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MATH222 – ALGEBRAIC METHODS I

This subject introduces the study of fundamental algebraic structures and the methods of
abstract algebra which pervade much of modern mathematics. One of the important aims
of the subject is to develop skills in proving theorems, finding and analyzing examples
and counter examples, and in making, proving or disproving conjectures. The subject will
concentrate on one particular algebraic structure, that of a group.

Group structure is present in a great many of the situations with which mathematics deals:
the integers, real and complex numbers, matrices, sets of functions, and the symmetries of
geometric figures to mention but a few. By studying groups abstractly, from an axiomatic
point of view, basic structure and results common to all such applications are revealed.
Further by identifying ideas which are common to many areas it allows us to transfer our
intuition about one of the applications to all of the others. This abstract approach helps
unify mathematics and has proved an effective and efficient way forward. A way which
has occupied much of twentieth century mathematics.

The text for the subject, henceforth identified as [F], is:

John B. Fraleigh, A first course in Abstract Algebra, 5th edition, Addison-Wesley.

The notes that follow provide a summary of the material presented in lectures. In some
cases discussions, proofs and other explanations given in lectures have been suppressed.
These notes are not intended as a substitute for lectures, but rather as a guide and sup-
plement to them.

0. PRELIMINARIES, SETS and EQUIVALENCE RELATIONS

Definition 0.1: A set is a ‘well defined’ collection of objects; that is, if S is a set and a
is some object then either a is definitely in S or a is definitely not in S.

Notation, and basic operations.

a ∈ S a is in S, a is an element of S, or a is a member of S.

a 6∈ S a is not an element of S.

]S, or |S| the number of elements in S, or the cardinality of S.

∅ the empty, or null, set. The set with no elements. Sometimes denoted by {}.

A ⊆ B A is a subset of B, or B is a superset of A (sometimes denoted B ⊇ A); that is
a ∈ A =⇒ a ∈ B.

A = B A equals B; that is, A ⊆ B and B ⊆ A.

A ⊂ B A is a proper subset of B; that is, A ⊆ B and A 6= B.
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2S , or P(S) the power set of S; that is, the set of all subsets of S. It has 2]S elements.

A\B A difference B; x ∈ A\B if and only if x ∈ A and x /∈ B.
Sometimes denoted by A−B, but we will reserve this to mean something different.

{x : p(x)} the set consisting of elements x for which the predicate p(x) is TRUE.

A ∪B the union of A and B; A ∪B := {x : x ∈ A or x ∈ B}.
Note, here and elsewhere ‘or’ is used inclusively to mean ‘and or’.

A ∩B the intersection of A and B; A ∩B := {x : x ∈ A and x ∈ B}.

Two sets, A and B, are disjoint if A ∩B = ∅.

N the natural numbers {1, 2, 3, · · ·}.

Z the integers {· · · ,−3,−2,−1, 0, 1, 2, 3 · · ·}.

Q the rational numbers.

R the real numbers.

C the complex numbers.

|Z| the positive integers, {x ∈ Z : x ≥ 0} = {0, 1, 2, 3, · · ·}.
|Q| and |R| are defined similarly.

R+ the strictly positive real numbers, {x ∈ R : x > 0}.
Q+ is defined similarly. Note, Z+ = N

R∗ the non-zero real numbers, R\{0}.

The next one may be new to you.

A×B the Cartesian product of two sets A and B, consisting of all ordered pairs whose
first element is from A and whose second element is from B; that is,
A×B := {(a, b) : a ∈ A and b ∈ B}.

For finite sets A and B their Cartesian product can be conveniently presented in a table.
For example, if A = {a, b, c} and B = {1, 2, 3, 4} then

A×B = {(a, 1), (a, 2), (a, 3), (a, 4),

(b, 1), (b, 2), (b, 3), (b, 4),

(c, 1), (c, 2), (c, 3), (c, 4)}.

Note, A×B has ]A× ]B elements.

We extend this inductively to the Cartesian product of more than two sets by defining
A×B × C to be

A× (B × C) = {(a, (b, c)) : a ∈ A, b ∈ B, c ∈ C},
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which may be identified with the set of all ordered triplets {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.
We frequently denote the Cartesian product of a set S with itself n-times, S×S×S×· · ·×S,
by Sn. It consists of the set of all ordered n-tuples of elements of S

Partitions and equivalence relations.

Definition 0.2: A partition of a set S is a decomposition of S into disjoint nonempty
subsets (cells) such that each element of S is in precisely one of the subsets. So, S is a
union of disjoint cells.

For example, the set of fractions {m/n : m,n ∈ Z with n 6= 0} decomposes into sets of the
form [

2

3

]
:=

{
2

3
,
−2

−3
,

4

6
,
−4

−6
, · · ·

}
=
{n
n

: 3m = 2n, n 6= 0
}
,

each of which may be identified with a distinct rational number.

Let ∼ be a ‘relation’ on S. That is, given any pair of elements a, b ∈ S either a is related
to b, a ∼ b, or a is not related to b (a 6∼ b). Formally the relation ∼ on S may be identified
with the subset {(a, b) : a ∼ b} of the Cartesian product S × S.

Examples of relations are: when ∼ means “is a sibling of” (S a set of people), and
m/n ∼ h/k if mk = nh (S the set of fractions).

Definition 0.3: We say a relation ∼ on S is an equivalence relation if it is

Reflexive: a ∼ a, for all a ∈ S,
Symmetric: a ∼ b implies that b ∼ a, and
Transitive: if a ∼ b and b ∼ c then it follows that a ∼ c.

Exercise: Give as many examples of relations as you can, including the two suggested
above, and investigate each of them to determine whether or not it is an equivalence
relation.

Definition 0.4: Let ∼ be an equivalence relation on the set S. For each element a ∈ S the
equivalence class of a, denoted by [a], consists of all the elements of S which are related
to a by ∼. That is,

[a] := {x ∈ S : x ∼ a}.

Example: On the set of fractions the relation m/n ∼ h/k if mk = nh is an equivalence
relation with respect to which the equivalence class of 2/3 is the set [2/3] identified above
(verify this).

This example suggests a close connection between equivalence relations and partitions.
Indeed we have the following general result.

Theorem 0.5: If ∼ is an equivalence relation on the set S then the equivalence classes
of ∼ define a partition of S.
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Remark: The converse of this is also true. That is, if we have a partition of S then
the relation defined on S by a ∼ b if a and b are in the same cell of the partition is an
equivalence relation whose equivalence classes are the cells of the given partition. The
proof of this is left as an exercise.

Proof, of theorem 0.5: For any x ∈ S we have x ∼ x, so x ∈ [x]. Thus the equivalence
classes are nonempty and every element of S is in at least one of them. It remains to show
that each x ∈ S is in only one of them. Suppose that some x were in more than one of
them. That is, x ∈ [a] and x ∈ [b], we will show that [a] = [b] thereby establishing the
result. (Note, this will also show that two equivalence classes are either identical or else
disjoint.)

Now, x ∈ [a] means x ∼ a and so by (S) a ∼ x. Also x ∈ [b] means x ∼ b. Combining
these using (T) we get a ∼ b.

Let z ∈ [a], this means z ∼ a and so, since a ∼ b, we have by (T) that z ∼ b. Thus z ∈ [b],
and since z was any element of [a] we conclude that [a] ⊆ [b]. By a symmetric argument
with the roles of a and b interchanged we also have [b] ⊆ [a], and so [a] = [b] as required.

An example: the integers modulo m ∈Z+.

Given m ∈ Z+ define a relation on Z by a ∼ b if a − b is divisible by m. That is, if
a− b = km, or equivalently a = b+ km, for some k ∈Z. The relation ∼ is an equivalence
relation (verify this). In place of a ∼ b we will write

a ≡ b (mod m)

and say a is congruent to b modulo m.

The equivalence class of a ∈ Z has the form

[a] = {· · · , a− 2m, a−m, a, a+m, a+ 2m, a+ 3m, · · ·} = {b : b = a+ km, for k ∈ Z}.

There are precisely m distinct equivalence classes: [0], [1], [2], · · · , [m − 1], which form a
partition of Z.

For example: Taking m = 4, we have −17 ≡ 3 (mod 4) and

[0] = {· · · ,−8,−4, 0, 4, 8, · · ·}
[1] = {· · · ,−7,−3, 1, 5, 9, · · ·}
[2] = {· · · ,−6,−2, 2, 6, 10, · · ·}
[3] = {· · · ,−5,−1, 3, 7, 11, · · ·}
[4] = {· · · ,−4, 0, 4, 8, 12, · · ·} = [0]
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1. GROUPS

1.1 Binary operations

Definition 1.1.1: A binary operation ∗ on a set S is a rule which assigns to each ordered
pair (a, b) of elements of S some unique element of S which we denote by a ∗ b. That is, ∗
is a function from S × S into S.

The fact that a ∗ b is in S for all a and b ∈ S is expressed by saying S is closed under the
operation ∗.

We will frequently use (S, ∗) to denote a set S together with a binary operation ∗ defined
on it.

