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Abstract 

For an operator on  a Hilbert space, points in the closure of its numerical range are characterized as 
either extreme, non-extreme b o u n d a ~ ,  or interior in terms of various associated sets of bounded 
sequences of vectors. These generalize similar results due to Embry, for points in the numerical rangc. 
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1. Introduction 

Let T be an operator (that is, a bounded linear transformation) on a complex 
Hilbert space H with inner product ( , ) and associated norm I 11 .  It is well known 
that the numerical range 

W(T)  = {(Tx, x ) :  I I x I I  = 1, x E H )  
\ 

is a convex subset of the complex plane. Denotsthe closure of W(T) by W(T)-. 
Theorem 1 of M. R. Embry (1970) characterizes every point z of W ( T )  as either 
an extreme point, a non-extreme boundary point or an interior point in terms of 
the subset MZ(T)  and its linear span, where 

2 
M:(T) = j x  E H: (TX. x)  - zllxl = 0) ( 2  E w(T)) .  1 

[ This theorem, though very interesting, does not characterize the unattained 

1 boundary points of the numerical range. In this note we attempt to fill this gap by 
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a generalization which can be applied to every point of W ( T ) - .  For any 
z E W ( T ) - ,  let 

N = ( T )  = U { N , ( T ) :  z E L n w ( T ) - )  

and 

where l , (H)  is the set of all bounded sequences of vectors from H and L is a line, 
of support for W ( T ) - .  Let y N Z ( T )  be the linear span of N,(T) .  Since N Z ( T )  is 
homogeneous, y N z ( T )  = N , ( T )  + N,(T) .  It is readily seen that N L ( T )  is a 
subspace (Majumdar and Sims (to appear)). 

2. Basic lemmas 

In order to establish our characterization for points of W ( T )  we need the 
following two lemmas. The first, stated without proof, is an easy corollary to 
Lemma 3 of Majumdar and Sims (to appear). 

LEMMA 1. If b is an extreme point of W ( T ) -  and L is a line of support for W ( T )  
passing though b, then lim((T - b ) x , ,  y,) = 0 and lim((T - b)y,,.  x , , )  = 0 for all 

( x , )  E N,(T> and ( Y , )  E NL(T) .  

LEMMA 2. Let z be in the interior o f a  line segment lying in W ( T ) -  with endpoints 
a and b.  Then N,'(T) c yN,(T).  

* 
PROOF. Without loss of generality we may take a = 1, b = 0 and ( x , )  E N ; ( T )  

to have Ilx,ll = 1. Let ( y , )  E N,(T)  be such that llynll = 1 and Re(Im Tx, ,  y I l )  = 

0. For any bounded sequence (r,,), let h ,  = r,x, + y ;  then we have (Im Th,, h , )  
+ 0. We show the existence of two such distinct sequences (r,) for which 

( 1 )  ( ~ e  ~ h , ,  h,,) - zllh,l12 = 0 
for all sufficiently large n.  The equations in r, given by (1)  are equivalent to 

r:(1 - z + e n )  + 2rn R ~ ( ( R ~ T  - z ) x , , ,  y , )  + ( E :  - z )  = 0 

where E,, = (Re Tx,,  .x,) - 1 and E L  = (Re Ty,, y,), both of whlch tend to zero. 
Thus the equations in ( 1 )  are of the form ~ , r :  + B,r, + C, = 0 where A,,, B,, C;, 
are real numbers independent of r,,. 
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Let D,, = B: - 4A,Cn, then 

a here 6, - 0. Hence there are positive constants a,  ,B such that for all sufficiently 
large n, a < A,, D,, < ,B and IB,( < ,B. This shows the existence of two distinct 
.sequences solving (1) both of whlch are bounded and whose differences d, 
- 

= D, /A,, are eventually bounded away from zero. Thus we have for both these 
sequences that h, E N,(T). Subtraction and the fact that d, is uniformly bounded 
away from zero gives (s,,) E yN,(T). 

