ERGODIC THEOREM AND STRONG CONVERGENCE OF AVERAGED APPROXIMANTS FOR NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

GANG LI AND BRAILEY SIMS

ABSTRACT. Let C be a bounded closed convex subset of a uniformly convex Banach space X and let T be an asymptotically nonexpansive in the intermediate mapping from C into itself. In this paper, we first provide a ergodic retraction theorem and a mean ergodic convergence theorem. Using this result, we show that the set F(T) of fixed points of T is a sunny, nonexpansive retract of C if the norm of X is uniformly Gâteaux differentiable. Moreover, we discuss the strong convergence of the sequence $\{x_n\}$ defined by $x_n = a_n x + (1 - a_n)T(\mu)x_n$ for $n = 0, 1, 2, \ldots$, where $x \in C$, μ is a Banach limit on l^{∞} and a_n is a real sequence in (0, 1].

1. INTRODUCTION

Let C be a nonempty subset of a Banach space X. a mapping $T: C \mapsto C$ is said to be

- (a) nonexpansive if $||Tx Ty|| \le ||x y||$ for $x, y \in C$.
- (b) asymptotically nonexpansive [19] if there exists a sequence $\{k_n\}$ such that $\limsup k_n \leq 1$ and $||T^n x T^n y|| \leq k_n ||x y||$ for $x, y \in C$ and $n \in \mathcal{N}$.
- (c) asymptotically nonexpansive in the intermediate if

$$\limsup_{n \to \infty} [\sup_{x, y \in C} [\|T^n x - T^n y\| - \|x - y\|] \le 0.$$

(d) asymptotically nonexpansive type [19] if for each x in C,

$$\limsup_{n \to \infty} \sup_{y \in C} [\|T^n x - T^n y\| - \|x - y\|] \le 0.$$

1

Typeset by \mathcal{AMS} -TEX

 $^{1991\} Mathematics\ Subject\ Classification.\ 47H09,\ 47H10..$

Key words and phrases. Ergodic theorem, strong convergence, sunny retract.. Research supported in part by the NSF of China.

It is easily seen that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$ and that both the inclusions are proper (cf. [19, p. 112]). We denote F(T) by the set of fixed points of T.

Let C be a bounded closed convex subset of a Banach space X. Let T be a nonexpansive mapping from C into itself and let x be an element of C and for each t with 0 < t < 1, let x_t be the unique point of C which satisfies $x_t = tx + (1-t)x_t$. Browder [5] showed that $\{x_t\}$ converges trongly to the element of F(T) which is nearest to x in F(T) as $t \downarrow 0$ in the case when X is a Hilbert space. Reich [30] extended Browder's result to the case when X is a uniformly smooth Banach space and he showed that F(T) is a sunny, nonexpansive retract of C, i.e., there is a nonexpansive retraction P from C onto F(T) such that P(Px + t(x - Px)) = Pxfor each $x \in C$ and $t \ge 0$ with $Px + t(x - Px) \in C$. Recently, using an idea of Browder [5], Shimizu and Takahashi [32] studied the convergence of another approximating sequence for an asymptotically nonexpansive mapping in a Hilbert space. This result was extended to a Banach space by Shioji and Takahashi [33].

On the other hand, Baillon [1] proved the first nonlinear mean ergodic theorem for nonexpansive mappings in a Hilbert space: Let C be a nonempty closed convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. If the set F(T) of fixed points of T is nonempty, then the Cesáro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge weakly as $n \to \infty$ to a fixed point y of T for each $x \in C$. In this case, putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T).

In recent years much effort has devoted to studying nonlinear ergodic theory for (asymptotically) nonexpansive mappings and semigroups. See [1-3, 15-18, 20-29, 34]. Most of the work was carried out in a uniformly convex Banach space X whose norm is either Frechet differentiable or satisfies Opial's condition. In this paper, we first prove an ergodic retraction theorem and an mean ergodic convergence theorems for non-lipschitzian mapping in a uniformly convex Banach space without using the Frechet differentiable norm, which includes many known results as special cases. Using this result, we show that the set F(T) is a sunny, nonexpansive retract of C if the norm of X is uniformly Gâteaux differentiable. Moreover, we discuss the strong convergence of the sequence $\{x_n\}$ defined by $x_n = a_n + (1 - a_n)T(\mu)x_n$ for $n = 0, 1, 2, \ldots$, where $x \in C$, μ is a Banach limit on l^{∞} and a_n is a real sequence in (0, 1].

2. Preliminaries and Notations

Let X be a Banach space. We recall that the modulus of convexity of X is the

function δ_X defined on [0, 2] by

$$\delta_X(\epsilon) = \inf \Big\{ 1 - \frac{1}{2} \|x + y\| : \|x\| \le 1, \|y\| \le 1, \text{ and } \|x - y\| \ge \epsilon \Big\}.$$

A Banach space X is said to be uniformly convex if $\delta_X(\epsilon) > 0$ for all $0 < \epsilon \le 2$. We need the following characterization of uniform convexity for a Banach space.

Proposition 1 (cf. [36]). Let p > 1 and r > 0 be two real numbers. Then a Banach space X is uniformly convex if and only if there exists a continuous, strictly increasing, and convex function $g : [0, \infty) \to [0, \infty)$, depending on p and r, g(0) = 0, such that

$$\|\lambda x + (1 - \lambda)y\|^{p} \le \lambda \|x\|^{p} + (1 - \lambda)\|y\|^{p} - W_{p}(\lambda)g(\|x - y\|)$$

for all $x, y \in B_r$ and $0 \le \lambda \le 1$, where $W_p(\lambda) = \lambda(1-\lambda)^p + \lambda^p(1-\lambda)$ and B_r is the closed ball centered at the origin and with radius r.