Some examples:

(|Z|, +), (Z, −), (R, ×), (R∗, ÷).

(R+, ∗) where a ∗ b := ab.

Matrix multiplication on the set Mn of all square n by n matricies.

+, −, ×, ÷ and composition, ◦, on appropriate sets of functions (give examples of what
these sets might be for each of the operations listed).

For any given n ∈ N, the operation ⊕n defined on {0, 1, 2, · · · , n − 1} by a ⊕n b :=
a + b (mod n). For instance, on {0, 1, 2, 3} we have 2 ⊕4 2 = 4 (mod 4) = 0, while
2⊕4 3 = 5 (mod 4) = 1.

For a positive prime number p (see below for why p must be prime), the operation ⊗p
defined on {1, 2, · · · , p − 1} by a ⊗p b := ab (mod p). For example, on {1, 2, 3, 4} we have
2⊗5 3 = 6 (mod 5) = 1.

On a finite set a binary operation can be represented (or defined) by a table. For example,
the operation ⊗5 on {1, 2, 3, 4} is given by

⊗5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1
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Now, consider constructing a similar table for ⊗6 on S := {1, 2, 3, 4, 5} we get

⊗6 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

The presence of 0 in the table shows that S is not closed under ⊗6, so ⊗6 is not a binary
operation on S. We could extend to {0, 1, 2, 3, 4, 5}, but then ⊗6 would not have properties
that we will subsequently be interested in. It has zero divisors: non-zero elements which
‘multiply’ to give 0, and non-unique factorization: 3 = 3⊗6 3 = 3⊗6 5.

Two properties a binary operation may have.

Definition 1.1.2: A binary operation ∗ on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c),
for all a, b, c ∈ S.

When a binary operation is associative we can unambiguously write expressions such as
a ∗ b ∗ c and an.

Definition 1.1.3: A binary operation ∗ on a set S is commutative if a ∗ b = b ∗ a, for all
a, b ∈ S.

Exercise: Decide which of the operations +, −, × and ÷ defined on appropriate sets of
numbers are associative and which are commutative.
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1.2 Groups.

Definition 1.2.1: a group (G, ∗) is a set G together with a binary operation ∗ on G which
satisfies the following three ‘group axioms’.

(G1) ∗ is associative; that is, a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ G.

(G2) There exists an element e in G such that e ∗ x = x ∗ e = x, for all x ∈ G.

(G3) For each element x ∈ G there exists an element x′ ∈ G such that x ∗x′ = x′ ∗x = e,
where e is the element identified in (G2).

Notation: ∗ is referred to as the group operation, or ‘group product’. When the oper-
ation ∗ is clearly understood we will often write G in place of (G, ∗) and denote a ∗ b by
juxtaposition as ab.

If the operation ∗ of a group (G, ∗) is commutative (a∗b = b∗a, for all a, b ∈ G) then we say
G is a commutative group, or Abelian group, named after the Norwegian mathematician
Niels Henrik Abel (1802–1829), whose work on the algebraic resolution of equations helped
initiate the group concept. To indicate that a group is Abelian it is common to use +
instead of the generic ∗ to denote the group operation.

Some simple examples of groups: (R,+), (Z,+), (R+,×), (C∗,×), the set of all
functions from a domain D into R with point-wise addition, the set of invertible n×n-real
matrices with matrix multiplication. The last example is an example of a non-Abelian
group, known as the general linear group of degree n, denoted by GL(n,R).

Questions: What is e and what is 3′ in (R+,×)? Why is (R,×) not a group? Why is
(R,÷) not a group?

Further examples of groups are provided by:

For n ∈ N,

Un , the unitary group of order n, consisting of the n complex roots of unity under
complex multiplication: Un := {1, ω, ω2, · · · , ωn−1}, where ω = e2πi/n = cos(2π/n) +
i sin(2π/n).

Zn ≡ (Zn,⊕n), where Zn := {0, 1, 2, · · · , n− 1} and addition is modulo n. In Z4 what is
e and what is 3′?

For p a prime number,

Z∗p ≡ (Z∗p,⊗p), where Z∗p := {1, 2, · · · , p− 1} and multiplication is modulo p. In Z∗5 what
is e and what is 3′? Explain why Z∗p is not a group if p is not a prime.
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1.3 Simple properties of groups.

Theorem 1.3.1: Let (G, ∗) be a group. The element e, whose existence is ensured by
(G2), is unique.

Proof: Suppose e1 and e2 are two such elements; that is, x ∗ e1 = e1 ∗ x = x and
x ∗ e2 = e2 ∗ x = x, for all x ∈ G. Then

e1 = e1 ∗ e2, by (G2) with x = e1 and e = e2,

= e2, by (G2) with x = e2 and e = e1.

Since there is precisely one element e in any group satisfying (G2) we can unambiguously
refer to it by name. We call it the identity element of the group. In general we will denote
it by e or 1, but in an Abelian group we will often use 0 in keeping with the use of + for
the operation.

Theorem 1.3.2: Let (G,+) be a group. For each x ∈ G the element x′, whose existence
is asserted by (G3), is unique. We refer to it as the inverse of x and henceforth denote it
by x−1, or sometimes −x in the case of an abelian group.

Proof: Suppose both x′1 and x′2 act as an x′, then

x′1 = x′1 ∗ e = x′1 ∗ (x ∗ x′2) = (x′1 ∗ x) ∗ x′2 = e ∗ x′2 = x′2.

Corollary 1.3.3: In any group (G, ∗), (x ∗ y)−1 = y−1 ∗ x−1.

Proof: To verify this it suffices to show that y−1 ∗ x−1 acts as an inverse for x ∗ y. Do so.

In any group (G, ∗) we have the following. Prove them.

Cancelation laws 1.3.4: If a ∗ b = a ∗ c then b = c.
If b ∗ a = c ∗ a then b = c.

Solvability of equations 1.3.5: For any given a, b ∈ G the equations a ∗ x = b and
x ∗ a = b both have unique solutions.

We also have:

Proposition 1.3.6: Suppose that ` is a left identity for the group G. That is; `x = x,
for all x ∈ G. Then ` = e, the identity of the group.

Proof:
` = `e, as e is the identity of G,

= e, as ` is a left identity.

Proposition 1.3.7: Let G be a group and let x ∈ G. Suppose that x′ is a left inverse
for x. That is, x′x = e. Then x′ = x−1, the inverse of x.
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Proof: x′ = x′e = x′(xx−1) = (x′x)x−1 = ex−1 = x−1.

Similarly, a right identity for a group is necessarily the identity, and a right inverse of a
group element is necessarily its inverse.

Indeed, we have the following.

Challenging exercise: Let ∗ is a binary operation on a set G which satisfies (G1) and
the following seemingly weaker axioms than (G2) and (G3):

(LG2) (G, ∗) has a left identity. That is, there exists an element ` ∈ G such that ` ∗x = x,
for all x ∈ G, and

(LG3) each element of G has a left inverse. That is, for each x ∈ G there exists an element
x′ ∈ G such that x′ ∗x = `, where ` is the left identity for (G, ∗) identified in (LG2).

Show that (G, ∗) is in fact a group.
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1.4 Finite groups and group tables.

Definition 1.4.1: A group G with only a finite number of elements is termed a finite
group and the order of G, denoted by |G|, is the number of elements in it.

For example, Zn is a finite group of order n.

For relatively small orders, such a group can be conveniently presented via a group ta-
ble (the table of its binary operation). After looking at some examples we will discuss
identifying features of group tables

1.4.1 Groups of order 1: There is essentially only one such group, G = {e}, where e is the
identity element e2 = e = e−1. Its group table is:

∗ e

e e

1.4.2 Groups of order 2: Suppose (G = {e, a}, ∗) is a group of order 2, where e is the
identity element which it must contain by (G2). Constructing its group table we have

∗ e a

e e a

a a ?

Since G is closed under ∗ there are only two possible choices for ?, namely e,or a. If we
take ? = a, then a has no inverse (there is no element a′ such that a′ ∗ a = e). Thus, the
only possibility is ? = e and the only possible group table is

∗ e a

e e a

a a e

Clearly (G2) and (G3) are satisfied (a−1 = a), so it only remains to verify (G1): Using the
table we have:

(e ∗ e) ∗ e = e ∗ e = e and e ∗ (e ∗ e) = e ∗ e = e so (e ∗ e) ∗ e = e ∗ (e ∗ e)
(e ∗ e) ∗ a = e ∗ a = a and e ∗ (e ∗ a) = e ∗ a = a so (e ∗ e) ∗ a = e ∗ (e ∗ a)

(e ∗ a) ∗ e = a ∗ e = a and e ∗ (a ∗ e) = e ∗ a = a so (e ∗ a) ∗ e = e ∗ (a ∗ e)
(e ∗ a) ∗ a = a ∗ a = e and e ∗ (a ∗ a) = e ∗ e = e so (e ∗ a) ∗ a = e ∗ (a ∗ a)

(a ∗ e) ∗ e = a ∗ e = a and a ∗ (e ∗ e) = a ∗ e = a so (a ∗ e) ∗ e = a ∗ (e ∗ e)
(a ∗ e) ∗ a = a ∗ a = e and a ∗ (e ∗ a) = a ∗ a = e so (a ∗ e) ∗ a = a ∗ (e ∗ a)

(a ∗ a) ∗ e = e ∗ e = e and a ∗ (a ∗ e) = a ∗ a = e so (a ∗ a) ∗ e = a ∗ (a ∗ e)
(a ∗ a) ∗ a = e ∗ a = a and a ∗ (a ∗ a) = a ∗ e = a so (a ∗ a) ∗ a = a ∗ (a ∗ a)
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Thus, (G1) is satisfied and there is one group, and essentially only one group, of order 2.

