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Abstract

Motivated by questions of algorithm analysis, we provide several distinct approaches
to determining convergence and limit values for a class of linear iterations.

1 Introduction

Problem I. Determine the behaviour of the sequence defined recursively by,

xn :=
xn−1 + xn−2 + · · ·+ xn−m

m
for n ≥ m+ 1 (1)

and satisfying the initial conditions

xk = ak, for k = 1, 2, · · · ,m, (2)

where a1, a2, · · · , am are given real numbers.

This problem was encountered by Bauschke, Sarada and Wang [1] while examining algo-
rithms to compute zeroes of maximal monotone operators in optimization. Questions they
raised concerning its resolution motivated our ensuing consideration of various approaches
whereby it might be addressed.
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We suspect that, like us, the first thing most readers do when presented with a discrete
iteration is to try to solve for the limit, call it L, by taking the limit in (1). Supposing the
limit to exist we deduce

L =

m︷ ︸︸ ︷
L+ L+ · · ·+ L

m
= L, (3)

and learn nothing—at least not about the limit. There is a clue in that the result is vacuous
in large part because it involves an average, or mean.

In the next three sections, we present three quite distinct approaches. While at least one
will be familiar to many readers, we suspect not all three will be. Each has its advantages,
both as an example of more general techniques and as a doorway to a beautiful corpus of
mathematics.

2 Spectral solution

We start with what may well be the best known approach. It may be found in many linear
algebra courses often along with a discussion of the Fibonacci numbers: Fn = Fn−1 +Fn−2
with F0 = 0, F1 = 1.

Equation (1) is an example of a linear homogeneous recurrence relation of order m
with constant coefficients. Standard theory, see for example [5, Chapter 13.2, p. 252] or
[9, Section 12.5 on page 90], runs as follows.

Theorem 2.1 (Linear recurrences). The general solution of a linear recurrence

xn =
m∑
k=1

αkxn−k

with constant coeffients, has the form

xn =
l∑

k=1

qk(n) rnk (4)

where the rk are the l distinct roots of the characteristic polynomial

p(r) := rm −
m∑
k=1

αkr
k−1, (5)

with algebraic multiplicity mk and qk are polynomials of degree at most mk − 1.

Typically, elementary books only consider simple roots but we shall use a little more.
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2.1 Our equation analysed

The linear recurrence relation specified by equation 1 has characteristic polynomial:

p(r) := rm − 1

m
(rm−1 + rm−2 + · · ·+ r + 1)

=
mrm+1 − (m+ 1)rm + 1

m(r − 1)
(6)

with roots r1 = 1, r2, r3, . . . , rm. Since

p′(1) = m− 1

m

m−1∑
n=1

n = m− m− 1

2
=
m+ 1

2

the root at 1 is simple.
We next show that if p(r) = 0 and r 6= 1, then |r| < 1. We argue as follows. We know

from (6) that p(r) = 0 if and only if

r +
1

mrm
= 1 +

1

m
. (7)

If |r| > 1, then ∣∣∣∣r +
1

mrm

∣∣∣∣ ≤ |r|+ 1

m|r|m
< 1 +

1

m
,

since the function f(x) := x+ 1
mxm is strictly increasing for real x > 1 and f(1) = 1 + 1

m .
Thus p(r) 6= 0 when |r| > 1. Suppose therefore that p(r) = 0 with r = eiθ, 0 ≤ θ < 2π.
Then by (7) we must have

cos(θ) +
cos(−mθ)

m
= 1 +

1

m
,

which is only possible when θ = 0.
By (4) we must have

xn = c1 +
r∑

k=2

qk(n) rnk (8)

where rk lies in the open unit disc for 2 ≤ k ≤ m. Thus, the limit in (8) exists and equals
c1 = qk(1), the constant polynomial coefficient of the eigenvalue 1.

2.2 Identifying the limit

In fact we may use (6) to see all roots are simple. It follows from (6) that

((1− r)p(r))
′

= (m+ 1)rm−1(1− r),

3



and hence that the only possible multiple root of p is r1 = 1 which we have already shown
to be simple, and so the solution is actually of the form

xn = c1 +
m∑
k=2

ck r
n
k , with c1, · · · , cm constants. (9)

Observe now that if r is any of the roots r2, r3, . . . , rm, then

m∑
n=1

nrn =
mrm+2 − (m+ 1)rm+1 + r

(r − 1)2
=
mrp(r)

r − 1
= 0, (10)

and so multiplying (9) by n and summing from n = 1 to m we obtain

c1 =
2

m(m+ 1)

m∑
n=1

nan. (11)

Thence, we do have convergence and the limit L = c1 is given by (11).