Throughout this paper X denotes a uniformly convex real Banach space, C a nonempty bounded closed convex subset of X, and T an asymptotically nonexpansive in the intermediate sense. Put

$$c_n = \sup_{x,y \in C} (\|T^n x - T^y\| - \|x - y\|) \vee 0,$$

we have

$$\lim_{n \to \infty} c_n = 0. \tag{2.1}$$

We denote by \triangle^n the set $\{\lambda = (\lambda_1, \ldots, \lambda_n) : \lambda_i \ge 0, \sum_{j=1}^n \lambda_j = 1\}$ for $n \in \mathcal{N}$, the set of all nonnegative integers. For a subset D of X, we denote by coD and $\overline{co}D$, the convex hull and convex closed hull of D respectively.

Let μ be a continuous linear functional on l^{∞} and let $a = (a_0, a_1, ...) \in l^{\infty}$, we write $\mu(n)(a_n)$ instead of $\mu(a)$. For $n \in \mathcal{N}$, we can define a point evaluation δ_n by $\delta_n(a) = a_n$ for each $a \in l^{\infty}$. A convex combination of point evaluations is called a finite mean on \mathcal{N} . Let X^* be the dual space of X. The value of $y \in X^*$ at $x \in X$ will be denoted by $\langle x, y \rangle$. Since X is reflexive, for any continuous linear functional μ and $x \in C$ there exists a unique element $T(\mu)x$ in X such that

$$\langle T(\mu)x, x^* \rangle = \mu(n) \langle T^n x, x^* \rangle$$

for all $x^* \in X^*$. We write $T(\mu)x$ by $\mu(n)\langle T^n x \rangle$. Also, if μ is a finite mean on \mathcal{N} , say

$$\mu = \sum_{i=1}^{n} a_i \delta_{n_i} (t_i \in \mathcal{N}, a_i \ge 0, i = 1, 2, \cdots, n, \sum_{i=1}^{n} a_i = 1),$$

Gang. Li and Brailey Sims

then

$$T(\mu)x = \sum_{i=1}^{n} a_i T^{n_i} x$$

Now, for each $m \in \mathcal{N}$, we can defined bounded linear operator r_m in l^{∞} by $(r_m)(a_n) = (a_{n+m})$. We call μ a Banach limit if μ satisfies $\|\mu\| = \mu(1) = 1$ and $\mu = r_n^* \mu$ for each $n \in \mathcal{N}$, where r_n^* is the conjugate operator of r_n . For a Banach limit, we know that

$$\liminf_{n \to \infty} a_n \le \mu(n)(a_n) \le \limsup_{n \to \infty} a_n \text{ for all } (a_0, a_1, \dots) \in l^{\infty}$$
(2.2)

The duality mapping J from X into X^* will be defined by

$$J(x) = \{ y \in X^* : \langle x, y \rangle = \|x\|^2 = \|y\|^2 \},\$$

for each $x \in X$. X is said to be smooth if for each $x, y \in B_1$, the limit

$$\lim_{t \to o} \frac{\|x + ty\| - \|x\|}{t}$$
(2.3)

exists. The norm of X is said to be uniformly Gâteaux differentiable if for each $y \in B_1$, the limit (2.3) exists uniformly for $x \in B_1$. The norm of X is said to be uniformly Fréchet differentiable if for each $x \in B_1$, the limit (2.3) exists uniformly for $y \in B_1$. X is said to be uniformly smooth if (2.3) exists uniformly for $x, y \in B_1$. It is well known that if X is smooth then the duality mapping is single-valued and norm to weak star continuous. In the case when the norm of X is uniformly Gâteaux differentiable, we know the following [35, Lemma 1]:

Proposition 2. Let C be a convex subset of a Banach space X whose norm is uniformly Gâteaux differentiable. Let $\{x_n\}$ be a bounded subset of X, let z be a point of C and let μ be a Banach limit. Then

$$\mu(n) \|x_n - z\|^2 = \min_{y \in C} \mu(n) \|x_n - y\|^2$$

if and only if

$$\mu(n)\langle y-z, J(x_n-z)\rangle \leq 0$$
 for all $y \in C$.

Let C be a convex subset of X, let K be a nonempty subset of C and let P be a retraction from C onto K, i.e., Px = x for each $x \in K$. A retraction P is said to be sunny if P(Px + t(x - Px)) = Px for each $x \in C$ and $t \ge 0$ with $Px + t(x - Px) \in C$. If the sunny retraction P is also nonexpansive, then K is said to be a sunny, nonexpansive retract of C. Concerning sunny, nonexpansive retractions, we know the following [9, 29]:

Proposition 3. Let C be a convex subset of a smooth space, let K be a nonempty subset of C and let P be a retraction from C onto K. Then P is sunny and nonexpansive if and only if

$$\langle x - Px, J(y - Px) \rangle \leq 0$$
 for all $x \in C$ and $y \in K$

Hence there is at most one sunny, nonexpansive retraction from C onto K.

3. Main Theorems

In this section, we will state our main Theorems and some remarks. The proof of Theorems will be given in the next section.