As this example illustrates, checking asssociativity using a case-by-case analysis can be
very tedious. Allowing for the special role of e there are in general (|G| − 1)(|G| − 2)(|G| −
3) ∼ |G|3 cases to examine. An alternative approach is to try and recognize the table as
corresponding to that of some operation which we already know to be associative. For
example, appart from the names of the elements the above table is the same as that for
U2:

× 1 −1

1 1 −1

−1 −1 1

Here G = {1,−1} ⊂ Z and the operation is ordinary multiplication of real numbers, which
we already know to be associative.

In the same way we can also recognize it as Z2 and Z∗3.

⊕2 0 1

0 0 1

1 1 0

and

⊗3 1 2

1 1 2

2 2 1

Groups which are essentially the same in this way are said to be isomorphic. We will
shortly make this idea more precise.

1.4.3 Groups of order 3: Suppose (G = {e, a, b}, ∗) is a group of order 3. Its multiplication
table has the form:

∗ e a b

e e a b

a a x1 x2

b b x3 x4

where {x1, x2, x3, x4} = {e, a, b}.

Note that no row or column of a group table can contain the same element more than
once (otherwise, either the left or right casncellation law would be violated: if the same
element occured, for example, in both the y- and z-columns of the x-row of the table then
we would have x ∗ y = x ∗ z and so y = z, contradicting the fact that the columns of the
table are labeled by distinct group elements).

Consequently, each group element must appear precisely once in each row and column
of the table. (In any given row or column there are |G| elements to be distributed into
|G| places, and no element is to be used more than once, so each element must be used.
Alternatively, observe that y = x ∗ (x−1 ∗ y), so y occurs in the x-row of the table.)
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From these observations we see that x1 = e is not a valid choice, as then we would have to
choose x2 = b to avoid repetitions in the a-row and b would occur twice in the b-coulmn of
the table. Thus, we must have x1 = b and x2 = e. Similar reasoning shows that we must
choose x3 = e and x4 = a, so the only possible table is:

∗ e a b

e e a b

a a b e

b b e a

This table is ‘isomorphic’ to that for U3, the unitary group of order 3:

× 1 ω ω2

1 1 ω ω2

ω ω ω2 1

ω2 ω2 1 ω

To see this, note that renaming 1 to be e, ω to be a and ω2 to be b yields the table.

Thus, there is essentially only one group of order 3, namely U3.

1.4.4 Groups of order 4: One such group is U4 with group table

× 1 ω ω2 ω3

1 1 ω ω2 ω3

ω ω ω2 ω3 1

ω2 ω2 ω3 1 ω

ω3 ω3 1 ω ω2

This may be identified as the group of rotational symmetries of a square ABCD with ω
equal to rotation about O through an angle of π/2.

D C

• O

A B

ω

It is isomorphic to Z4 = ({0, 1, 2, 3},⊕4), Z∗5 = ({1, 2, 3, 4},⊗5) and to the groups with
multiplication tables
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∗ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

and

∗ e a b c

e e a b c

a a e c b

b b c a e

c c b e a

To see that these last two tables are isomorphic (essentially the same) note that the second
is just the first with the roles of a and b swapped and the columns and then the rows
rearranged to bring the column and row labels back into the order e, a, b, c. A quick glance
at these two tables serves to show that it may not always be easy to spot when two groups
are isomorphic.

Using the constraints identified in 1.4.3, a systematic search for order 4 group tables
distinct from (non-isomorphic to) that of U4 (perform such a search) reveals that the only
possibility is:

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

This is the group table of the Klein 4-group, which corresponds to the symmetries of a
rectangle.

D b C

a

·

A B

c ; rotation through π

That this group is distinct from U4 is easily seen by observing, for example, that in U4

there are only two elements (e and ω2) whose square is the identity, but in the Klein
4-group this is true of all four elements.
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Thus, there are essentially only two groups of order 4: U4 and the Klein 4-group.

We could continue our systematic study to groups of order 5, 6, · · ·, but we will pursue a
different direction. We first ask the question:

1.4.5 When is a binary operation table a group table?

Associativity of the binary operation is not reflected by any identifiable feature of the
table, thus it must be checked either using a case-by-case analysis (for groups of any size
this is best left for a computer to perform), or by some other means.

Assuming that the operation is associative we have already seen that the following are two
necessary conditions.

(1) There exists an element (the identity) whose table row and column match the column-
and row-labels respectively.

(2) Every element must appear exactly once in each row and column of the table.

These two conditions, together with associativity, are also sufficient for the table to be that
of a group. Condition (1) clearly establishes the presence of an identity element, while (1)
and (2) together imply the existence of inverses.
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1.5 Subgroups

Let (G, ∗) be a group and S a subset of G. Restricting the map ∗ : G×G −→ G to S×S,
we obtain a map ∗ : S×S −→ G, but S may not be closed under this operation, so ∗ may
not be a binary operation on S. For example, in U4 with S = {1, ω} we have ω = i and
ω ∗ ω = −1 6∈ S.

If it happens that S is closed under ∗: that is, a ∗ b ∈ S for all choices of a, b ∈ S, then
∗ : S × S −→ S is a binary operation on S. We refer to this as the operation induced on
S (inherited by S) from (G, ∗).

Definition 1.5.1: Let (G, ∗) be a group and H ⊆ G. If H is closed under the operation
∗ inherited from (G, ∗), and with this operation (H, ∗) is itself a group, then we say H is
a subgroup of G, which we denote by writing H ≤ G

For any group G we always have G ≤ G and {e} ≤ G, where e is the identity element of
G. We say H ≤ G is a proper subgroup of G, denoted H < G, if H 6= G, and we say H is
a nontrivial subgroup of G if H 6= {e}.

Some examples of subgroups

(1) ({1, ω2},×) < U4 < (C∗,×). In fact, an inspection of the group table for U4 shows
that ({1, ω2},×) is the only proper nontrivial subgroup of U4.

(2) (Q+,×) < (R+,×).

(3) The even integers under addition ({2n : n ∈ Z},+) < (Z,+)

(4) ({f : [0, 1] −→ [0, 1] : f is onto and strictly increasing}, ◦) is a nontrivial proper
subgroup of ({f : [0, 1] −→ [0, 1] : f is invertible}, ◦). Here the operation ◦ is
composition of functions.

Note: For any group G, ≤ (‘is a subgroup of”) is a partial order on the subgroups of G.
That is, it is:

Reflexive; H ≤ H, for all H ≤ G,

Antisymmetric; if H ≤ K and K ≤ H then H = K, and

Transitive; if H ≤ K and K ≤ L then H ≤ L.

(Prove these.)

This gives rise to the lattice of subgroups of G. For example:

15
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(1)

U4

|
{1, ω} = U2

|
{1}

(2) For the Klein 4-group, V ,

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

V
|

{e, a} {e, b} {e, c}
|
{e}

1.5.2 Subgroup criteria

Let (G, ∗) be a group and H ≤ G. Since (H, ∗) is itself a group, for a, b ∈ H the equation
a ∗ x = b has a unique solution in H. This is also an equation in G (where it also has a
unique solution). Since the solution x ∈ H ⊆ G is also a solution in G it must be the
unique solution in G. That is, the solution in H and in G must be the same.

In particular, since (H, ∗) is a group it must have an identity element eH which is a solution
of eH ∗ x = eH in H and hence G, but x = e, the identity element of G, is also a solution
in G so we must have eH = e. consequently, necessarily the identity of G, e,is in any
subgroup H of G.

Similarly, if a′ is the inverse in H of a ∈ H, then x = a′ solves a ∗ x = e in H and hence in
G. But, x = a−1, the inverse of a in G is also a solution in G, so we must have a′ = a−1.

Thus, if (G, ∗) is a group and H is a subgroup of G then

(1) H is closed under ∗,

(2) e ∈ H, where e is the identity element of G, and

(3) if a ∈ H then a−1 ∈ H, where a−1 is the inverse of a in G. That is, H is closed under
the taking of inverses.

These three subgroup criteria are therefore necessary conditions for H to be a subgroup
of G. We now observe that they are also sufficient. Thus, they are all we need check in
order to verify that a subset H of G is in fact a subgroup of G. To see this, note that (1)
implies that ∗ restricted to H is a binary operation on H, which inherits its associativity
from (G, ∗), so (H, ∗|H) satisfies (G1). Trivialy (2) implies (G2) while (3) implies (G3) for
H, and so we conclude that (H, ∗|H) is a subgroup of G.

