ON NON-UNIFORM CONDITIONS GIVING WEAK NORMAL STRUCTURE

Brailey Sims and M. Smyth

Abstract

Several non-uniform conditions sufficient for weak normal structure have recently been introduced. We show that some of these are in fact equivalent and also utilize them in applications towards a 3 -space property for weak normal structure, thereby improving on earlier results.

1991 Mathematics Subject Classification. 47H10.

1. Introduction. Throughout X is a Banach space which is assumed not to be Schur. That is, X has weakly convergent sequences that are not norm convergent. Recall that X has (weak) normal structure if whenever C is a (weak compact) bounded convex subset of X with $\operatorname{diam} C>0$ then $\operatorname{rad} C<\operatorname{diam} C$ where

$$
\begin{aligned}
\operatorname{diam} C:=\sup \{\|x-y\|: & x, y \in C\} \\
& \quad \text { and } \operatorname{rad} C:=\inf _{x \in C} \sup \{\|x-y\|: y \in C\} .
\end{aligned}
$$

It is well known that X fails weak normal structure if and only if there exists a sequence $\left(x_{n}\right)$ in X with $x_{n} \xrightarrow{w} 0$ and diam $\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$ $\left(=\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}\right)=1$ and $\operatorname{dist}\left(x_{n+1}, \overline{\operatorname{co}}\left\{x_{k}\right\}_{k=1}^{n}\right) \rightarrow 1$.

In particular $\operatorname{diam}_{a}\left(x_{n}\right), \operatorname{rad}_{a}\left(x_{n}\right)$ and $\lim _{n}\left\|x_{n}\right\|$ are all equal to 1 , where

$$
\begin{aligned}
& \operatorname{diam}_{a}\left(x_{n}\right):=\lim _{n} \operatorname{diam}\left\{x_{k}\right\}_{k=n}^{\infty} \\
& \quad \text { and } \operatorname{rad}_{a}\left(x_{n}\right):=\underset{n}{\inf \left\{\limsup _{n}\left\|x-x_{n}\right\|: x \in \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}\right\}}
\end{aligned}
$$

are, respectively, the asymptotic diameter of $\left(x_{n}\right)$ and the asymptotic radius of $\left(x_{n}\right)$ in $\overline{\mathrm{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$.

See [3] for details and the relevance of weak normal structure to fixed point theory of nonexpansive mappings. We now review some uniform conditions.

As in Maluta [9] we define $\tilde{N}(X)$ by
$\sup \left\{\frac{\operatorname{rad} C}{\operatorname{diam} C}: C\right.$
is a bounded convex non-singleton non-empty subset of $X\}$.
This is the reciprocal of Bynum's normal structure coefficient, $N(X)$, defined in [1]. X is said to have uniform normal structure if $\tilde{N}(X)<1$.

Also, put

$$
\text { w.c.s. }(X):=\sup \left\{\frac{\operatorname{rad}_{a}\left(x_{n}\right)}{\operatorname{diam}_{a}\left(x_{n}\right)}: x_{n} \xrightarrow{w} 0, x_{n} \nrightarrow 0\right\}
$$

This is the reciprocal of the weal convergent sequence coefficient defined in [1]. It can be checked that diam $_{a}$ can be replaced with diam in the definition.

Since $\operatorname{rad}_{a}\left(y_{n}\right) \leq \operatorname{rad}\left\{y_{n}\right\}_{n=1}^{\infty}$ for any sequence $\left(y_{n}\right)$ it follows that w.c.s. $(X) \leq \tilde{N}(X)$.

Of course if $\tilde{N}(X)<1$ or w.c.s.($X)<1$ then X has weak normal structure.

Maluta [9] introduced

$$
D(X):=\sup \left\{\frac{\lim \sup \operatorname{dist}\left(x_{n+1}, \overline{\mathrm{co}}\left\{x_{k}\right\}_{k=1}^{n}\right)}{\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}}:\right.
$$

$$
\left.\left(x_{n}\right) \text { is a bounded nonconstant sequence in } X\right\}
$$

She showed that diam can be replaced with diam_{a} (for nonconvergent sequences $\left(x_{n}\right)$), that $D(X) \leq \tilde{N}(X)$, and also that $D(X)=1$ whenever X is not reflexive, thus giving that uniform normal structure implies reflexivity.