Theorem 1. Let C be a nonempty bounded closed convex subset of a uniformly convex Banach space X, and let T be an asymptotically nonexpansive in the intermediate sense mapping from C to itself. Then, for any Banach limit μ , the mapping P defined by $Px = T(\mu)x$ is a retraction from C onto F(T) satisfying the following properties:

- (i) *P* is nonexpansive;
- (ii) PT = TP = P;
- (iii) $Px \in \bigcap_m \overline{co} \{T^n x : n \ge m\}$ for all $x \in C$.

From Theorem 1, if there exists a unique retraction from C onto F(T) having properties (i) - (iii) of Theorem 1. Then $T(\mu) = T(\nu)$ for any Banach limits μ and ν . By the proof of Theorem 2 of [16], we have following corollary.

Corollary 1. Let X, C and T be as in Theorem 1. Let $Q = \{q_{n,m}\}_{n,m\in\mathcal{N}}$ is a strongly regular matrix. Suppose that there exists a unique retraction from C onto F(T) having properties (i) - (iii) of Theorem 1. Then for every $x \in C$,

$$w - \lim_{n \to \infty} \sum_{m=0}^{\infty} q_{n,m} T^{m+k} x = y \in F(T)$$
 uniformly in $m \in \mathcal{N}$.

Now, using Theorem 1, we shall give a new approximating sequence for an nonlipschitzian mapping.

Let $\{a_n\}$ be a real sequence such that

$$0 < a_n \le 1, \quad \lim_{n \to \infty} a_n = 0.$$

Let x be an element of C and let μ be a Banach limit, and let x_n be the unique point of C which satisfies

$$x_n = a_n x + (1 - a_n) T(\mu) x_n \tag{3.1}$$

We remark that (3.1) is well defined since the mapping T_n from C into itself defined by $T_n u = a_n x + (1 - a_n)T(\mu)u$ satisfies $||T_n u - T_n v|| \le (1 - a_n)||u - v||$ for each $u, v \in C$. **Theorem 2.** Let C be a bounded convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, let T be an asymptotically nonexpansive in the intermediate sense mapping from C into itself. Then F(T) is a sunny, nonexpansive retract of C.

Theorem 3. Let C be a bounded convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, let T be an asymptotically nonexpansive in the intermediate sense mapping from C into itself and let P be the sunny, nonexpansive retract from C onto F(T). Let x be an element of C and let $\{x_n\}$ be sequence of C which satisfies (3.1). Then $\{x_n\}$ converges strongly to Px.

4. Proof of Theorems

To simplify, in the following, for each $\varepsilon \in (0, 1]$, we define

$$a(\varepsilon) = \frac{\varepsilon^2}{10R} \delta_X(\frac{\varepsilon}{R}) \tag{4.1}$$

and

$$\mathcal{N}_{\varepsilon} = \{ n_{\varepsilon} \in \mathcal{N} : c_{n+n_{\varepsilon}} < a(\varepsilon) \text{ for each } n \in \mathcal{N} \},$$

$$(4.2)$$

where δ_X is the modulus of convexity of the norm, $d = 2 \sup\{||x|| : x \in C\}$, and R = 4d + 1. Noting that from (2.1), $\mathcal{N}_{\varepsilon}$ is nonempty for each $\epsilon > 0$, and if $n_{\varepsilon} \in \mathcal{N}_{\varepsilon}$, then $n + n_{\varepsilon} \in \mathcal{N}_{\varepsilon}$ for each $n \in \mathcal{N}$.

The following lemma shall play a crucial role in the proof of our main theorems.

Lemma 4.1. Let x be a element of C and let λ be a finite mean on \mathcal{N} and let $\varepsilon_i \in (0,1]$ (i = 1,2) be positive numbers. Then there exists $n_{\varepsilon_2} \in \mathcal{N}$, where n_{ε_2} is independent of ε_1 , such that

$$\|T^{l}T(\lambda)T^{n}x - T(\lambda)T^{l+n}x\| < \varepsilon_{1} + \varepsilon_{2}$$

$$(4.3)$$

for all $n \geq n_{\varepsilon_2}$ and $l \in \mathcal{N}_{\varepsilon_1}$.

Proof. We shall prove the Lemma by mathematical induction.

If $\lambda = \delta_{m_1}, m_1 \in \mathcal{N}$, then the assertion is clear. Now suppose that the assertion holds for such $\lambda = \sum_{i=1}^{k-1} a_i \delta_{m_i}$ $(m_i \in \mathcal{N}, (a_1, a_2, \cdots, a_{k-1}) \in \Delta^{k-1})$. Let

$$\lambda = \sum_{i=1}^{k} a_i \delta_{m_i} \quad (m_i \in \mathcal{N}, (a_1, a_2, \cdots, a_k) \in \triangle^k).$$

Defining

$$\mu = \frac{1}{1 - a_k} \sum_{i=1}^{k-1} a_i \delta_{m_i}$$

we claim that

$$\lim_{n \to \infty} \|T(\mu)T^n x - T^{n+m_k} x\| \quad \text{exists.}$$
(4.4)

Let $\varepsilon > 0$, from assumption of induction there exists $n_1 \in \mathcal{N}$ such that

$$c_n < \frac{1}{3}\varepsilon,$$

and

$$\|T(l)T(\mu)T^nx - T(\mu)T^{n+l}x\| < \frac{1}{3}\varepsilon$$

for all $n \ge n_1$ and $l \ge n_1$. It follows that, for all $n \ge n_1$ and $l \ge n_1$,

$$||T(\mu)T^{n+l}x - T^{n+l+m_k}x|| \le ||T(\mu)T^{n+l}x - T^lT(\mu)T^nx|| + ||T^lT(\mu)T^nx - T^{n+l+m_k}x|| \le ||T(\mu)T^nx - T^{n+m_k}x|| + \varepsilon.$$