16
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Note: An even cleaner criteria for H ⊆ G to be a subgroup of (G, ∗) is given in F section
1.2, exercise 40, namely:

H ≤ G if and only if for all a, b ∈ H we have that a ∗ b−1 ∈ H.

(Prove this, and then be prepared to use it.)

17
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2. CYCLIC GROUPS

Let (G, ∗) be a group. For a ∈ G and n ∈ Z we have

an := a ∗ a ∗ a · · · ∗ a︸ ︷︷ ︸
n factors

We will sometimes write na instead of an when the group is Abelian and we are using +
to stand for the group operation.

Similarly
a−n := (a−1)n := a−1 ∗ a−1 ∗ a−1 ∗ · · · ∗ a−1︸ ︷︷ ︸

n factors

= (an)−1

Again, we sometimes write −na in place of an when additive notation is being used in the
case of a commutative group.

If we adopt the convention a0 = e, the identity element of the group, then the normal
index rule applies:

For n,m ∈ Z we have an ∗ am = an+m.

For a ∈ G let
〈a〉 := {an : n ∈ Z}.

That is, 〈a〉 = {· · · a−2, a−1, e, a, a2, a3, · · ·}.

Proposition 2.0.1: For G a group and a ∈ G we have that 〈a〉 is a commutative subgroup
of G, the smallest subgroup of G containing a.

The proof is immediate and so will be omitted.

We refer to a as a generator for 〈a〉. Any group generated in this way by a single element
is called a cyclic group.

Examples: Un = 〈ω〉, where ω = e2πi/n.

(Z,+) = 〈1〉 = 〈−1〉.

In (Z,+), for n ∈ N, the set of all multiples of n,

nZ := 〈n〉 = {· · · ,−2n,−n, 0, n, 2n, 3n, · · ·},

is a cyclic subgroup. Note: if n divides m then mZ ≤ nZ.

(R,+), (R∗,×, and the Klein 4-group are examples of non cyclic groups.

Theorem 2.0.2: Every subgroup of a cyclic group is itself a cyclic group.

18
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Proof: Let G be a cyclic group with generator a. that is,

G = 〈a〉 := {· · · , a−2, a−1, a0 := e, a, a2, a3 · · ·},

and let H ≤ G.

If H = {e} = 〈e〉 then there is nothing to prove, otherwise for some n with an 6= e we must
have an ∈ H and hence, since H is a subgroup, also a−n ∈ H.

This shows that m = min{n ∈ N : e 6= an ∈ H} exists and m ≥ 1. Further anm ∈ H, for
all n ∈ Z.

Now suppose ak ∈ H, and let k = qm+ r, where q ∈ Z and 0 ≤ r < m (r is the remainder
of k divided by m). Then, ar = a−qmaqm+r = a−qmak ∈ H, as a−qm and ak are in H and
H is a subgroup.

But, this implies r = 0 (definition of m), and so k = qm.

Thus all elements of H are of the form aqm, for some q ∈ Z. That is, H = 〈am〉 and so H
is cyclic.

Application: The subgroups of (Z,+) are precisely the groups (nZ,+), for n ∈ |Z|.

2.1 Infinite cyclic groups

Theorem 2.1.1: Let G be an infinite cyclic with generator a, then

G = {· · · , a−2, a−1, a0 = e, a, a2, a3, · · ·}

and all the powers of a are distinct.

Proof: The form of G follows from the definition of cyclic. Now, suppose that an = ak,
for some n 6= k. Without loss of generality take k < n. Then, an−k = e with n − k > 0.
Thus, there exists a smallest strictly positive integer m for which am = e. It follows that
e, a, a2, a3, · · · , am−1 are all distinct (why?) Further, these m elements are the only distint
elements of G (which is the sought for contradiction, since G is infinite). To see that there
are no other distinct elements, observe that we have:

am = e

am+1 = a

am+2 = a2

· · ·
a2m−1 = amam−1 = am−1

a2m = (am)2 = e

a2m+1 = a

· · ·
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and
a−1 = ea−1 = ama−1 = am−1

a−2 = am−2

· · ·

Corollary 2.1.2: Any infinite cyclic group G is isomorphic to (Z,+). Thus (Z,+) is
‘essentially’ the only infinite cyclic group.

Proof: If we set up a correspondence between G and Z by an ↔ n, then

an ∗ am = an+m

↔ n+m.

Theorem 2.1.3: Let H be the smallest subgroup of the infinite cyclic group 〈a〉 containing
am and an, then H = 〈ad〉, where d = gcd(m,n) is the greatest common divisor of m and
n.

Proof: Since H contains all elements of the form

apm+qn = (am)P (an)q, for p, q ∈ Z,

and the set of all such elements form a subgroup (check this) we must have

H = {apm+qn : p, q ∈ Z}.

As a subgroup of the cyclic group 〈a〉 we know by theorem (2.0.2) that H must be cyclic
with generator ad, say.

Now, am ∈ H =⇒ am = (ad)k = akd, for some k ∈ Z. So, m = kd and d divides m.
Similarly, an ∈ H implies d divides n.

On the other hand, ad ∈ H =⇒ ad = apm+qn, for some p, q ∈ Z. So,

d = pm+ qn. (∗)

Since any common divisor of m and n divides the right hand side of (∗) we see that any
divisor of m and n divides d. Thus d = gcd(m,n).

Remark 2.1.4: From the above proof, in particular (∗), we see that if d = gcd(m,n) then
d = pm+ qn, for some p, q ∈ Z. The ability to express the greatest common divisor of two
number as such an integer linear combination of them is often very useful and should be
borne in mind.
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2.2 Finite cyclic groups

Let G be a finite cyclic group of order n (<∞) with generator a. That is G = 〈a〉. Then,
not all the powers of a can be distinct, so there must exist distinct integers h, k with
ah = ak. So, ak−h = e and if m ≥ 1 is the smallest strictly positive integer with am = e
we must have

G = {e, a, a2, a3, · · · , am−1},

so m = n− 1.

Under the correspondence a ↔ ω, where ω = e2πi/n we see that G is isomorphic to the
unitary group Un and hence also to (Zn,⊕n). Thus, there is essentially only one cyclic
group of any given order.

Theorem 2.2.1: Let G = 〈a〉 be a cyclic group of order n and let r ∈ {1, 2, · · · , n − 1},
then H := 〈ar〉 is a cyclic subgroup of order n/d, where d = gcd(n, r).

Proof: We know that H, as a subgroup of a cyclic group, must itself be cyclic, hence it
only remains to establish its order. Suppose h is the order of H, then h is the smallest
strictly positive integer for which e = (ar)h = arh. Since a power of a equals e if and only
if the power is a multiple of n, we see that h is the smallest strictly positive integer for
which n divides rh. Since n/d and r/d are integers (by the definition of d), it follows that
n/d divides (r/d)h. Further, since n/d and r/d are relatively prime integers (again, by the
definition of d), we must have that n/d divides h. That is, h = k(n/d), for some k ∈ N,
and so the smallest possible value for h is n/d. Further n does divide r(n/d) = (r/d)n,
and hence we conclude that h = n/d, as claimed.

Remark 2.2.2: Since any subgroup of the finite cyclic group G = 〈a〉 must be of the
form 〈ar〉, for some r ∈ {1, 2, · · · , n − 1}, the above theorem shows that the order of any
subgroup of G must divide the order of G. We will shortly show that this is true, not just
for cyclic groups, but for any finite group G.

Corollary 2.2.3: If a generates a finite cyclic group of order n then the generators for G
are ar, where gcd(r, n) = 1.

These results help us to determine the lattice of subgroups of any finite cyclic group.

Example 2.2.4: For (Z12,⊕12) = 〈1〉, generators are integers between 1 and 11 which are
relatively prime to 12; namely, 1, 5, 7 and 11. Other elements generate proper subgroups.
Thus, the non-trivial proper (necessarily cyclic) subgroups are:

〈m〉, of order 12/gcd(m, 12),

where m = 2, 3, 4, 6, 8, 9, or 10.

These are:

〈2〉, of order 6; 〈2〉 = {0, 2, 4, 6, 8, 10},
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〈3〉, of order 4; 〈3〉 = {0, 3, 6, 9},

〈4〉, of order 3; 〈4〉 = {0, 4, 8},

〈6〉, of order 2; 〈6〉 = {0, 6},

〈8〉, of order 3; 〈8〉 = {0, 8, 4} = 〈4〉,

〈9〉, of order 4; 〈9〉 = {0, 9, 6, 3} = 〈3〉, and

〈10〉, of order 6; 〈10〉 = {0, 10, 8, 6, 4, 2} = 〈2〉.

The lattice of subgroups for Z12 is therefore:

Z12

Z3 ≡ 〈3〉 〈2〉 ≡ Z6

| |
Z2 ≡ 〈6〉 〈4〉 ≡ Z3

〈0〉

2.3 Generators

Here we extend the idea of a group generated by a single element (a cyclic group) to groups
generated by sets of elements.