Example 2.2 (The weighted mean). We may perform the same analysis, if the arithmetic
average in (1) is replaced by any weighted arithmetic mean

W(α)(x1, x2, · · · , xm) := α1x1 + α2x2 + · · ·+ αmxm

for strictly positive weights αk > 0 with
∑m

k=1 αk = 1. Then W(1/m) = A is the arithmetic
mean of Problem I. As is often the case, the analysis becomes easier when we generalize.
The recurrence relation in this case is

xn = αmxn−1 + αm−1xn−2 + · · ·+ α1xn−m

for n ≥ m+ 1, with companion matrix

Am :=



αm αm−1 · · · α2 α1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0


. (12)

The corresponding characteristic polynomial of the recurrence relation

p(r) := rm −
(
αmr

m−1 + αm−1r
m−2 + · · ·+ α2r

1 + α1

)
is also the characteristic polynomial of the matrix.
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Clearly p(1) = 0. Now suppose r is a root of p and set ρ := |r|. Then the triangle
inequality and the mean property of W(α) imply that

ρm ≤
m∑
k=1

αkρ
k−1 ≤ max

1≤k≤m
ρk−1, (13)

and so 0 ≤ ρ ≤ 1.
If ρ = 1 but r 6= 1 then r = eiθ for 0 < θ < 2π and, on observing that r−mp(r) = 0 and

equating real parts, we get

1 =
m∑
k=1

αke
i(k−m−1)θ =

m−1∑
k=1

αk cos((m+ 1− k)θ) + αm cos(θ)

whence cos(θ) = 1 which is a contradiction. [Alternatively we may note that the modulus
is a strictly convex function, whence exp(iθ) = 1 which is again a contradiction.] Thence,
all roots other than 1 have modulus strictly less than 1.

Finally, since p′(1) = m−
∑m

k=1(k − 1)αk ≥ m− (m− 1)
∑m

k=1 αk = 1 the root at 1 is
still simple. Moreover, if σk := α1 + α2 + · · ·+ αk, then

p(r) = (r − 1)

m∑
k=1

σkr
k−1. (14)

Hence, p has no other positive real root. In particular, from (4) we again have

xn = L+

r∑
k=2

qk(n) rnk = L+ εn

where εn → 0 since the root at 1 is simple while all other roots are strictly inside the unit
disc—but need not be simple as illustrated in Example 2.4. C

Remark 2.3. An analysis of the proof in Example 2.2 shows that the conclusions continue
to hold for non-negative weights as long as the highest-order term αm > 0. C

Example 2.4 (A weighted mean with multiple roots). The polynomial

p(r) = r6 − r5 + r4 + 16 r3 + 18 r2 + 45 r + 81

162
(15)

=
1

162
(2 r + 1) (r − 1)

(
1 + 9 r2

)2
, (16)

has a root at one and a repeated pair of conjugate roots at ± i
3 . Nonetheless, the weighted

mean iteration

xn =
81xn−6 + 45xn−5 + 18xn−4 + 16xn−3 + xn−2 + xn−1

162
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is covered by the development of Example 2.2. The limit is

L :=
162 a6 + 161 a5 + 160 a4 + 144 a3 + 126 a2 + 81 a1

834
. (17)

Once found, this is easily checked (in a computer algebra system) from the Invariance
principle of the next section. In fact the coefficients were found by looking in Maple at the
thousandth power of the corresponding matrix and converting the entries to be rational.

The polynomial was constructed by examining how to place repeated roots on the
imaginary axis while preserving increasing coefficients as required in (14). One general
potential form is then p(σ, τ) := (r − 1)(r + σ)(r2 + τ2)2 and we selected p(1/2, 1/3). In
the same fashion

p

(
1

2
,
1

2

)
= r6 − 16 r5 + 8 r3 + 6 r2 + r + 1

32
,

in which r4 has a zero coefficient, but the corresponding iteration remains well behaved,
see Remark 2.3. C

We will show in Example 3.3 that the approach of the next section provides the most
efficient way of identifying the limit in this generalization. (In fact, we shall discover that
the numerator coefficients in (17) are the partial sums of those in (15).) Example 3.3 also
provides a quick way to check the assertions about limits in the next example.