For fixed $n \ge n_1$, taking $l \to \infty$, we get

$$\limsup_{l \to \infty} \|T(\mu)T^l x - T^{l+m_k} x\| \le \|T(\mu)T^n x - T^{n+m_k} x\| + \varepsilon,$$

and hence

$$\limsup_{l \to \infty} \|T(\mu)T^l x - T^{l+m_k} x\| \le \liminf_{n \to \infty} \|T(\mu)T^n x - T^{n+m_k} x\| + \varepsilon,$$

Since $\varepsilon > 0$ is arbitrary, this implies (4.4) holds. Put

$$r = \lim_{n \to \infty} \|T(\mu)T^n x - T^{n+m_k}x\|.$$

By assumption of induction again, for given $\varepsilon_2 > 0$, there exists $n_2(= n_2(\lambda, \varepsilon_2))$ such that

$$\left| \|T(\mu)T^{n}x - T^{n+m_{k}}x\| - r \right| < \frac{1}{2}a(\varepsilon_{2}),$$
(4.5)

and

$$||T^{l}T(\mu)T^{n}x - T(\mu)T^{n+l}x|| < \frac{1}{2}a(\varepsilon_{2}),$$
(4.6)

for all $l, n \ge n_2$. Now, we put $n_{\varepsilon_2} = 2n_2 \in \mathcal{N}$. Since for $n \ge n_{\varepsilon}$,

$$\begin{aligned} \|T^{l}T(\mu)T^{n}x - T(\mu)T^{l+n}x\| &\leq \|T^{l}T(\mu)T^{n}x - T^{l+n_{2}}T(\mu)T^{n-n_{2}}x\| \\ &+ \|T^{l+n_{2}}T(\mu)T^{n-n_{2}}x - T(\mu)T^{l+n}x\| \\ &\leq c_{l} + \frac{1}{2}a(\varepsilon_{2}) \\ &+ \|T(\mu)T^{n}x - T^{n_{2}}T(\mu)T^{n-n_{2}}\| \\ &\leq c_{l} + a(\varepsilon_{2}) \end{aligned}$$

it then follows from (4.2) and (4.5) that

$$||T^{l}T(\mu)T^{n}x - T(\mu)T^{n+l}x|| < a(\varepsilon_{1}) + a(\varepsilon_{2})$$
(4.7)

for each $l \in \mathcal{N}_{\epsilon_1}$ and $n \ge n_{\epsilon_2}$. Put

$$x = (1 - a_n)(T^l T(\lambda)T^n x - T(\mu)T^{n+l}x)$$

and

$$y = a_n (T^{n+l+m_k} x - T^l T(\lambda) T^n x).$$

It then follows from (4.4), (4.5), and (4.6) that, for $l \in \mathcal{N}_{\varepsilon_1}$ and $n \ge n_{\varepsilon_2}$,

$$\begin{aligned} \|x\| &\leq (1-a_n)(\|T^l T(\lambda)T^n x - T^l T(\mu)T^n x\| \\ &+ \|T^l T(\mu)T^n x - T(\mu)T^n x\| \\ &\leq (1-a_n)(a(\varepsilon_1) + a(\varepsilon_2) + c_l + \|T(\lambda)T^n x - T(\mu)T^n x\|) \\ &\leq a_n(1-a_n)r + 2a(\varepsilon_1) + 2a(\varepsilon_2) (\leq R), \\ \|y\| &\leq a_n(c_l + \|T^{n+m_k} x - T(\lambda)T^n x\|) \\ &\leq a_n(1-a_n)r + a(\varepsilon_1) + a(\varepsilon_2) (\leq R), \end{aligned}$$

and

$$||x - y|| = ||T^l T(\lambda) T^n x - T(\lambda) T^{l+n} x||.$$

Suppose that

$$\|x - y\| \ge \varepsilon_1 + \varepsilon_2$$

for some $l \in G_{\varepsilon_1}$ and $n \ge n_{\varepsilon_2}$. Then we shall give the contradiction in following two cases.

Case I. If $4a_n(1-a_n)r \leq \max\{\varepsilon_1, \varepsilon_2\}$, then

$$||x - y|| \le ||x|| + ||y|| \le 2a_n(1 - a_n)r + 3a(\varepsilon_1) + 3a(\varepsilon_2) < \varepsilon_1 + \varepsilon_2$$

This is a contradiction.

Case II. If $4a_n(1-a_n)r > \max\{\varepsilon_1, \varepsilon_2\}$, then we have

$$||a_n x + (1 - a_n)y|| \le (a_n(1 - a_n)r + 2a(\varepsilon_1) + 2a(\varepsilon_2))(1 - 2a_n(1 - a_n)\delta(\frac{\varepsilon_1 + \varepsilon_2}{R})),$$

by Lemma in [14]. And hence

$$a_{n}(1-a_{n})\|T(\mu)T^{n+l}x - T^{n+l+m_{k}}x\|$$

$$\leq a_{n}(1-a_{n})r + 2a(\varepsilon_{1}) + 2a(\varepsilon_{2}) - 2a_{n}^{2}(1-a_{n})^{2}r\delta(\frac{\varepsilon_{1}+\varepsilon_{2}}{R})$$

It then follows (4.5) that

$$0 \le 2a(\varepsilon_1) + 3a(\varepsilon_2) - 2a_n^2(1 - a_n)^2 r\delta(\frac{\varepsilon_1 + \varepsilon_2}{R}).$$

If $\varepsilon_1 \ge \varepsilon_2$, then $a(\varepsilon_1) \ge a(\varepsilon_2)$, $4a_n(1-a_n)r > \varepsilon_1$, and $a_n(1-a_n) > \frac{\varepsilon_1}{R}$. It follows that

$$0 < 5a(\varepsilon_1) - \frac{\varepsilon_1^2}{2R}\delta(\frac{\varepsilon_1}{R}),$$

this contradicts (4.1). If $\varepsilon_1 < \varepsilon_2$, then we also have a contradiction in the same way. This completes the proof.