Prus [11] showed that w.c.s. $(X)=D(X)$ if X is reflexive, the main argument being that in general w.c.s. $(X) \leq D(X)$. He also obtained that w.c.s. (X) is the reciprocal of

$$
\inf \left\{\operatorname{diam}_{a}\left(x_{n}\right): x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \rightarrow 1\right\}
$$

Here also diam $_{a}$ can be replaced with diam.
Recently several non-uniform conditions have been studied. Tan and Xu [12] introduced property P :
$\liminf \left\|x_{n}-x\right\|<\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty} \quad$ if $\quad x_{n} \xrightarrow{w} x$
and $\left(x_{n}\right)$ is nonconstant.
By extracting appropriate subsequences this can be seen to be unaltered if limsup is used instead of liminf and, on normalizing, is equivalent to:

$$
\text { If }\left\|x_{n}\right\| \rightarrow 1 \text { and } x_{n} \xrightarrow{w} 0 \text { then } \operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}>1 .
$$

We say that X has asymptotic P if the above (again equivalent) conditions hold with diam replaced by diam_{a} (with the proviso that the sequence is nonconstant).

In section 2 the main results are that P is equivalent to a condition introduced in [13] by Tingley (subsequently known as WO), and that asymptotic P is the GGLD of [4]. We also give other equivalents of these conditions, some involving indices of noncompactness and others more closely related to the original definitions of w.c.s. (X) and $D(X)$.

Section 3 is concerned with problems of a 3 -space nature:
Given $X=Y \oplus Z$, where Z is finite dimensional, what conditions on Y give weak normal structure for X ? In [8] an example is given of a space X that has weak normal structure even though the direct ℓ_{1}^{2} sum $X \oplus_{\ell_{1}} \mathbb{R}$ fails this property. We ask what properties of Y sufficient for weak normal structure are inherited by X. It is shown that asymptotic P , as well as P with appropriate conditions on the projections, are such conditions.
2. Some Banach Space Properties. We state below some Banach space properties which are then related to P and asymptotic P . Two of these properties involve indices of noncompactness; the others have appeared in the literature before and are discussed below.

In each case the inequality holds whenever $\left(x_{n}\right)$ is a weak null sequence in X that is not norm convergent.
(1) $\liminf \left\|x_{n}\right\|<\sup _{m} \limsup _{n}\left\|x_{m}-x_{n}\right\|$.
(2) liminf $\left\|x_{n}\right\|<\operatorname{Sep}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$.
(3) $\liminf \left\|x_{n}\right\|<\lim \sup _{m} \lim \sup _{n}\left\|x_{m}-x_{n}\right\|$.
(4) $\liminf \left\|x_{n}\right\|<\alpha\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$.

Recall that if C is a bounded subset of X,
Sep $(C):=\sup \left\{\inf _{n \neq m}\left\|y_{n}-y_{m}\right\|:\left(y_{n}\right)\right.$ is a sequence in $\left.C\right\}$ and
$\alpha(C):=\inf \{d: C$ has a finite cover of subsets of
X of diameter at most $d\}$,
which are, respectively, the separation and Kuratowski indices of noncompactness.

Of course the above properties can be restated replacing liminf with limsup and can also be normalized in a way similar to that for P.

Condition (1) is WO and represents a weakening of the Opial condition (see [10]):

If $\quad x_{n} \xrightarrow{w} 0 \quad$ and $\quad x \neq 0 \quad$ then $\limsup \left\|x_{n}\right\|<\limsup \left\|x-x_{n}\right\|$.
As noted in [13], WO can be restated as follows: If $x_{n} \xrightarrow{w} 0,\left(x_{n}\right)$ a nonconstant sequence, then there exists $x \in \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$ so that limsup $\left\|x_{n}\right\|$ $<\limsup \left\|x-x_{n}\right\|$.

Condition (3) is an asymptotic version of WO and is called GGLD in [4], where it is shown to be distinct from WO. Combining this with the following proposition establishes that asymptotic P and P are different Banach space properties. We also note that the space considered in [4] which separates P from asymptotic P has the Opial property, so that whereas Opial implies P, it doesn't imply asymptotic P. The example at the end of this section separates asymptotic P from w.c.s. $(X)<1$.

Proposition 2.1. Condition (1) is equivalent to P and the other conditions are equivalent to asymptotic P.

Proof. Clearly (1) $\Rightarrow P$. To show the converse we use a technique due to Landes [7].