Theorem 2.3.1: Let G be a group and let A be a subset of G. The set of all finite
expressions of the form

an1
1 an2

2 · · · a
nk

k ,

where a1, a2, · · · , ak are not necessarily distinct elements of A, and n1, n2, · · · , nk ∈ Z are
positive, or negative, powers forms a group: the subgroup of G generated by A, which we
denote by 〈A〉.

Proof: For a = an1
1 an2

2 · · · a
nk

k and b = bm1
1 bm2

2 · · · b
mj

j in 〈A〉 we clearly have

ab−1 = an1
1 an2

2 · · · a
nk

k b
−mj

j b
−mj−1

j−1 · · · b−m1
1 ∈ 〈A〉.

Indeed more can be said.

Theorem 2.3.2: For G a group and A ⊆ G, 〈A〉 is the smallest subgroup of G containing
A.

Proof: Closure under the binary operation ensures that if A ⊆ S ≤ G, then 〈A〉 ⊆ S. So,
any other subgroup of G containing A is larger than (contains) 〈A〉.

22



MATH222 – Algebraic Methods I

Recalling that any intersection of subgroups of G is itself a subgroup of G, we see that this
last result implies that

〈A〉 =
⋂
{S : A ⊆ S ≤ G}.

If A ⊆ G is such that 〈A〉 = G we say A generates (or, is a generating set for) G, and we
refer to the collection of elements of A as generators for G.

Note: A is always a generating set for 〈A〉. Also, our use of 〈a〉 to denote the cyclic group
generated by a is a slight abuse of the notation 〈{a}〉, and is certainly consistent with the
more general ideas developed here.

Remark: It is perhaps worth noting the close analogy between 〈A〉 and generating set
with the notions of span and spanning set of vectors in linear algebra.

Example 2.3.3: For Z6, we have

〈1〉 = Z6,

〈5〉 = Z6 and

〈{2, 3}〉 = Z6.

So, 1; 5 and 2,3 are generators for Z6, while 〈{2, 4}〉 = 〈2〉 = {0, 2, 4} ≡ Z2 < Z6.

Exercise 2.3.4: Verify that {a, b}, {a, c} and {b, c} are all generating sets for the Klein
4-group {e, a, b, c} defined in section 1.4.3.

Note 2.3.5: In a finite group a−1 = ak, for some k ∈ N, so only strictly positive powers
of the generators need be used to form 〈A〉.

23



MATH222 – Algebraic Methods I

3. PERMUTATION GROUPS

Intuitively a permutation of a set A is a ‘rearrangement’ of its elements, for example:

a b c d
↓ ↓ ↓ ↓
d a b c

formally it is a 1-1 and onto function σ : A −→ A.

It is readily verified (do so) that the set of all permutations of a set A with composition
as the binary operation forms a group, which we denote by SA.

For example: Let A = {1, 2, 3, 4}, for the permutations

σ :
1 2 3 4
↓ ↓ ↓ ↓
4 1 2 3

which we write as σ =

(
1 2 3 4
4 1 2 3

)

and

τ =

(
1 2 3 4
2 1 4 3

)
we have

στ =

(
1 2 3 4
4 1 2 3

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
1 4 3 2

)
Note: ‘multiplication’ of permutations is from right to left; στ(1) = σ(τ(1)) = σ(2) = 3.
(Caution: some authors combine permutations from left to right. They see this as more
natural, but it does not conform to our usual notation for the composition of functions. It
is important that you establish what convention is being used before reading any book on
permutations.)

Remark: The group SA is not concerned with what the elements of A really are. Thus if
B is any set with the ‘same number’ of elements as A (that is, there is a 1-1 correspondence
between A and B), then SB has the same structure as SA; they are isomorphic groups.

We will mainly be concerned with finite sets, and if A is a set with n elements then by
the above remark we might as well take A to be the set {1, 2, · · · , n}. The group of all
permutations of this set is the symmetric group on n symbols which we will denote by Sn.
It has n! elements; that is, Sn has order n! (why?).

For example, the permutations σ and τ given above are elements of S4. The identity
element is

ι =

(
1 2 3 4
1 2 3 4

)
while the inverse of σ is σ−1 =

(
1 2 3 4
2 3 4 1

)
What is τ−1?
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Examples:

S1 = {ι}, where ι =

(
1
1

)
◦ ι

ι ι

S2 =

{
ι =

(
1 2
1 2

)
, σ =

(
1 2
2 1

)} ◦ ι σ

ι ι σ

σ σ ι

S3 has 3! = 6 elements, namely:

ι =

(
1 2 3
1 2 3

)
µ1 =

(
1 2 3
1 3 2

)
ρ1 =

(
1 2 3
2 3 1

)
µ2 =

(
1 2 3
3 2 1

)
ρ2 =

(
1 2 3
3 1 2

)
µ3 =

(
1 2 3
2 1 3

)
◦ ι ρ1 ρ2 µ1 µ2 µ3

ι ι ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ι µ3 µ1 µ2

ρ2 ρ2 ι ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ι ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ι ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ι

Note: ρ2µ1 = µ2 6= µ3 = µ1ρ2, so S3 is a non-abelian group. The notational division of
its elements into ρ’s and µ’s is explained by the following interpretation.

S3 is the group of symmetries of an equilateral triangle:
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As the full group of symmetries of an equilateral triangle S3 is also known as the third
dihedral group and denoted by D3.

Remark: The n’th dihedral group, Dn, is the group of symmetries of a regular n-gon.
It has order 2n (why?) and so, except in the case n = 3, it is a proper subgroup of
Sn. WARNING, Because it has 2n elements some authors choose to denote the symmetry
group of a regular n-gon by D2n. Thus, for these authors our D3 would be denoted by D6.
You must establish the convention being used in any book you are working with.

3.1: The octic group, D4

The octic group D4 is the full group of symmetries of a square. It is an order 8 proper
subgroup of S4 (order 24).

Besides the identity, ι =

(
1 2 3 4
1 2 3 4

)
, the remaining seven elements of D4, some of

whose entries have been left blank for you to fill in as an exercise, are:

ρ1 =

(
1 2 3 4
2 3 4 1

)
, ρ2 = ρ21 =

(
1 2 3 4
3 ? ? ?

)
, ρ3 = ρ31 =

(
1 2 3 4
? ? ? ?

)
,

representing anticlockwise rotations through π/2, π and 3π/2 respectively about the centre
of the square,

µ1 =

(
1 2 3 4
2 1 4 3

)
, µ2 =

(
1 2 3 4
? ? ? ?

)
,

representing reflections in the two lines of symmetry which pass through the midpoints of
pairs of opposite sides, and

δ1 =

(
1 2 3 4
3 2 1 4

)
, δ2 =

(
1 2 3 4
? ? ? ?

)
,
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representing reflections in the two diagonals.

The group table for D4 is:

◦ ι ρ1 ρ2 ρ3 µ1 µ2 δ1 δ2

ι ι ρ1 ρ2ρ3 µ1 µ2 δ|1 δ2

ρ1 ρ1 ρ2 ρ3 ι ? ? ? ?

ρ2 ρ2 ρ3 ι ρ1 µ2 µ1 δ2 δ1

ρ3 ρ3 ι ρ1 ρ2 ? ? ? ?

µ1 µ1 ? ? ? ι ρ2 ρ3 ?

µ2 µ2 ? ? ? ρ2 ι ? ?

δ1 δ1 ? δ2 ? ρ1 ? ι ρ2

δ2 δ2 ? δ1 ? ? ? ρ2 ι

You should complete this table as an exercise. You may find the omitted entries by either
multiplying the appropriate permutations, e.g.

δ1µ1 =

(
1 2 3 4
3 2 1 4

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
2 3 4 1

)
= ρ1,

or by performing the operations in order on a square and noting the result, e.g.

so, δ1ρ2 = δ2.

Note that D4 is a non-commutative group, all of whose proper subgroups are commutative.

27



MATH222 – Algebraic Methods I

The lattice of subgroups for D4 is :

D4

{ι, µ1, µ2.ρ2} {ι, ρ1, ρ2, ρ3} {ι, δa, δ2, ρ2}

{ι, µ2} {ι, µ1} {ι, ρ2} {ι, δ1} {ι, δ2}

{ι}

3.2 Orbits, Cycles and Transpositions

Definition 3.2.1: Given;

a finite set A, which witout loss of generality we take to be {1, 2, 3, · · · , n},

a permutation σ of A, and

an element a of A,

the orbit of a under σ is the set {a, σ(a), σ2(a), · · · , σk(a), · · ·}.