Example 2.5 (Limiting examples I). Consider first

A3 :=


1
2 0 1

2

1 0 0

0 1 0

 .
The corresponding iteration is xn = (xn−1 + xn−3)/2 with limit a1/4 + a2/4 + a3/2. By
comparison, for

A3 :=


1
2

1
2 0

1 0 0

0 1 0

 .
the corresponding iteration is xn = (xn−1 +xn−2)/2 with limit (a1 + 2a2)/3. This can also
be deduced by considering Problem I with m = 2 and ignoring the third row and column.
The third permutation

A3 :=


0 1

2
1
2

1 0 0

0 1 0

 .
corresponding to the iteration xn = (xn−2 + xn−3)/2 has limit (a1 + 2a2 + 2a3)/5.
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Finally,

A3 :=


0 0 1

1 0 0

0 1 0


has A3

3 = I and so is Ak3 is periodic of period three as is obvious from the iteration
xn = xn−3.

We return to these matrices in Example 4.7 of the penultimate section. C

3 Mean iteration solution

The second approach, based on [3, Section 8.7], deals very efficiently with equation 1; as
a bonus the proof we give below of convergence holds for nonlinear means given positive
starting values.

We say a real valued function of M is a strict m-variable mean if

min(x1, x2, · · · , xm) ≤M(x1, x2, · · · , xm) ≤ max(x1, x2, · · · , xm)

with equality only when all variables are equal.
We observe that when M is a weighted arithmetic mean we may take its domain to be
Rm, however certain nonlinear means —such as G := (x1x2 · · ·xm)1/m—are defined only
for positive values of the variables.

3.1 Convergence of mean iterations

In the language of [3, Section 8.7], we have the following:

Theorem 3.1 (Convergence of a mean iteration). Let M be any strict m-variable mean
and consider the iteration

xn := M(xn−m, xn−m+1, · · · , xn−1), (18)

so when M = A we recover the iteration in (1). Then xn converges to a finite limit
L(x1, x2, . . . , xm).

Proof. Indeed, specialization of [3, Exercise 7 of Section 8.7] actually establishes conver-
gence for an arbitrary strict mean; but let us make this explicit for this case.

Let xn := (xn, xn−1, · · · , xn−m+1) and let an := maxxn, bn := minxn. As noted above,
for general means we need to restrict the variables to non-negative values, but for linear
means no such restriction is needed. Then for all n, the mean property implies that

an−1 ≥ an ≥ bn ≥ bn−1. (19)
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Thus, a := limn an and b := limn bn exist with a ≥ b. In particular xn remains bounded.
Select a subsequence xnk

with xnk
→ x. It follows that

b ≤ minx ≤ maxx ≤ a (20)

while

b = minM(x) and maxM(x) = a. (21)

Since M is a strict mean we must have a = b and the iteration converges.

It is both here and in Theorem 3.2 that we see the power of identifying the iteration as
a mean iteration.

3.2 Determining the limit

In what follows a mapping L : Dn → R, where D ⊆ R, is said to be a diagonal mapping if
L(x, x, · · · , x) = x for all x ∈ D.

Theorem 3.2 (Invariance principle [3]). For any mean iteration, the limit L is necessarily
a mean and is the unique diagonal mapping satisfying the Invariance principle:

L (xn−m, xn−m+1, . . . , xn−1) = L (xn−m+1, . . . , xn−1,M(xn−m, xn−m+1, . . . , xn−1)) . (22)

Moreover, L is linear whenever M is.

Proof. We sketch the proof (details may again be found in [3, Section 8.7]). One first
checks that the limit, being a pointwise limit of means is itself a mean and so is continuous
on the diagonal.

The principle follows since,

L(xm) = · · · = L(xn) = L(xn+1) = L(lim
n
xn) = lim

n
(xn).

We leave it to the reader to show that L is linear whenever M is.

We note that we can mix-and-match arguments—if we have used the ideas of the
previous section to convince ourselves that the limit exists, the Invariance principle is
ready to finish the job.

Example 3.3 (A general strict linear mean). If we suppose thatM(y1, . . . , ym) =
∑m

i=1 αiyi,
with all αi > 0, and that L(y1, . . . , ym) =

∑m
i=1 λiyi are both linear, we may solve (22) to

determine that for k = 1, 2, . . .m− 1 we have

λk+1 = λk + λmαk+1. (23)
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Whence, on setting σk := α1 + · · ·+ αk, we obtain

λk
λm

= σk. (24)

Further, since L is a linear mean we have 1 = L(1, 1, . . . , 1) = Σm
k=1λk, whence, summing

(3.3) from k = 1 to m yields, 1
λm

= Σm
k=1σk and so becomes,

λk =
σk∑m
k=1 σk

. (25)