Suppose X has $P, x_{n} \in X,\left\|x_{n}\right\| \rightarrow 1, x_{n} \xrightarrow{w} 0$, but $\limsup _{n} \| x_{m}-$ $x_{n} \| \leq 1$ for all m.

We construct a subsequence (y_{n}) of (x_{n}) as follows:
$y_{1}=x_{1}$. If y_{1}, \ldots, y_{k} have been selected, then $y_{k+1}=x_{m}$ is chosen so that
$\left\|x_{m}-y_{j}\right\| \leq 1+1 / k$ for all $j \leq k$ (possible by the condition on $\left(x_{n}\right)$).

Thus, for each k,

$$
\left\|y_{k+1}-y_{j}\right\| \leq 1+1 / k \text { for all } j \leq k .
$$

Now put $z_{k}=\frac{k}{k+1} y_{k+1}+\frac{1}{k+1} y_{1}$. Clearly $z_{k} \xrightarrow{w} 0$ and $\left\|z_{k}\right\| \rightarrow 1$. Also, if $m>k$,

$$
\begin{aligned}
\left\|z_{m}-z_{k}\right\| & =\left\|\frac{m}{m+1} y_{m+1}-\frac{k}{k+1} y_{k+1}-\left(\frac{1}{k+1}-\frac{1}{m+1}\right) y_{1}\right\| \\
& =\left\|\frac{k}{k+1}\left(y_{m+1}-y_{k+1}\right)+\left(\frac{1}{k+1}-\frac{1}{m+1}\right)\left(y_{m+1}-y_{1}\right)\right\| \\
& \leq\left(\frac{k}{k+1}+\frac{1}{k+1}-\frac{1}{m+1}\right)\left(1+\frac{1}{m}\right) \\
& =1
\end{aligned}
$$

Thus, $\operatorname{diam}\left\{z_{m}\right\}_{m=1}^{\infty} \leq 1$, contradicting property P.
To establish the remainder of the proposition we first note that $(2) \Rightarrow$ $(3) \Rightarrow$ asymptotic P and (4) \Rightarrow asymptotic P are clear. Also, (2) \Rightarrow (4) follows from the fact that $\alpha(C) \geq \operatorname{Sep}(C)$ for any set C. It remains to show that asymptotic $P \Rightarrow(2)$.

Suppose X has asymptotic P and $x_{n} \in X,\left\|x_{n}\right\| \rightarrow 1, x_{n} \xrightarrow{w} 0$. Suppose Sep $\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right) \leq 1$ and $\epsilon>0$.

Let $P_{2}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$ denote the set of two element subsets of $\left\{x_{n}\right\}_{n=1}^{\infty}$. We define $A, B \subseteq P_{2}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$ by

$$
\begin{aligned}
A & :=\left\{\left\{x_{n}, x_{m}\right\} \in P_{2}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right):\left\|x_{n}-x_{m}\right\| \geq 1+\epsilon\right\}, \\
B & :=\left\{\left\{x_{n}, x_{m}\right\} \in P_{2}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right):\left\|x_{n}-x_{m}\right\|<1+\epsilon\right\} .
\end{aligned}
$$

Since $A \cup B=P_{2}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$, Ramseys Theorem implies that there exists a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ with

$$
P_{2}\left(\left\{y_{n}\right\}_{n=1}^{\infty}\right) \subseteq A \quad \text { or } \quad P_{2}\left(\left\{y_{n}\right\}_{n=1}^{\infty}\right) \subseteq B .
$$

But $\operatorname{Sep}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right) \leq 1$, so $P_{2}\left(\left\{y_{n}\right\}_{n=1}^{\infty}\right) \subseteq B$ and diam $\left\{y_{n}\right\}_{n=1}^{\infty} \leq$ $1+\epsilon$.

Repeated application of this process together with a diagonalization will produce a subsequence $\left(z_{n}\right)$ of $\left(x_{n}\right)$ with $\operatorname{diam}_{a}\left(z_{n}\right) \leq 1$, a contradiction. \square

In [4] a uniform version of GGLD is also introduced. We relate this condition to w.c.s. (X) below.

With $D\left[\left(x_{n}\right)\right]:=\limsup \operatorname{simsup}_{n}\left\|x_{n}-x_{m}\right\|[4]$ defines

$$
\beta(X):=\inf \left\{D\left[\left(x_{n}\right)\right]:\left\|x_{n}\right\| \rightarrow 1, x_{n} \xrightarrow{w} 0\right\} .
$$

By adapting the arguments used in the proof of the above proposition, we have the following.