For example: If A = {1, 2, 3, 4, 5, 6}, σ =

(
1 2 3 4 5 6
3 6 4 1 5 2

)
and a = 3

the orbit of a under σ is {3, 4, 1, 3, 4, 1, 3, 4, · · ·} = {3, 4, 1}.
σ

3 4

σ σ
1

Note: the definition may suggest that orbits are infinite. However, as the example illus-
trates, since A is finite, only finitely many of the elements in the orbit can be distinct. If
we continue listing the elements a, σ(a), σ2(a), · · · , σk(a), · · · while-ever they are distinct
we must eventually stop, at σm(a) say, and then σm+1(a) must be one of the already listed
elements. CLAIM: it can only be a. Indeed if σm+1(a) 6= a then σm+1 = σk(a) for some
k ∈ {1, 2, 3, · · · ,m}, then

σ(σk−1(a)) = σk(a) = σm+1(a) = σ(σm(a))
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contradicting the fact that σ is a permutation and hence 1-1, as by the choice of m we
have that σk−1(a) and σm(a) are distinct.

Thus orbits necessarily circle back on themselves:

σ(a)

a σ2(a)

· · ·

The above argument also shows that if b is an element in the orbit of a under σ, then
as a set the orbit of b under σ necessarily equals the orbit of a under σ. Thus the orbits
of sigma are either disjoint or identical. [For an alternative description of the orbit of a
under σ, as the equivalence class of a under the equivalence relation: a ∼ b if b = σk(a)
for some k ∈ Z, see F pp101–102 (orbits).

Definition 3.2.2: A permutation σ ∈ Sn is a cycle if it has at most one orbit containing
more than one element. The length of the cycle is the number of distinct elements in its
largest orbit.

Example: The cycle in S8 containing the orbit

1 3

6

is (
1 2 3 4 5 6 7 8
3 2 6 4 5 1 7 8

)
.

Rather than write cycles like this we will use the abreviated cyclic notation (1, 3, 6), think
of this as (1→ 3→ 6).

Note: (1, 3, 6) = (6, 1, 3) etc.

Definition 3.2.3: Two cycles in Sn are disjoint if in cyclic notation they have no elements
in common. NOTE: disjoint cycles commute.

Theorem 3.2.4: Every permutation in Sn can be written as a product of disjoint cycles.

Proof: The proof is essentially an algoritm for writing any given permutation in this way.
We illustrate it on the permutation(

1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
.
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Choose any element a1 of {1, 2, 3, · · · , n} and form its orbit: a1, σ(a1), σ2(a1), · · · , σm1(a1)
equal to 1, 3, 6 in our example with a1 = 1. Use this to define a cycle µ1 := (a1, σ(a1), σ2(a1), · · · , σm1(a1)).
In our example, µ1 := (1, 3, 6).

Now choose any element a2 not in the orbit of a1. Form its orbit (which is necessarily
distinct from that for a1, why?) and use this to define another (disjoint) cycle µ2. For
example, choosing a2 = 2, we have µ2 := (2, 8).

Continue this process to obtain (necessarily distinct) cycles µ1, µ2, µ3, · · · until the elements
of {1, 2, 3, · · · , n} are exhausted. In our example this happens after we have formed µ3 :=
(4, 7, 5).

Then, σ = µ1µ2µ3 · · ·. For example:(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1, 3, 6)(2, 8)(4, 5, 7).

Check this by multiplying out the right hand side.

Note: In writing a permutation as a product of cycles we may ignor cycles of length 1 as
these correspond to the identity permutation ι. Thus, since the orbits of σ are unique, the
above decomposition of σ into cycles is unique up to the order in which the cyclic factors
appear.

Definition 3.2.5: A cycle of length 2 is a transposition.

For example: µ2; = (2, 8) =

(
1 2 3 4 5 6 7 8
1 8 3 4 5 6 7 2

)
in S8 is a transposition.

Lemma 3.2.6: Every permutation of {1, 2, · · · , n} can be written as a product of trans-
positions.

Proof: Since every permutation can be written as a product of (disjoint) cycles it suffices
to show that every cycle can be written as a product of transpositions, and a simple
computation verifies that

(a1, a2, · · · , ak) = (a1, ak)(a1, ak−1)(a1, ak−2) · · · (a1, a3)(a1, a2).

Example: (
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1, 3, 6)(2, 8)(4, 5, 7)

= (1, 6)(1, 3)(2, 8)(4, 5)(4, 7).
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Note: Since in general the transpositions involved in this decomposition are not disjoint
(for instance the first pair, and last pair, in the example above), and so do not commute,
the order in which the transposition factors appear is important. Also the decomposition
into a product of transpositions is non-unique. For example; verify that,(

1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1, 6)(1, 3)(2, 8)(4, 5)(4, 7)

= (2, 8)(3, 1)(3, 6)(4, 5)(4, 7)

= (2, 8)(3, 1)(3, 7)(3, 7)︸ ︷︷ ︸
ι

(3, 6)(4, 5)(4, 7) etc.

However we do have the following result concerning the number of transpositions involved.

Theorem 3.2.7: If a permutation σ of {1, 2, 3, · · · , n} can be written as a product of k
transpositions and also as a product of ` transpositions then k ≡ ` mod(2). That is, for a
given permutation the number of transpositions involved in any decomposition of it into a
product of transpositions is either always even or always odd.

Proof: We begin by forming a special product of the integers {1, 2, 3, · · · , n}.

Let
Pn :=

∏
1≤j<i≤n

(i− j).

For example: P4 = (2− 1)(3− 1)(4− 1)(3− 2)(4− 2)(4− 3).

For any permutation β of {1, 2, 3, · · · , n} let

βPn :=
∏

1≤j<i≤n

(β(i)− β(j)).

In our example,

(
1 2 3 4
3 4 2 1

)
P4 = (4− 3)(2− 3)(1− 3)(2− 4)(1− 4)(1− 2) = −P4.

The effect of β on Pn is to rearrange the factors and change the sign of some of them. So
always we have βPn = ±Pn. Now note that if τ is a transposition, τ = (r, s) say, with
r < s, then the only factors of Pn containing either r or s ( and so affected by τ) are of
the form:

Transpositions Effect of interchangeing r and s

(r − s) sign changed to −
(t− s), (t− r) t > s sign unchanged, (+×+)
(s− t), (t− r) s > t > r sign unchanged, (−×−)
(s− t), (r − t) r > t sign unchanged, (+×+)

So for any transposition τ we have τPn = −Pn.
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Thus, if σ is the product of k transpositions σPn = (−1)kPn, and if σ is also the product
of ` transpositions σPn = (−1)`Pn. That is, (−1)k = (−1)` and so k and ` are either both
even or both odd.

[For alternative proofs, see F pp106–108, or exercise 28 on p112.]

Definition 3.2.8: A permutation which can be written as the product of an even (odd)
number of transpositions is termed an even (odd) permutation. Theorem 3.2.7 shows that
these terms are well defined.

Example: Since the identity permutation ι = (a, b)(a, b) we see that ι is always an even
permutation in Sn. The permutation(

1 2 3 4
3 4 2 1

)
= (1, 3, 2, 4)

which changes the sign of P4 is an odd permutation. Indeed (1, 3, 2, 4) = (1, 4)(1, 2)(1, 3).

3.3 Some General Group Theory

Ley G be a group, for g ∈ G the mapping

λg : G −→ G : x 7−→ gx

is invertible (indeed λ−1g = λg−1 : λg−1λg(x) = g−1gx = x and λgλg−1(x) = gg−1x = x),
and also λi = Id, the identity map from G onto G (λi(x) = ix = x, for all x ∈ G).

The mapping
g 7−→ λg

is an isomorphism (1-1, onto and preserves the group operation: x∗y 7→ λx ◦λy) of G onto
a subgroup of invertible functions (from G to G), known as the left regular representation
of G.

Thus, ever group G is isomorphic to a subgroup of invertible (1-1 and onto) functions
on some set (namely, G itself). Since such functions are permutations (of G), we see that
every group is isomorphis to a subgroup of the permutations of some set – this is Cayley’s
Theorem [see, for example, F page 180].

Now, let An denote the set of all even permutations in Sn and let Bn be the set of all
odd permutations in Sn. If τ is any transposition then, λτ : σ 7→ τσ is an invertible (and
hence 1-1 and onto) map from An to Bn. Thus An and Bn are in 1-1 correspondence and
so have the same number of elements; namely n!/2, half the number of elements in Sn.

Further, ι ∈ An, and if σ and µ are even permutaions (that is, in An) then so too is σµ.
Also, if σ = τ1τ2 · · · τ2k, where the τi are transpositions, then σ−1 = τ−12k · · · τ

−1
2 τ−11 , so

32



MATH222 – Algebraic Methods I

σ−1 is also an even permutation, and hence in An. Thus, An is an oder n!/2 subgroup of
Sn, known as the alternating group on n symbols.

These groups play an important role in algebra: for example, the fact that there is no
formula in terms of radicals for the roots of a general quintic (or higher order) polynomial
is a consequence of the structure of A5.
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4. COSETS, LAGRANGE’S THEOREM and FACTOR GROUPS

4.1 Cosets

Given a group G and a subgroup H ≤ G we define a relationship between the elements of
G by a ∼L b if b−1a ∈ H.

‘∼L’ is an equivalence relation on G:

Reflexivity, a ∈ G =⇒ a−1a = e ∈ H =⇒ a ∼L a,

Symmetry, a ∼L b =⇒ b−1a ∈ H =⇒ (b−1a)−1 ∈ H =⇒ a−1b ∈ H =⇒ b ∼L a, and

Transitivity, a ∼L b and b ∼L c =⇒ b−1a ∈ H and c−1b ∈ H =⇒ c−1a = (c−1b)(b−1a) ∈
H =⇒ a ∼L c.