REMARK. A simplified version of the above argument applied to a pair of points 
a .  b lying in a line segment in W(T) shows the existence of a real number r and a 
vector y such that a = (Tx, x) ,  b = (Ty, y ) ,  llxll = llyll = 1 and (T(rx + y).  rx 
+ y)/llrx + y 1 1 2  = ta + (1 - t )b ,  0 < t < 1, yielding the convexity of W(T). In 
contrast with the proof of convexity given by Halmos (1967). this argument gives 
two explicit values of r. 

3. Characterization of W( T ) 

THEOREM 3. Even! element z of W(T)- can be characterized asfollows. 
(i) z is an extreme point of W(T)- ifand only ifN,(T) is a subspace. 

(ii) If z is a nonextreme boundary point of W(T)- and L the line of support for 
W( T )  passing through z, then (a) yN,(T) = NL(T) + NZ(T) and (b) NL(T) = 

I , (H)  ifand only if W(T)-c L. 
(iii) If W ( T )  is not a straight line segment, then z is an interior point of W ( T )  if 

and only ifNUf(T) c yN,(T)for all z E W(T)-. 

PROOF. (i) See Das and Craven (1983) and also Majumdar and Sims (to 
appear). Also note that the result N,(T) is a subspace when z is an extreme point 
of W(T)- can be deduced as a corollary to Lemma 1. Homogeneity being 
obvious, we prove linearity. Let (xj;"). (s,(:') E N,(T). Thus (x!:'), (xi2)) E NL(T) 
where L is a line of support for W(T) passing through z .  But N,(T) is a 
subspace. So (xi1) + xi2)) E NL(T). Now since (xL1') E N,(T), I = 1.2 and (x!" 
+ xi2)) E NL(T), by Lemma 1 we have lim((T - z)xL1), xL1) + xA2)) = 0 for 

I = 1 , 2  and hence lim((T - z)(xL1) + xi2)), xA1) + xk2') = 0 as required. 
(11) (a) We first show Nu(T) c yN,(T) for each a E L n W(T)-. Without loss 

of generality we may take L as the real axis and Im W(T) 2 0. Let (x,) E Nu(T) 
and ( y,) E N,(T), 1 1  y,(l = 1 where b E L is the extreme point of W(T)-  such that 
( ( 1  - :)/(z - b)  3 0. Then (y , )  can be chosen so that Re(y,, x,) = 0 and 
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Lemma 1 gives Re(Ty,, x,) -, 0. Also Im W(T) 2 0 implies Im Tv, - 0. Let 
r, = [(a - z)/(z - b)]illx,il. Then easy calculations show that with our assump- 
tions (T(x, + r,y,,), x, -t r,.v,) - z J J x ,  f r,y(/2 -, 0. That is (x,  f r,y,) E 

7 
N,(T). As in the proof of Lemma 2, adding these two sequences and using the 
homogeneity of Nz(T) we have (x,) E yN,(T). Thus N,(T) c yN,(T) for all 

1 
a E L n W(T)- and so we have N ~ , ( T )  c yN,(T). Since N,(T) c N L ( T )  c 
yN,(T), by taking the vector sum of Nz(T) with each of these subsets we obtain 
yN,(T) = NL,(T) + N,(T). 

(b) As before, if we take L as the real axis, we have NL(T) = {(x,) E I,(H): 
Im(Tx,, x,) + 0). Now if W(T)-c L, (x,,) E l , (H)  implies Im(Tx,,, x,,) = 0 
and so (x,) E NL(T). Hence NL,(T) = I,(H). Conversely if W(T)- is not a 
subset of L, there exists (x,,) E I,(H), llxnll = 1 such that Im(Tx,,, x,) does not..,. 
tend to zero, or equivalently, (x,,) E NL,(T). Hence NL(T) # I,(H). 

(iii) If z is an interior point of W(T)-, by Lemma 2, N,'(T) c yN,(T) whenever 
a E W(T)-. On the other hand, if z is a boundary point of W(T)-, without loss 
of generality we may take L, the line of support for W(T) passing through z, as 
the real axis, in which case, N,(T) = {(x,) E I,(H): Im(Tx,,, x,) + 0). Thus 
yN,(T) c NL,(T) since NL(T) is a subspace, but as W(T )- does not lie in L,  there 
exists an a E W(T) such that Im a # 0. Hence N,'(T) is not a subset of yN,(T). 
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