Proposition 2.2. The following are equal:
(1) $1 /$ w.c.s. $(X)=\inf \left\{\operatorname{diam}_{a}\left(x_{n}\right): x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \rightarrow 1\right\}$
(2) $\beta(X)$
(3) $\inf \left\{\operatorname{Sep}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right): x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \rightarrow 1\right\}$
(4) $\inf \left\{\alpha\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right): x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \rightarrow 1\right\}$

It is easily checked that the uniformization of WO is the same as the uniformization of GGLD. Thus the uniformization of all the properties considered in proposition 2.1 is w.c.s. $(X)<1$.

It should be mentioned that that the equality of (1) and (3) was noted in [11].

We now recast P and asyinptotic P in a manner similar to the original definitions of w.c.s. (X) and $D(X)$.
Proposition 2.3. The following is equivalent to P :
If $x_{n} \xrightarrow{w} 0,\left(x_{n}\right)$ nonconstant, then
$\underset{k}{\limsup \operatorname{rad}}\left(\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}\right)<\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}$.
k
Similarly asymptotic P can be rewritten as:

$$
\text { If } x_{n} \xrightarrow{w} 0, x_{n} \nrightarrow 0, \text { then } \underset{k}{\lim \sup }\left(\frac{\operatorname{rad}\left(\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}\right)}{\operatorname{diam}\left\{x_{n}\right\}_{n=k}^{\infty}}\right)<1 .
$$

We note that the left hand side of the last inequality is equal to

$$
\frac{\limsup _{k} \operatorname{rad}\left(\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}\right)}{\operatorname{diam}_{a}\left(x_{n}\right)} .
$$

Proof of proposition 2.3. Suppose X has property P and $x_{n} \xrightarrow{w} 0$, $\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}=1$ but $\lim \sup _{k} \operatorname{rad}\left(\overline{c o}\left\{x_{n}\right\}_{n=k}^{\infty}\right)=1$. Now $0 \in \overline{\mathrm{co}}\left\{x_{n}\right\}_{n=k}^{\infty}$ for all k and so $\sup _{k \geq m}\left\|x_{k}\right\| \geq \operatorname{rad}\left(\overline{\mathrm{co}}\left\{x_{k}\right\}_{k=m}^{\infty}\right)$, giving $\limsup \left\|x_{k}\right\|=1$, contradicting P .

Conversely, suppose X satisfies the first statement in the proposition and that $x_{n} \xrightarrow{w} 0$ and $\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}=1$. We now show that $\lim \sup \left\|x_{n}\right\|<1$, and conclude that X has property P .

Indeed, we have $\limsup _{k} \operatorname{rad}\left(\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}\right)<1$. Thus there exists a sequence (y_{k}) with $y_{k} \in \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}$ and $\epsilon>0$ so that

$$
\sup _{z \in \overline{\mathrm{CO}}\left\{x_{n}\right\}_{n=k}^{\infty}}\left\|y_{k}-z\right\|=\sup _{n \geq k}\left\|y_{k}-x_{n}\right\|<1-\epsilon
$$

Thus $\lim \sup _{n}\left\|y_{k}-x_{n}\right\|<1-\epsilon$ for all k. But $y_{k} \xrightarrow{w} 0$ and so by the weak lower semi-continuity of the mapping $x \mapsto \lim \sup _{n}\left\|x-x_{n}\right\|, \lim \sup \left\|x_{n}\right\|$
$\leq 1-\epsilon<1$, completing the proof.
The equivalence involving asymptotic P is proved in a similar way, using the observation made below the statement of the proposition.

It may also be seen that the same method of proof yields that w.c.s. (X) is equal to

$$
\sup \left\{\underset{k}{\limsup }\left(\frac{\operatorname{rad}\left(\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{\infty}\right)}{\operatorname{diam}\left\{x_{n}\right\}_{n=k}^{\infty}}\right): x_{n} \xrightarrow{w} 0, x_{n} \nrightarrow 0\right\},
$$

making the connection with P and asymptotic P clear.
For completeness we also relate P and asymptotic P to $D(X)$, first isolating a result that is obtained in [11] with the following lemma.