In particular, setting αk ≡ 1
m we compute that σk = k

m and so λk = 2k
m(m+1) as was

already determined in (11) of the previous section. C

Example 3.4 (A nonlinear mean). We may replace A by the Hölder mean

Hp(x1, x2, . . . , xm) :=

(
1

m

m∑
i=1

xpi

)1/p

for −∞ < p < ∞. The limit will be
(∑m

k=1 λka
p
k

)1/p
, with λk as in (25). In partic-

ular with p = 0 (taken as a limit) we obtain in the limit the weighted geometric mean
G(a1, a2, · · · , am) =

∏m
k=1 a

λk
k . We also apply the same considerations to weighted Hölder

means. C

We conclude this section with an especially neat application of the arithmetic Invariance
principle to an example by Carlson [3, Section 8.7].

Example 3.5 (Carlson’s logarithmic mean). Consider the iterations with a0 := a >
0, b0 := b > a and

an+1 =
an +

√
anbn

2
, bn+1 =

bn +
√
anbn

2
,

for n ≥ 0. In this case convergence is immediate since |an+1 − bn+1| = |an − bn|/2.
If asked for the limit, you might make little progress. But suppose you are told the

answer is the logarithmic mean

L(a, b) :=
a− b

log a− log b
,

for a 6= b and a (the limit as a→ b) when a = b > 0. We check that

L(an+1, bn+1) =
an − bn

2 log an+
√
bnan

bn+
√
bnan

= L(an, bn),
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since 2 log
√
an√
bn

= log an
bn

. The invariance principle of Theorem 3.2 then confirms that L(a, b)

is the limit. In particular, for a > 1,

L
(

a

a− 1
,

1

a− 1

)
=

1

log a
,

which quite neatly computes the logarithm (slowly) using only arithmetic operations and
square roots. C

4 Nonnegative matrix solution

A third approach is to directly exploit the non-negativity of the entries of the matrix Am.
This seems best organized as a case of the Perron-Frobenius theorem [6, Theorem 8.8.1].

Recall that a matrix A is row stochastic if all entries are non-negative and each row
sums to one and is irreducible if for every pair of indices i and j, there exists a natural
number k such that (Ak)ij is not equal to zero. Recall also that the spectral radius ρ(A) :=
sup{|λ| : λ is an eigenvalue of A} [6, p. 177]. Since A is not assumed symmetric, we may
have distinct eigenvectors for A and its transpose corresponding to the same non-zero
eigenvalue. We call the later left eigenvectors.

Theorem 4.1 (Perron Frobenius, Utility grade [2, 6, 8]). Let A be a row-stochastic ir-
reducible square matrix. Then the spectral radius ρ(A) = 1 and 1 is a simple eigen-
value. Moreover, the right eigenvector e := [1, 1, · · · , 1m] and the left eigenvector l =
[lm, lm−1, . . . , l1] are necessarily both strictly positive and hence one-dimensional.

In consequence

lim
k→∞

Ak =



lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1

· · · · · · · · · · · · · · ·

lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1


. (26)

[We choose to consider l as a column vector with the highest order entry at the top.]
The full version of Theorem 4.1 treats arbitrary matrices with non-negative entries.

Even in our setting, we do not know that the other eigenvalues are simple but we may
observe that this is equivalent to the matrix A being similar to a diagonal matrix D—whose
entries are the eigenvalues in decreasing order say. Then An = U−1DnU → U−1D∞U
where the diagonal of D∞ = [1, 0, · · · , 0m]. More generally, the Jordan form [7] suffices to
show that (26) still follows. See [8] for a very nice reprises of the general Perron-Frobenius
theory and its multi-fold applications (and indeed [11]). In particular [8, §4] gives Karlin’s
resolvent proof of of Theorem 4.1.
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Remark 4.2 (Collatz and Wielandt, [4, 10]). An attractive proof of Theorem 4.1, origi-
nating with Collatz and before him Perron, is to consider

g(x1, x2, · · · , xm) := min
1≤k≤m

{∑m
j=1 aj,kxj

xk

}
.