The ‘∼L’-equivalence classes are known as the left H-cosets of G.

The left H-coset of a ∈ G; that is, the ‘∼L’-equivalence class of a is:

{b ∈ G : b ∼L a} = {b ∈ G : a−1b ∈ H}
= {b ∈ G : a−1b = h, for some h ∈ H}
= {b ∈ G : b = ah, for some h ∈ H}
= {ah : h ∈ H}
=: aH

Intuitively, consider the Abelian case: a ∼L b =⇒ −b+ a ∈ H =⇒ a− b = h ∈ H. That
is, a and b differ by an element of H. The left H-cosets are what we would see if we looked
at G through ‘H-coloured glasses’, glasses which could not distinguish elements differing
by an element of H.

Note: A similar equivalence relation ‘∼R’ could be defined by a ∼R b if ab−1 ∈ H. This
would lead to the right H-cosets of G where the right H-coset of a ∈ G is Ha := {ha : h ∈
H}. We will work mainly with left cosets, however, some other authors choose to work
with right ones.

Examples:

(1) For the symmetric group on n-symbols, Sn, and the alternating subgroup An, we see
that An = ιAn and the set of all odd permutations Bn = σAn, where σ is any odd
permutation of {1, 2, · · · , n}, are the two left An-cosets of Sn.

(2) For G = Z6 and H the subgroup {0, 3} the left H-cosets are

0H = 0 +H = {0, 3} = 3H,

1H = 1 +H = {1, 4} = 4H,

2H = 2 +H = {2, 5} = 5H.
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If we rearrange the group table of Z6 with the elements along the borders collected
into left {0, 3}-cosets we obtain,

⊕6 0 3 1 4 2 5

0 0 3 1 4 2 5

3 3 0 4 1 5 2

1 1 4 2 5 3 0

4 4 1 5 2 0 3

2 2 5 3 0 4 1

5 5 2 0 3 1 4

and we see that it is possible to define a ‘multiplication’ on the cosets so that they
form a group:

0H 1H 2H

0H 0H 1H 2H

1H 1H 2H 0H

2H 2H 0H 1H

(3) For n ∈ N the distinct left nZ-cosets of Z are:

0 + nZ = {· · · ,−n, 0, n, 2n, · · ·} = nZ,

1 + nZ = {· · · , 1− 2n, 1− n, 1, n+ 1, 2n+ 1, · · ·},
2 + nZ = {· · · , 2− 2n, 2− n, 2, n+ 2, 2n+ 2, · · ·},
· · ·

(n− 1) + nZ = {· · · ,−1, n− 1, 2n− 1, · · ·}
.

Note, n+ nZ = {· · · ,−n, 0, n, 2n, · · ·} = 0 + nZ etc.

Alternatively, we can note that in this case a ∼L b =⇒ −b+a = kn, for some k ∈ Z.
That is, a ≡ b (modn). So, the cosets can be identified with the elements of Zn. This
shows that again in this case it would be possible to define a ‘multiplication’, ⊕n, on
the cosets so that they formed a group.

(4) In S3,
◦ ι ρ1 ρ2 µ1 µ2 µ3

ι ι ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ι µ3 µ1 µ2

ρ2 ρ2 ι ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ι ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ι ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ι
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with H equal to the subgroup {ι, µ1}, the left H-cosets are:

ιH = {ι, µ1} = µ1H,

ρ1H = {ρ1, µ3} = µ3H, and

ρ2H = {ρ2, µ2} = µ2H.

Again, arranging the group table of S3 with the elements along the borders collected
into left H-cosets

◦ ι µ1 ρ1 µ3 ρ2 µ2

ι ι µ1 ρ1 µ3 ρ2 µ2

µ1 µ1 ι µ2 ρ2 µ3 ρ1

ρ1 ρ1 µ3 ρ2 µ2 ι µ1

µ3 µ3 ρ1 µ1 ι µ2 ρ2

ρ2 ρ2 µ2 ι µ1 ρ1 µ3

µ2 µ2 ρ2 µ3 ρ1 µ1 ι

we see that it would not be possible to define a multiplication on the cosets so that
they formed a group in a way similar to what happened in the previous two examples. We
will shortly investigate this situation further.

4.2 Lagrange’s Theorem

For any group G we have seen (section 3.3) that multiplication by a fixed group element
g of G defines a 1-1 mapping λg of G onto itself.

For any a, b ∈ G
λba−1 : G −→ G : x 7−→ ba−1x

is such a map. Further, for H ≤ G

λba−1(aH) = bH.

To see this, observe that x ∈ aH =⇒ x = ah, for some h ∈ H =⇒ λba−1(x) = ba−1ah =
bh ∈ bH, so λba−1(aH) ⊆ bH. Similarly, y ∈ bH =⇒ y = bh, for some h ∈ H, and so for
this h we have λba−1(ah) = ba−1ah = bh = y, where ah ∈ aH. Thus, bH ⊆ λba−1(aH).

Therefore, given any two left H-cosets of G: aH and bH, the mapping λba−1 provides a
1-1 and onto correspondence between them. Thus, any two (and hence all) left H-cosets
of G have the same cardinality (number of elements in the case they are finite).

As an application of this we have the following theorem.

Theorem 4.2.1 (Lagrange’s Theorem): Let G be a group of finite order and let H be
a subgroup of G, then the order of H, ord(H), divides the order of G, ord(G).
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Proof: Suppose there are ` distinct left H-cosets of G. These are all disjoint and partition
G (as a ∈ aH), further, by above, they all have the same number of elements, in particular
they all have the same number of elements as eH = H, namely ord(H). Thus, ord(G) =
` × ord(H), establishing the result.

Corollary 4.2.2: Let G be a finite group, then the order of each element of G divides the
order of G.

Proof: For a ∈ G we have ord(a) := ord(〈a〉) which by Lagrange’s theorem divides
ord(G), where 〈a〉 is the cyclic group generated by a.

Corallary 4.2.3: Every group G of prime order is cyclic. Thus, up to isomorphism, there
is only one group of each prime order.

Proof: By corollary 4.2.2, if a 6= e then 2 ≤ ord(a) divides ord(G), a prime. So, ord(a) =
ord(G) and 〈a〉 = G.

Remark: Let G be a finite group. One might seek a converse to Lagrange’s theorem by
asking the question: if d divides the order of G is there necessarily a subgroup of G of
order d? In general the answer is no: A4 has order 12, but has no subgroup of order 6.
It is true when G is an Abelian group, see F theorem 2.13. However, to understand the
proof of this it would be necessary to work through section 2.4 of F, which falls outside
the scope of our course. It is even more trivially true when G is cyclic (in this last case, if

G = 〈a〉 and d divides ord(G), then aord(G)/d generates a subgroup of order d, see theorem
2.2.1).

Notation: For H ≤ G the number of left H-cosets of G is the index of H in G, denoted
by (G : H).

Note: (1) (G : H) also equals the number of right H-cosets of G. See F section 2.3,
exercise 30.

(2) We may have (G : H) = ∞. However, if ord(G) <∞, then

(G : H) =
ord(G)

ord(H)
< ∞.

Thinking of (G : H) as this last quotient the following theorem is readily understood.

Theorem 4.2.4: Let K ≤ H ≤ G with (H : K) and (G : H) both finite, then

(G : K) = (G : H)× (H : K).

Proof: See F section 2.3, exercise 33.
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4.3 Normal Subgroups and Factor (Quotient) Groups

Given a group G and subgroup H of G we investigate when in some natural sense the left
H-cosets of G form a group. Examples (2) and (3) of section 4.1 show that in some cases
this is possible, while example (4) suggests that in other cases it may not be possible.

Given H ≤ G it is natural to define the ‘product’ of two left H-cosets by

(aH) ∗ (bH) = {xy : x ∈ aH and y ∈ bH}.

This will only define a binary operation on the left H-cosets of G if the right hand side is
itself a left H-coset of G, and the examples referred to above show that this may and may
not be the case.

Since a ∈ aH and b ∈ bH we have that ab is in the right hand side, so if this right hand
side is to be a left H-coset it must be (ab)H (remember, cosets are equivalence classes and
ab is a representative of (ab)H). Thus, in order to define a binary operation on the left
H-cosets we must have H such that

for all a, b ∈ G we have (aH) ∗ (bH) = (ab)H. (∗)

We aim to identify what properties the subgroup H must have in order for (∗) to hold.

Now, for any a ∈ G and x ∈ Ha we have x = ha, for some h ∈ H. So,

ax = a(ha) = (ah)(ae)

∈ (aH) ∗ (aH)

= a2H, if (*) is true

and ax = a2h′, for some h′ ∈ H. That is, x = ah′ ∈ aH.

Therefore, (∗) implies that Ha ⊆ aH, for all a ∈ G.