LEmma 2.4. If $x_{n} \xrightarrow{w} 0,\left\|x_{n}\right\| \rightarrow 1$, then for $\epsilon>0$ there exists a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ so that

$$
\operatorname{dist}\left(y_{n+1}, \overline{c o}\left\{y_{k}\right\}_{k=1}^{n}\right) \geq 1-\epsilon
$$

We note that by repeated application of Lemma 2.4 and a subsequent diagonalization, we can obtain a further subsequence $\left(z_{n}\right)$ so that

$$
\underset{k}{\liminf }\left(\inf _{n} \operatorname{dist}\left(z_{k+m+1}, \overline{\operatorname{co}}\left\{z_{n}\right\}_{n=k}^{k+m}\right)\right) \geq 1 .
$$

Proposition 2.5. P is equivalent to the following: If $x_{n} \xrightarrow{w} 0,\left(x_{n}\right)$ nonconstant, then

$$
\underset{k}{\limsup }\left(\underset{m}{\limsup } \operatorname{dist}\left(x_{k+m+1}, \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{k+m}\right)\right)<\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty} .
$$

Asymtotic P is similarly characterized with diam replaced with diama (assuming that $x_{n} \nrightarrow 0$).

Proof. We consider the case of property P . That of asymptotic P is proved in the same way.

That the statement implies P follows from the observation preceding the proposition. Conversely suppose that $x_{n} \xrightarrow{w} 0,\left(x_{n}\right)$ nonconstant, but

$$
\underset{k}{\limsup }\left(\underset{m}{\limsup } \operatorname{dist}\left(x_{k+m+1}, \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{k+m}\right)\right)=\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty} .
$$

We show that then $\lim \sup \left\|x_{n}\right\|=\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}$, contradicting P. Indeed, let $n \in \mathbb{N}$ and $\epsilon>0$. Then the above implies that there exists a $k \geq n$ so that
$\limsup \operatorname{dist}\left(x_{k+m+1}, \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=k}^{k+m}\right)>\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}-\epsilon / 2$ m

Now, since $0 \in \overline{\mathrm{co}}\left\{x_{n}\right\}_{n=k}^{\infty}$, there exists $p \in \mathbb{N}$ and $z \in \overline{\mathrm{co}}\left\{x_{n}\right\}_{n=k}^{k+p}$ so that $\|z\|<\epsilon / 2$. But the above will then give an $m \geq p$ so that $\left\|x_{k+m+1}\right\|>\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}-\epsilon$ and it follows that since n and ϵ where arbitrary, $\limsup \left\|x_{n}\right\|=\operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}$, completing the proof.

The following example separates w.c.s. $(X)<1$ from asymptotic P.
Example 2.6. Let $X=\left(\ell_{2} \oplus \ell_{3} \oplus \ell_{4} \oplus \ldots\right)_{2}$. By considering the usual unit vector bases of ℓ_{n}, it is clear that w.c.s. $(X)=1$. We now show that X has asymptotic P . We will use the well known fact that w.c.s. $\left(\ell_{p}\right)=$ $2^{-1 / p}$.

So, suppose that $\left(x^{n}\right)$ is a sequence in X with $\left\|x^{n}\right\| \rightarrow 1, x^{n} \xrightarrow{w} 0$.
We will denote the natural projection onto the subspace of X naturally identified with ℓ_{m} by P_{m} for $m>1$.

Since the projections are weak continuous, $P_{m}\left(x^{n}\right) \xrightarrow{w} 0$ for fixed m.

Firstly, suppose that there exists $\epsilon>0, m \in \mathbb{N}$ and a subsequence $\left(x^{n_{i}}\right)$ of $\left(x^{n}\right)$ so that

$$
\left\|P_{m}\left(x^{n_{i}}\right)\right\|>\epsilon \text { for any } i .
$$

Without loss of generality we assume that $\left(x^{n_{i}}\right)$ is $\left(x^{n}\right)$. Now

$$
\begin{aligned}
\left\|x^{n}\right\|^{2} & =\left\|P_{m}\left(x^{n}\right)\right\|^{2}+\left\|\left(I-P_{m}\right)\left(x^{n}\right)\right\|^{2} \\
\left\|x^{n}-x^{p}\right\|^{2} & =\left\|P_{m}\left(x^{n}\right)-P_{m}\left(x^{p}\right)\right\|^{2}+\left\|\left(I-P_{m}\right)\left(x^{n}\right)-\left(I-P_{m}\right)\left(x^{p}\right)\right\|^{2} .
\end{aligned}
$$

Without loss of generality we suppose that $\left\|P_{m}\left(x^{n}\right)\right\|$ and $\left\|\left(I-P_{m}\right)\left(x^{n}\right)\right\|$ converge to, say, c_{1} and c_{2} respectively.