Then the maximum, max∑
xj=1,xj≥0 g(x) = g(v) = 1, exists and yields uniquely the Perron-

Frobenius vector v (which in our case is e). C

Example 4.3 (The closed form for l). The recursion we study is xn+1 = Axn where the
matrix A has k-th row Ak for m strict arithmetic means Ak. Hence A is row stochastic and
strictly positive and so its Perron eigenvalue is 1, while A∗l = l shows the limit l is the left
or adjoint eigenvector. Equivalently, this is also a so called compound iteration L :=

⊗
Ak

as in [3, Section 8.7] and so mean arguments much as in the previous section also establish
convergence. Here we identify the eigenvector l with the corresponding linear function L
since L(x) = 〈l, x〉. C

Remark 4.4 (The closed form for L). Again we can solve for the right eigenvector l = A∗l,
either numerically (using a linear algebra package or direct iteration) or symbolically. Note
that this closed form is simultaneously a generalisation of Theorem 3.2 and a specialization
of the general Invariance principle in [3, Section 8.7]. C

The case originating in (1) again has A being the companion matrix

Am :=



am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0


with ak > 0 and

∑m
k=1 ak = 1.

Proposition 4.5. Suppose for all 1 ≤ k ≤ m we have ak > 0 then the matrix Amm has all
entries strictly positive.

Proof. We induct on k. Suppose that the first k < m rows of Akm have strictly positive
entries. Since

Ak+1
m =



am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0


Akm,
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it follows that

(Ak+1
m )1j =

m∑
r=1

(Am)1r(A
k
m)rj > 0,

and that, for 2 ≤ i ≤ k + 1 ≤ m,

(Ak+1
m )ij =

m∑
r=1

(Am)ir(A
k
m)rj = (Akm)i−1,j > 0.

Thus, the first k + 1 rows of Ak+1
m have strictly positive entries, and we are done.

Remark 4.6 (A picture may be worth a thousand words). The last theorem ensures the
irreducibility of Am by establishing the stronger condition that Amm is a strictly positive
matrix.

Both the irreducibility of Am and the stronger condition obtained above may be ob-
served in the following alternative way. There are many equivalent conditions for the
irreducibility of A. One obvious condition is that an m ×m matrix A with non-negative
entries is irreducible if (and only if) A′ is irreducible, where A′ is A with each of its non-zero
entries replaced by 1.

Now, A′ may be interpreted as the adjacency matrix, see [6, Chapter 8], for the directed
graph G with vertices labeled 1, 2, · · · , m and an edge from i to j precisely when (A′)ij = 1.
In which case, the ij entry in the k’th power of A′ equals the number of paths of length k
from i to j in G. Thus, irreducibility of A corresponds to G being strongly connected.

For our particular matrix Am, as given in (12), the associated graph Gm is depicted in
Figure 1.

Figure 1: The graph Gm with adjacency matrix A
′
m.

The presence of the cycle m → m − 1 → m − 2 → · · · → 1 → m shows that Gm is
connected and hence that Am is irreducible.

A moments’ checking also reveals that in Gm any vertex i is connected to any other
j by a path of length m (when forming such paths, the loop at 1 may be traced as many
times as necessary), thus, also establishing the strict positivity of Amm. C

12



Example 4.7 (Limiting examples, II). We return to the matrices of Example 2.5.
First we look again at

A3 :=


1
2 0 1

2

1 0 0

0 1 0

 .
Then A4

3 is coordinate-wise strictly positive (but A3
3 is not). Thus, A3 is irreducible despite

the first row not being strictly positive. The limit eigenvector is [1/2, 1/4, 1/4] and the
corresponding iteration is xn = (xn−1 + xn−3)/2 with limit a1/4 + a2/4 + a3/2, where the
ai are the given initial values.

Next we consider

A3 :=


1
2

1
2 0

1 0 0

0 1 0

 .
In this case A3 is reducible and the limit eigenvector [2/3, 1/3, 0] exists but is not strictly
positive (see Remark 2.3). The corresponding iteration is xn = (xn−1 +xn−2)/2 with limit
(a1 + 2a2)/3. This is also deducible by considering our starting case in with m = 2 and
ignoring the third row and column.

The third case

A3 :=


0 1

2
1
2

1 0 0

0 1 0

 .
corresponds to the iteration xn = (xn−2 + xn−3)/2. It, like the first, is irreducible with
limit (a1 + 2a2 + 2a3)/5.

Finally,

A3 :=


0 0 1

1 0 0

0 1 0


has A3

3 = I and so Ak3 is periodic of period three—and does not converge—as is obvious
from the iteration xn = xn−3. C

5 Conclusion

All three approaches that we have shown have their delights and advantages. It seems fairly
clear, however, that for the original problem, analysis as a mean iteration—while the least
well known—is by far the most efficient and also the most elementary. Moreover, all three
approaches provide for lovely examples in any linear algebra class, or any introduction
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to computer algebra. Indeed, they offer different flavours of algorithmics, combinatorics,
analysis, algebra and graph theory.
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