But then, if Ha ⊆ aH, for all a ∈ G, we have for any b ∈ aH that

b = ah, for some h ∈ H,
= (ah)e

= (ah)(a−1a)

= a(ha−1)a

= a(a−1h′)a, as ha−1 ∈ Ha ⊆ aH, so ha−1 = a−1h′, for some h′ ∈ H.
= h′a

∈ Ha

and so Ha = aH.

Thus, a necessary condition for (∗) to hold is that Ha = aH, for all a ∈ G.
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This condition is also sufficient. That is, aH = Ha, for all a ∈ G, implies (∗). To see this,
note that always (ab)H = (ae)bH ⊆ aHbH, so we need only show that aHbH ⊆ abH. Let
x ∈ aH and let y ∈ bH, so x = ahx and y = bhy, for some hx, hy ∈ H. Then,

xy = (ahx)(bhy) = a(hxb)hy

= abh′hy, as hxb ∈ Hb = bH, so hxb = bh′ for some h′ ∈ H,
∈ (ab)H.

We encapsulate the property (∗) with the following definition.

Definition 4.3.1: A subgroup H of the group G for which aH = Ha, for all a ∈ G, is
called a normal subgroup of G, denoted by H / G.

For example: Any subgroup of an Abelian group is a normal subgroup. However, the
subgroup H = {ι, µ1} of S3 is not a normal subgroup, ρ2H = {ρ2, µ2}, while Hρ2 =
{ρ2, µ3}.

Clearly for a normal subgroup N of a group G the left N -cosets of G and the right N -cosets
of G coincide. Bearing this in mind, when N / G we will simply refer to the N -cosets of
G. The converse of this observation is also true.

Proposition 4.3.2: H ≤ G is a normal subgroup of G if and only if every left H-coset of
G is also a right H-coset of G and vice versa.

Proof: We need only prove (⇐=). Now, given any a ∈ G suppose aH = Hb, then
a ∈ aH = Hb. Thus, a is a representative of the equivalence class Hb and so we must have
Hb = Ha. But then, aH = Hb = Ha and H / G.

Exercise: For a group G and H ≤ G, show that H / G if and only if g−1hg ∈ H, for all
g ∈ G and all h ∈ H.

Puting all this together, we can now state the main result of this section.

Theorem 4.3.3: Let G be a group and let N be a normal subgroup of G, then the
N -cosets of G with the binary operation

(aN) ∗ (bN) := (ab)N

form a group known as the quotient (or factor) group of G by N , and denoted by G/N .

Proof: The definition of a normal subgroup was devised to describe precisely those sub-
groups for which the operation ∗ is a binary operation on the cosets. Thus we need only
verify that the group axioms (G1) to (G3) are satisfied.

(G1): The associativity of ∗ is inherited from G.

(G2): eN = N is an identity element. Indeed, eNaN = eaN = aN and aNeN = aeN =
aN .
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(G3): a−1N is an inverse for aN , as a−1NaN = a−1aN = eN and aNa−1N = aa−1N =
eN .

From section 4.1 we have the following.

Examples: (1) Z/nZ is isomorphic to Zn = ({0, 1, 2, · · · , n− 1},⊕n).

(2) Z6/{0, 3} has as its group table

0H 1H 2H

{0, 3} {1, 4} {2, 5}
0H = {0, 3} 0H 1H 2H

1H = {1, 4} 1H 2H 0H

2H = {2, 5} 2H 0H 1H

which is isomorphic to Z3.
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5. HOMOMORPHISMS and the HOMOMORPHISM THEOREM So far we
have been fairly informal in our teatment groups being isomorphic we will shortly make
this precise. First, however, we consider a more general notion.

5.1 Homomorphisms

Definition5.1.1: Let G1 = (G1, ∗1) and G2 = (G2, ∗2) be two groups. A function (map-
ping) φ : G1 −→ G2 is a homomorphism if

φ(a ∗1 b) = φ(a) ∗2 φ(b), for all a, b ∈ G1.

Examples 5.1.2: (1) The trivial homomorphism from any group G1 into any other group
G2 given by φ(a) = e2, for all a ∈ G1, where e2 is the identity
element of G2. [φ(a ∗1 b) = e2 = e2 ∗2 e2 = φ(a) ∗2 φ(b).]

(2) Any linear transormation T : Rn −→ Rm : x 7−→ Mx, where M is
an m× n-matrix, and the group operation is vector addition.
[T (x + y) = T (x) + T (y).]

(3) The determinant det(A) defines a homomorphism GL(n,R) −→
(R∗,×), where GL(n,R) is the general linear group of all (n × n-
invertible matrices with matrix multiplication as the group opera-
tion.
[det(AB) = det(A)det(B).]

(4) Let G be the group of functions from a domain D into R with
addition defined pointwise. That is, (f + g)(x) := f(x) + g(x).
The first + (addition of functions)is being defined, the second + is
ordinary addition of numbers.

For any x0 ∈ D the evaluation functional f 7−→ f(x0) defines a
homomorphism from G into (R,+).

(5) For the group C[0, 1] of real valued continuous function on the in-
terval [0,1]

φ(f) :=

∫ 1

0

f(x)dx

defines a homomorphism from C[0, 1] into (R,+).

[
∫ 1

0
(f + g) =

∫ 1

0
f +

∫ 1

0
g.]

(6) Differentiation D on the additive group of differentiable real valued
function of a real variable is a homomorphism into the additive
group of real valued functions of a real variable. [D(f + g) = Df +
Dg.]

(7) The mapping (Z,+) −→ (nZ,+) : a 7−→ na is a homomorphism
(verify this).
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Theorem 5.1.3: LetG1 andG2 be two groups, and let φ : G1 −→ G2 be a homomorphism,
then:

(i) φ(e1) = e2,

(ii) for any a ∈ G1 we have φ(a−1) = φ(a)−1,

(iii) H ≤ G1 implies φ(H) ≤ G2. In particular, φ(G1), the range of φ, is a subgroup
of G2, and

(iv) K ≤ G2 implies φ−1(K) := {a ∈ G1 : φ(a) ∈ K}, the preimage of K, is a
subgroup of G1.

Proof:

(i) e2 = φ(e1)φ(e1)−1 = φ(e21)φ(e1)−1 = φ(e1)φ(e1)φ(e1)−1 = φ(e1).

(ii) For a ∈ G we have φ(a)φ(a)−1 = e2 = φ(e1) = φ(aa−1) = φ(a)φ(a−1) and so
φ(a)−1 = φ(a−1).

(iii) Let a2 and b2 be any two elements of φ(H), then there exists a1 and b1 in H such
that a2 = φ(a1) and b2 = φ(b1) and so a2b

−1
2 = φ(a1)φ(b1)−1 = φ(a1)φ(b−11 ) =

φ(a1b
−1
1 ) ∈ φ(H), as a1b

−1
1 ∈ H. Thus, φ(H) is a subgroup of G2.

(iv) If a and b are any two elements in φ−1(K), then φ(a), φ(b) ∈ K, so φ(ab−1) =
φ(a)φ(b)−1 ∈ K and therefore ab−1 ∈ φ−1(K). Thus φ−1(K) is a subgroup of G1.

5.2 Isomorphisms

Definition 5.2.1: Let G1 and G2 be two groups. A homomorphism φ : G1 −→ G2 which
is one-to-one and onto is an isomorphism.

Examples 5.1.2: (1) Z −→ nZ : a 7−→ na.

(2) φ : U4 −→ Z4 : ωn 7−→ n, where n = 0, 1, 2, 3 and ω = eiπ/2 = i.

(3) An infinite cyclic group 〈a〉 7−→ (Z,+) : an 7−→ n.

Theorem 5.2.3: If φ : G1 −→ G2 is an isomorphism, then the inverse map φ−1 : G2 −→
G1 exists and is an isomorphism of G2 to G1.

Proof: Since φ is one-to-one and onto we know from the general theory of functions
that φ−1 exists and is also one-to-one and onto, thus it only remains to show it is a
homomorphism.

Now, given any a2 and b2 in G2, since φ is onto, there exists a1 and b1 in G1 with a2 = φ(a1)
and b2 = φ(b1), indeed a1 = φ−1(a2) and b1 = φ−1(b2). Thus,

φ−1(a2b2) = φ−1(φ(a1)φ(b1)) = φ−1(φ(a1b1)) = a1b1 = φ−1(a2)φ−1(b2).
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5.3 Homomorphisms and factor groups

Let G1 and G2 be groups and let φ : G1 −→ G2 be a homomorphism. From theorem 5.1.3
(iv) with K equal to the trivial group {e2} we know that φ−1(e2) is a subgroup of G1,
known as the kernel of φ:

Kerφ := φ−1(e2).

This should be compared with the notion of the kernel of a linear transformation as used
in linear algebra, indeed the two notions are essentially the same. If we forget about scalar
multiplication a vector space with vector addition as the operation is an Abelian group
(with identity element the zero vector, 0) and a linear transformation T between two such
spaces is then a homomorphism with KerT = T−1(0).

Proposition 5.3.1: Kerφ / G1.

Proof:

43