Suppose that $\delta>0$. Since $\left(I-P_{m}\right)\left(x^{n}\right) \xrightarrow{w} 0$, and $\left\|\left(I-P_{m}\right)\left(x^{n}\right)\right\| \rightarrow$ c_{2} it follows that there exists a subsequence ($x^{n_{i}}$) of (x^{n}) so that

$$
\left\|\left(I-P_{m}\right)\left(x^{n_{i}}\right)-\left(I-P_{m}\right)\left(x^{n_{j}}\right)\right\|>c_{2}-\delta \text { for } i \neq j
$$

Again we assume that $\left(x^{n_{i}}\right)=\left(x^{n}\right)$. Now for $q \in \mathbb{N}$

$$
\begin{aligned}
\sup _{n, p>q}\left\|x^{n}-x^{p}\right\|^{2} & =\sup _{n, p>q}\left(\left\|P_{m}\left(x^{n}\right)-P_{m}\left(x^{p}\right)\right\|^{2}\right. \\
& \left.+\left\|\left(I-P_{m}\right)\left(x^{n}\right)-\left(I-P_{m}\right)\left(x^{p}\right)\right\|^{2}\right) \\
& \geq \sup _{n, p>q}\left\|P_{m}\left(x^{n}\right)-P_{m}\left(x^{p}\right)\right\|^{2}+\left(c_{2}-\delta\right)^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{diam}_{a}\left(x^{n}\right) & \geq\left(\left(\operatorname{diam}_{a}\left(P_{m}\left(x^{n}\right)\right)\right)^{2}+\left(c_{2}-\delta\right)^{2}\right)^{1 / 2} \\
& \geq\left(2^{2 / m} c_{1}^{2}+\left(c_{2}-\delta\right)^{2}\right)^{1 / 2} \text { since w.c.s. }\left(\ell_{m}\right)=2^{-1 / m}
\end{aligned}
$$

Thus, since δ was arbitrary,

$$
\begin{aligned}
\operatorname{diam}_{a}\left(x^{n}\right) & \geq\left(2^{2 / m} c_{1}^{2}+c_{2}^{2}\right)^{1 / 2} \\
& =\left(\left(2^{2 / m}-1\right) c_{1}^{2}+c_{1}^{2}+c_{2}^{2}\right)^{1 / 2} \\
& =\left(\left(2^{2 / m}-1\right) c_{1}^{2}+1\right)^{1 / 2} \\
& >1 \quad\left(\text { since } c_{1} \geq \epsilon>0\right)
\end{aligned}
$$

and the result is obtained.
Otherwise, if our original supposition does not hold, $\left\|P_{m}\left(x^{n}\right)\right\| \rightarrow 0$ for any m.

Then for any $n, y^{n}:=\left(\left\|P_{m}\left(x^{n}\right)\right\|\right)_{m=1}^{\infty} \in \ell_{2},\left\|y^{n}\right\|_{\ell_{2}} \rightarrow 1$ and $y^{n} \xrightarrow{w} 0$.
Thus, since w.c.s. $\left(\ell_{2}\right)=2^{-1 / 2}$, we have $\operatorname{diam}_{a}\left(y^{n}\right) \geq 2^{1 / 2}$.
But since $\left|\left\|P_{m}\left(x^{n}\right)\right\|-\left\|P_{m}\left(x^{p}\right)\right\|\right| \leq\left\|P_{m}\left(x^{n}\right)-P_{m}\left(x^{p}\right)\right\|$, it follows that $\left\|y^{n}-y^{p}\right\|_{\ell_{2}} \leq\left\|x^{n}-x^{p}\right\|_{X}$ and so $\operatorname{diam}_{a}\left(x^{n}\right) \geq 2^{1 / 2}>1$, also giving the result.
3. On a 3-space Problem. As in the introduction, suppose Y is a closed subspace of X and $X=Y \oplus Z$ with Z finite dimensional. In [2] it is shown that if Y has uniform normal structure then X has normal structure (equivalent to weak normal structure in this case since X is reflexive).