Since \mathcal{N} is commutative semigroup, there exists a net $\{\lambda_{\alpha} : \alpha \in A\}$ of finite means on \mathcal{N} such that

$$\lim_{\alpha \in A} \|\lambda_{\alpha} - r_n^* \lambda_{\alpha}\| = 0 \tag{4.8}$$

for every $n \in \mathcal{N}$, where A is a directed set (see [12]).

For each $\varepsilon > 0$ and $l \in \mathcal{N}$, we set

$$F_{\varepsilon}(T^{l})) = \{ x \in C : \|T^{l}x - x\| \le \varepsilon \}$$

Lemma 4.2. For each $0 < \epsilon < 1$, there exist $\delta > 0$ and $l_0 \in \mathcal{N}$ such that

$$coF_{\delta}(T^l)) \subset F_{\epsilon}(T^l))$$

for each $l \geq l_0$.

Proof. Since X is uniformly convex, by [7, Theorem 1.1], for given $\epsilon > 0$ we can choose a positive integer p such that for each $M \subset C$,

$$\mathrm{co}M \subset \mathrm{co}_p M + B_{\epsilon/4},\tag{4.9}$$

where $co_p M$ denotes the set of sums $\lambda_1 x_1 + \cdots + \lambda_p x_p$ with $(\lambda_1, \ldots, \lambda_p) \in \Delta^p$ and $x_i \in M, 1 \leq i \leq p$. We first claim that

$$\operatorname{co}_2 F_{a(\frac{\epsilon}{4})}(T^l) \subset F_{\frac{\epsilon}{4}}(T^l)), \tag{4.10}$$

for each $l \in G_{a(\frac{\epsilon}{4})}$, where $a(\frac{\epsilon}{4})$ and $G_{a(\frac{\epsilon}{4})}$ are defined in (3.1) and (3.2). In fact, let $x_0, x_1 \in F_{a(\frac{\epsilon}{4})}(T^l)$ and $x_t = tx_0 + (1-t)x_1$ for some 0 < t < 1. Put $x = (1-t)(T^lx_t - x_1)$ and $y = t(x_0 - T^lx_t)$. Then we have

$$\begin{aligned} \|x\| &\leq (1-t)(\|T^l x_t - T^l x_1\| + \|T^l x_1 - x_1\|) \\ &\leq t(1-t)\|x_0 - x_1\| + 2(1-t)a(\frac{\epsilon}{4}) (\leq R) \\ \|y\| &\leq t(1-t)\|x_0 - x_1\| + 2ta(\frac{\epsilon}{4}) (\leq R) \end{aligned}$$

and

$$||x - y|| = ||T^{t}x_{t} - x_{t}||$$

We show the claim in the following two cases. Case I. If $t(1-t)||x_0 - x_1|| \leq \frac{\epsilon}{10}$, then

 $||T^{l}x_{t} - x_{t}|| = ||x - y|| \le ||x|| + ||y||$ $\le 2t(1 - t)||x_{0} - x_{1}|| + 2a(\epsilon/4)$ $< \frac{\epsilon}{4}.$

Case II. If $t(1-t)||x_0 - x_1|| > \frac{\epsilon}{10}$, then $t(1-t) > \frac{\epsilon}{5R}$. Therefore we have

$$\begin{aligned} \|tx + (1-t)y\| &\leq (t(1-t)\|x_0 - x_1\| + 2a(\frac{\varepsilon}{4}))(1 - 2t(1-t)\delta_X(\frac{\|x-y\|}{R})) \\ &\leq t(1-t)\|x_0 - x_1\| + 2a(\frac{\varepsilon}{4}) - 2t^2(1-t)^2\|x_0 - x_1\|\delta_X(\frac{\|x-y\|}{R}) \\ &\leq t(1-t)\|x_0 - x_1\| + 2a(\frac{\varepsilon}{4}) - \frac{\varepsilon^2}{15R}\delta_X(\frac{\|x-y\|}{R}) \end{aligned}$$

That is

$$\delta_X\left(\frac{\|x-y\|}{R}\right) \le \frac{30R}{\epsilon^2}a(\frac{\epsilon}{4}) < \delta_X(\frac{\epsilon}{4R}).$$

It follows that

$$\|T^l x_t - x_t\| \le \frac{\epsilon}{4}$$

This shows (4.10) holds. By induction, we also have

$$\operatorname{co}_p F_{\delta}(T^l) \subset F_{\frac{\epsilon}{4}}(T^l) \tag{4.11}$$

for $\delta = a^{(p-1)}(\epsilon/4)$ and $l \in G_{a^{(p-1)}(\epsilon/4)}$. From (4.9) and (4.11), we get

$$\operatorname{co} F_{\delta}(T^l) \subset F_{\frac{\epsilon}{4}}(T^l) + B_{\frac{\epsilon}{4}}.$$

But

$$C \cap (F_{\frac{\epsilon}{4}}(T^l) + B_{\frac{\varepsilon}{4}}) \subset F_{\epsilon}(T^l))$$

because

$$\begin{aligned} \|T^{l}x - x\| &\leq \|x - y\| + \|y - T^{l}y\| + \|T^{l}y - T^{l}x\| \\ &\leq 2\|x - y\| + \|y - T^{l}y\| + c_{l}. \end{aligned}$$

This completes the proof.

