ‖T (µ)x− z‖)
≤ ani(‖x− T lz‖+ ‖x− z‖) + cl + ‖xni − z‖

It follows that

g(‖T lz − z‖) ≤ µi(cl + ‖xni − z‖)2 − µi‖xni − z‖2

≤ clµi(cl + 2‖xni − z‖)

This implies that T lz → z strongly. This completes the proof. �
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Lemma 4.7. Suppose that the norm of X is uniformly Gâteaux differentiable.
Then

〈xn − x, J(xn − z)〉 ≤ 0

for all n ∈ N and z ∈ F (T ).

proof. Let z ∈ F (T ). since xn − x = 1−an
an

(T (µ)xn − xn), we have

〈xn − x, J(xn − z)〉 =
1− an
an

〈T (µ)xn − xn, J(xn − z)〉

=
1− an
an

(〈T (µ)xn − z, J(xn − z)〉+ 〈z − xn, J(xn − z)〉)

≤ 1− an
an

(‖T (µ)xn − z‖‖xn − z‖ − ‖xn − z‖2)

≤ 0

�.

Lemma 4.8. Suppose that the norm of X is uniformly Gâteaux differentiable.
Then the set {xn : n ∈ N} is a relative compact subset of C and each strong
limit point of {xn} is fixed point.

Proof. Let {xni} be a subsequence of {xn}, it then follow from Lemma 4.7 that
there is unique element z of F (T ) satisfying (4.15). By Lemma 4.8, we get 〈xni −
x, J(xni − z〉 ≤ 0. This inequality and Proposition 2 yield

µi‖xni − z‖2 ≤ µi〈x− z, J(xni − z)〉 ≤ 0.

By (2.2), there exists a subsequence of {xni} converging strongly to z. This com-
pletes the proof. �

Proof of Theorem 2. Put an = 1
n . First we shall show that {xn} converges strongly

to an element of F (T ). By Lemma 4.8, we know that {xn : n ≥ 1} is a relative
compact subset of C. Let {xni} and {xmi} be subsequences of {xn} converging
strongly to y and z of F (T ), respectively. We shall show that y = z. From Lemma
4.7, we have 〈y−x, J(y− z)〉 ≤ 0 and 〈z−x, J(z− y)〉 ≤ 0. So we get ‖y− z‖2 ≤ 0,
i.e., y = z. So {xn} converges strongly to an element of F (T ). Hence we can define
a mapping P from C onto F (T ) by Px = limn→∞ xn. Using Lemma 4.7 again, we
have 〈Px−x, J(Px−z)〉 ≤ 0 for all x ∈ C and z ∈ F (T ). Therefore P is the sunny,
nonexpansive retraction by Proposition 4. �
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Proof of Theorem 3. Let {xni} be a subsequence of {xn} converging strong to an
element y of F (T ). we shall show y = Px. By Lemma 4.7, we have 〈xni−x, J(xni−
Px)〉 ≤ 0. So we get 〈y − x, J(y − Px)〉 ≤ 0. Hence we get

‖y − Px‖2 ≤ 〈x− Px, J(y − Px)〉 ≤ 0

by Proposition 4. This completes the proof. �
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