Proposition 3.1. If Y has asymptotic P then so does X.
Proof. Suppose $x_{n}=y_{n}+z_{n}$ is a sequence in X with $\left\|x_{n}\right\| \rightarrow 1, x_{n} \xrightarrow{w} 0$ and $y_{n} \in Y, z_{n} \in Z$. But then, since the linear projection onto Z is [weak]continuous, $z_{n} \xrightarrow{w} 0$. Thus $z_{n} \rightarrow 0$ since Z is finite dimensional. Then $\left\|y_{n}\right\| \rightarrow 1$ and $y_{n} \xrightarrow{w} 0$ giving $\operatorname{diam}_{a}\left(y_{n}\right)>1$ since Y has asymptotic P. Hence diam ${ }_{a}\left(x_{n}\right)>1$ since $z_{n} \rightarrow 0$. \square

The same method used in the above proof will also establish that w.c.s. $(X)=$ w.c.s. (Y). Since w.c.s. $(X) \leq \tilde{N}(X)$, this strengthens the result of [2]. Clearly X is reflexive if and only if Y is. Combining this with the results of Maluta and Prus given in the introduction, we also have an alternative proof of Proposition 1 in [6], that $D(X)=D(Y)$. It still appears unknown whether $\tilde{N}(Y)<1$ gives uniform normal structure for X (although it is shown in [5] that super normal structure carries across).

Proposition 3.2. If Y has property P and the projection onto Y has norm 1 then X has P.

Proof. Suppose that $\left\|x_{n}\right\| \rightarrow 1, x_{n} \xrightarrow{w} 0$ and $x_{n}=y_{n}+z_{n}$, with $y_{n} \in$ $Y, z_{n} \in Z$. Then, as in the proof of proposition $3.1, z_{n} \rightarrow 0$ with $\left\|y_{n}\right\| \rightarrow 1$, and $y_{n} \xrightarrow{w} 0$. Thus, diam $\left\{y_{n}\right\}_{n=1}^{\infty}>1$, since Y has property P. Now, since the projection on Y is of norm 1,

$$
1<\operatorname{diam}\left\{y_{n}\right\}_{n=1}^{\infty} \leq \operatorname{diam}\left\{x_{n}\right\}_{n=1}^{\infty}
$$

and so X has property P.

Since property P implies weak normal structure which implies the weak fixed point property (see [3]), the above proposition strenghens Theorem 2.3 of [12] (where it is shown that if Y has P and both projections have norm 1 then X has the weak fixed point property). We also note that the conclusions of the last two propositions remain valid if Z is a Schur space, a possibility which is considered in [2].

References

1. Bynum, W.L., Normal structure coefficients for Banach spaces, Pacific J. of Math. 86 (1980), 427-436.
2. Giles, J.R., Sims, B. and Swarminathan, S., A geometrically aberrant Banach space with normal structure, Bull. Austral. Math. Soc. 31 (1985), 75-81.
3. Goebel, K., Kiri, W.A., Topics in metric fixed point theory, Cambridge University Press, 1990.
4. Jiménez-Melado, A., Stability of weak normal structure in James quasi reflexive space, Bull. Austral. Math. Soc. 46 (1992), 367-372.
5. Kilamsi, M.A., On normal structure, fixed point property and contractions of type (γ), Proc. Amer. Math. Soc. 106 (1989), 995-1001.
6. Kutzarova, D., Maluta, E. and Prus, S., On some p-estimates of Banach spaces, Bull. Austral. Math. Soc. 48 (1993), 187-194.
7.. Landes, T., Permanence properties of normal structure, Pacific J. of Math. 110 (1984), 125-143.
7. Landes, T., Normal structure and the sum-property, Pacific J. of Math. 123 (1986), 127-147.
8. Maluta, E., Uniformly normal structure and related coefficients, Pacific J. of Math. 111 (1984), 357-368.
9. Opial, Z.O., Weali convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591--597.
10. Prus, S., On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545.
11. Tan, K. and Xu, h. On fixed point theorems of nonexpansive, mappings in product spaces, Proc. Amer. Math. Soc. 113 (1991), 983-989.
12. Tingley, D., The normal structure of James quasi reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95-100.

Department of Mathematics, The University of Newcastle, NSW 2308, AUSTRALIA