Lemma 4.3. For each $0 < \varepsilon < 1$ and $l \in \mathcal{N}_{\frac{\varepsilon}{4}}$, there exist $\alpha \in A$ and $n_{\alpha} \in \mathcal{N}$ such that

$$T(\lambda_{\alpha})T^{n+n_{\alpha}}x \subset F_{\varepsilon}(T^{l}) \text{ for all } n \in \mathcal{N}$$

Proof. For $l \in \mathcal{N}_{\frac{\varepsilon}{4}}$, from (4.8), there exists $\alpha \in A$ such that

$$\|\lambda_{\alpha} - r_l^* \lambda_{\alpha}\| < \frac{\varepsilon}{R}.$$

By Lemma 4.1, there is an $n_{\alpha} \in \mathcal{N}$ such that

$$\|T^{l}T(\lambda_{\alpha})T^{n+n_{\alpha}}x - T(\lambda_{\alpha})T^{l+n+n_{\alpha}}x\| < \frac{\varepsilon}{2}$$

for all $n \in \mathcal{N}$. It follows that

$$\|T^{l}T(\lambda_{\alpha})T^{n+n_{\alpha}}x - T(\lambda_{\alpha})T^{n+n_{\alpha}}x\| \leq \|T^{l}T(\lambda_{\alpha})T^{n+n_{\alpha}}x - T(\lambda_{\alpha})T^{l+n+n_{\alpha}}x\| \\ + \|T(\lambda_{\alpha})T^{l+n+n_{\alpha}}x - T(\lambda_{\alpha})T^{n+n_{\alpha}}x\| \\ \leq \frac{\varepsilon}{2} + d\|\lambda_{\alpha} - r_{l}^{*}\lambda_{\alpha}\| \\ < \varepsilon$$

This completes the proof.

Lemma 4.4. Let μ be a Banach limit, and $x \in C$. Then

$$T(\mu)x \in F(T) \bigcap \bigcap_{m \in \mathcal{N}} \overline{co} \{T^n x : n \ge m\}.$$

proof. We only need to prove that $T(\mu)x$ is the fixed point of T. Let $\varepsilon > 0$, then we can choose $l_0 \in \mathcal{N}$ such that

$$\overline{F_{\frac{\varepsilon}{2}}(T^l)} \subset F_{\varepsilon}(T^l) \text{ for all } l \ge l_0.$$

By Lemma 4.2, there exists an $\delta > 0$ and $l_1 \ge l_0$ such that

$$coF_{\delta} \subset F_{\frac{\varepsilon}{2}}(T^l)$$
 for all $l \geq l_1$.

it follows that

$$\overline{co}F_{\delta}(T^l) \subset F_{\varepsilon}(T^l)$$
 for all $l \ge l_1$.

By Lemma 4.3, there exist $l_2 \ge l_1$ and for each $l \ge l_2$, there exist $\alpha \in A$ and $n_\alpha \in \mathcal{N}$ such that

$$T(\lambda_{\alpha})T^{n+n_{\alpha}}x \subset F_{\delta}(T^{l})$$

for all $n \in \mathcal{N}$. It follows that

$$T(\mu)x = \mu_n \langle T(\lambda_\alpha) T^{n+n_\alpha} x \rangle \subset \overline{co} F_\delta(T^l) \subset F_\varepsilon(T^l)$$

This implies that $T^lT(\mu)x \to T(\mu)x$ strongly as $l \to \infty$. Since T^N is continuous for some $n \in \mathcal{N}$, we have $T^NT(\mu)x = \lim_{l\to\infty} T^NT^lT(\mu)x = T(\mu)x$. This implies that $T(T(\mu)x) = T^{1+lN}(T(\mu)x) \to T(\mu)x$ as $l \to \infty$. That is $T(\mu)x \in F(T)$. This completes the proof.

Now we can give the proof of Theorem 1.

Proof of Theorem 1. Let μ be a Banach limit, for $x \in C$, put $Px = T(\mu)x$. It then follows from Lemma 4.4 that P is a retraction from C onto F(T) and $Px \in \bigcap_m \overline{co}\{T^nx : n \geq m\}$ for all $x \in C$. For $x, y \in C$ and $m \in \mathcal{N}$, we have

$$||Px - Py|| = ||\mu(n)T^{n+m}x - \mu(n)T^{n+m}y|| \le ||x - y|| + c_m(x).$$

Which proves (i). Finally, since $Px \in F(T)$, TPx = Px is obvious. That PTx = Px follows from the following reasoning:

$$PTx = T(\mu)Tx = \mu(n)T^{n}Tx = \mu(n)T^{n+1}x = T(u)x = Px.$$

To continue the proof of Theorem 3, we also need some Lemmas.

Lemma 4.5. [11]. Let X be a real Banach space, then for all $x, y \in X$

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y) \rangle$$

for all $j(x+y) \in J(x+y)$.

We now turn to the proofs of Theorem 2 and Theorem 3. In the rest of this section, let $x \in C$ and $\{a_n\}, \{x_n\}$ and μ be as in (3.1).

Lemma 4.6. Let x_{n_i} be a subsequence of $\{x_n\}$ and μ be a Banach limit. Then there exists the unique element z of C satisfying

$$\mu_i \|x_{n_i} - z\|^2 = \min_{y \in C} \mu_i \|x_{n_i} - y\|^2$$
(4.15)

and the point z is a fixed point of T.

Proof. Let f be a real valued function on C defined by

$$f(y) = \mu_i ||x_{n_i} - y||^2 \quad \text{for each} \quad y \in C.$$

Then we know from [31] that f is continuous and convex and satisfies $\lim_{\|y\|\to\infty} f(y) = \infty$. Therefore there exists a unique $z \in C$ such that $f(z) = \min\{f(y) : y \in C\}$. Now , we show that z is a fixed point of T. by the proof of Lemma 4.4 it is enough to show that $\lim_{l\to\infty} T^l z = z$. To this end, from Property 1 we have, for each $l \in \mathcal{N}$,

$$\|x_{n_i} - \frac{T^l z + z}{2}\|^2 \le \frac{1}{2} \|x_{n_i} - T^l z\|^2 + \frac{1}{2} \|x_{n_i} - z\|^2 - \frac{1}{4}g(\|T^l z - z\|).$$

That is

$$g(||T^l z - z||) \le 2(f(T^l z) - f(z)).$$

since we have from Lemma 4.4 and (3.2) that

$$\begin{aligned} \|x_{n_{i}} - T^{l}z\| &\leq a_{n_{i}} \|x - T^{l}z\| + (1 - a_{n_{i}}) \|T(\mu)x_{n_{i}} - T^{l}z\| \\ &\leq a_{n_{i}} \|x - T^{l}z\| + (1 - a_{n_{i}})(c_{l} + \|T(\mu)x - z\|) \\ &\leq a_{n_{i}}(\|x - T^{l}z\| + \|x - z\|) + c_{l} + \|x_{n_{i}} - z\| \end{aligned}$$

It follows that

$$g(||T^{l}z - z||) \leq \mu_{i}(c_{l} + ||x_{n_{i}} - z||)^{2} - \mu_{i}||x_{n_{i}} - z||^{2}$$
$$\leq c_{l}\mu_{i}(c_{l} + 2||x_{n_{i}} - z||)$$

This implies that $T^l z \to z$ strongly. This completes the proof.

Lemma 4.7. Suppose that the norm of X is uniformly Gâteaux differentiable. Then

$$\langle x_n - x, J(x_n - z) \rangle \le 0$$

for all $n \in \mathcal{N}$ and $z \in F(T)$.

proof. Let $z \in F(T)$. since $x_n - x = \frac{1-a_n}{a_n}(T(\mu)x_n - x_n)$, we have

$$\langle x_n - x, J(x_n - z) \rangle = \frac{1 - a_n}{a_n} \langle T(\mu) x_n - x_n, J(x_n - z) \rangle$$

= $\frac{1 - a_n}{a_n} (\langle T(\mu) x_n - z, J(x_n - z) \rangle + \langle z - x_n, J(x_n - z) \rangle)$
 $\leq \frac{1 - a_n}{a_n} (\|T(\mu) x_n - z\| \|x_n - z\| - \|x_n - z\|^2)$
 ≤ 0

 \Box .

Lemma 4.8. Suppose that the norm of X is uniformly Gâteaux differentiable. Then the set $\{x_n : n \in \mathcal{N}\}$ is a relative compact subset of C and each strong limit point of $\{x_n\}$ is fixed point.

Proof. Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$, it then follow from Lemma 4.7 that there is unique element z of F(T) satisfying (4.15). By Lemma 4.8, we get $\langle x_{n_i} - x, J(x_{n_i} - z) \rangle \leq 0$. This inequality and Proposition 2 yield

$$\mu_i \|x_{n_i} - z\|^2 \le \mu_i \langle x - z, J(x_{n_i} - z) \rangle \le 0.$$

By (2.2), there exists a subsequence of $\{x_{n_i}\}$ converging strongly to z. This completes the proof.

Proof of Theorem 2. Put $a_n = \frac{1}{n}$. First we shall show that $\{x_n\}$ converges strongly to an element of F(T). By Lemma 4.8, we know that $\{x_n : n \ge 1\}$ is a relative compact subset of C. Let $\{x_{n_i}\}$ and $\{x_{m_i}\}$ be subsequences of $\{x_n\}$ converging strongly to y and z of F(T), respectively. We shall show that y = z. From Lemma 4.7, we have $\langle y - x, J(y - z) \rangle \le 0$ and $\langle z - x, J(z - y) \rangle \le 0$. So we get $||y - z||^2 \le 0$, i.e., y = z. So $\{x_n\}$ converges strongly to an element of F(T). Hence we can define a mapping P from C onto F(T) by $Px = \lim_{n\to\infty} x_n$. Using Lemma 4.7 again, we have $\langle Px - x, J(Px - z) \rangle \le 0$ for all $x \in C$ and $z \in F(T)$. Therefore P is the sunny, nonexpansive retraction by Proposition 4. *Proof of Theorem 3.* Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$ converging strong to an element y of F(T). we shall show y = Px. By Lemma 4.7, we have $\langle x_{n_i} - x, J(x_{n_i} - x) \rangle$ $|Px\rangle \leq 0$. So we get $\langle y - x, J(y - Px) \rangle \leq 0$. Hence we get

$$||y - Px||^2 \le \langle x - Px, J(y - Px) \rangle \le 0$$

by Proposition 4. This completes the proof.

References

- 1. J. B. Baillon, Un théorème de type ergodique les contraction non linéaires dans Un.espace de Hilbert,, C. R. Acad. Sci. Paris Ser.-A, 280 (1975), 1511-1514.
- 2. J. B. Baillon, Quelques propériétes de convergence asymptotique pour les semigroupes de contractions impaires, C. R. Acad. Sci. Paris, Ser.-A, 283 (1976), 75-78.
- 3. J. B. Baillon and H. Brezis, Une remarque sur le comportement asymptotique des semigroups non-lineaires, Houston J. Math., 2 (1976), 5-7.
- 4. F.E.Browder, Semicontractive and semiaccretive nonlinear mappings in Banach space, Bull. Amer. Math. Soc., 74 (1968), 660-665.
- 5. F.E.Browder, Convergence of approximants to fixed points of non-expansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal., 24 (1967), 82-90.
- 6. R.E.Bruck, A simple proof of the mean ergodic theorem for nonlinear contraction in Banach *space*, Isreal J. Math., **32** (1979), 107-116.
- 7. R.E.Bruck, On the convex approximation property and the asymptotically behavior of nonlinear contractions in Banach spaces, Isreal J. Math., 34 (1981), 304-314.
- 8. R.E.Bruck, On the almost-convergence of iterates of a nonexpansive in Hilbert spaces and the structure of the weak ω -set, Isreal J. Math., **29** (1978), 1-16.
- 9. R.E.Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc., 76 (1970), 384-386
- 10. R.E.Bruck and S. Reich, Accretive operators, Banach limits, and dual ergodic theorems,, Bull. Acad. Polon. Sci., 29 (1981), 585-589.
- 11. S. S. Chang, On chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spees, J. Math. Analy. Appl., 216 (1997), 94-111.
- 12. M.M.Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509-544.
- 13. C. W. Groetsch, A note on segmenting mann iterates, J. Math. Anal. Appl., 40 (1972), 369-372.
- 14. K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University press, Cambridge, 1990.
- 15. N.Hirano, Nonlinear ergodic theorems and weak convergence theorems, J. Math. Soc. Japan, **34** (1982), 35-46.
- 16. N.Hirano, K.kido & W.Takahashi, Nonexpansive retractions and nonlinear ergodic theorems of nonexpansive mappings in Banach spaces, Nonlinear Analysis 12 (1988), 1269-1281.
- 17. N. Hirano, K. Kido, and W. Takahashi, Asymptotic behavior of commutative semigroup of nonexpansive mappings in Banach spaces, Nonlinear Analysis 10 (1986), 229-249.
- 18. N.Hirano & W. Tahahashi, Nonlinear ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space, Pacific J. Math., 112 (1984), 333-346.
- 19. W. A. Kirk & R. Torrejon, Asymptotically nonexpansive semigroup in Banach space, Nonlinear Analysis 1 (1979), 111-121.

Gang. Li and Brailey Sims

- T. C. Lim, On asymptotic center and fixed points of nonexpansive mappings, Can. J. Math., 2 (1980), 421-440.
- 21. A. T. Lau & W.Takahaski, Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math., **12** (1987), 277-294.
- 22. G. Li, Nonlinear ergodic theorems for commutative semigroups of non-lipschitzian mappings in Banach spaces, Chinese Acta Math., 2 (1997), 191-201.
- 23. G. Li., Weak convergence and nonlinear ergodic theorems for reversible topological semigroups of non-lipschitzian mappings, J. Math. Anal. Appl., **206** (1997), 451-464.
- 24. I. Miyadera and K. Kobayasi, On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach space, Nonlinear Analysis 6 (1982), 349-365.
- 25. H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Analysis 7 (1992), 619-635.
- 26. S. Reich, Weak convergence theorem for nonexpansive mappings in Banach spaces, J. Math. Anal Appl., 67 (1979), 274-276.
- S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl., 91 (1983), 547-551.
- S. Reich, Almost convergence and nonlinear ergodic theorem, J. Approx. Theory, 24 (1978), 269-272.
- 29. S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44 (1973), 57-70.
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287-292.
- 31. S. Reich, Nonlinear semigroups, holomorphic mappings, and integral equations, in "Proc. Sympos. Pure Math.," 45 (1986), 307-324.
- 32. N. Shioji and W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal., 26 (1996), 265-272.
- 33. N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approx. Theory, **97** (1999), 53-64.
- 34. K. K. Tan and H. K. Xu, An ergodic theorem for nonlinear semigroups of lipschitzian mapping in Banach space, Nonlinear Analysis **9** (1992), 804-813.
- 35. W. Takahashi and D. H. Jeong, *Fixed point theorem for nonexpansive semigroups on Banach space*, Proc. Amer. Math. Soc., **122** (1994), 1175-1179.
- H. K. Xu, Inqualities in Banach space with applications, Nonlinear Analysis 16 (1991), 1127-1138.

SCHOOL OF MATHEMATICS SCIENCE, YANGZHOU UNIVERSITY, YANGZHOU 225002, P. R. CHINA, *E-mail address:* gli@yzu.edu.cn

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF NEWCASTLE, NSW 2308, AUSTRALIA *E-mail address*: Braileysims@maths.newcastle.edu.au