SUBSETS CHARACTERIZING THE CLOSURE OF THE NUMERICAL RANGE

K. C. DAS, S. MAJUMDAR and BRAILEY SIMS

(Received 28 May 1984)

Communicated by J. H. Chabrowski

Abstract

For an operator on a Hilbert space, points in the closure of its numerical range are characterized as either extreme, non-extreme boundary, or interior in terms of various associated sets of bounded sequences of vectors. These generalize similar results due to Embry, for points in the numerical rangc.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 12

1. Introduction

Let T be an operator (that is, a bounded linear transformation) on a complex Hilbert space H with inner product \langle,$\rangle and associated norm ||||. It is well known$ that the numerical range

$$
W(T)=\{\langle T x, x\rangle:\|x\|=1, x \in H\}
$$

- is a convex subset of the complex plane. Denote the closure of $W(T)$ by $W(T)^{-}$. Theorem 1 of M. R. Embry (1970) characterizes every point z of $W(T)$ as either an extreme point, a non-extreme boundary point or an interior point in terms of the subset $M_{z}(T)$ and its linear span, where

$$
M_{z}(T)=\left\{x \in H:\langle T x, x\rangle-z\|x\|^{2}=0\right\} \quad(z \in W(T))
$$

This theorem, though very interesting, does not characterize the unattained boundary points of the numerical range. In this note we attempt to fill this gap by

[^0]a generalization which can be applied to every point of $W(T)^{-}$. For any $z \in W(T)^{-}$, let
\[

$$
\begin{aligned}
& N_{z}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2} \rightarrow 0\right\}, \\
& N_{z}^{\prime}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H):\left\langle T x_{n}, x_{n}\right\rangle /\left\|x_{n}\right\|^{2} \rightarrow z\right\}, \\
& N^{L}(T)=\bigcup_{z}\left\{N_{z}(T): z \in L \cap W(T)^{-}\right\}
\end{aligned}
$$
\]

and

$$
N_{L}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H): \inf _{z \in L}\left|\left\langle T x_{n}, x_{n}\right\rangle-z\left\|x_{n}\right\|^{2}\right| \rightarrow 0\right\}
$$

where $l_{\infty}(H)$ is the set of all bounded sequences of vectors from H and L is a line of support for $W(T)^{-}$. Let $\gamma N_{z}(T)$ be the linear span of $N_{z}(T)$. Since $N_{z}(T)$ is homogeneous, $\gamma N_{z}(T)=N_{z}(T)+N_{z}(T)$. It is readily seen that $N_{L}(T)$ is a subspace (Majumdar and Sims (to appear)).

2. Basic lemmas

In order to establish our characterization for points of $W(T)^{-}$we need the following two lemmas. The first, stated without proof, is an easy corollary to Lemma 3 of Majumdar and Sims (to appear).

Lemma 1. If b is an extreme point of $W(T)^{-}$and L is a line of support for $W(T)$ passing though b, then $\lim \left\langle(T-b) x_{n}, y_{n}\right\rangle=0$ and $\lim \left\langle(T-b) y_{n}, x_{n}\right\rangle=0$ for all $\left(x_{n}\right) \in N_{b}(T)$ and $\left(y_{n}\right) \in N_{L}(T)$.

Lemma 2. Let z be in the interior of a line segment lying in $W(T)^{-}$with end points a and b. Then $N_{a}^{\prime}(T) \subset \gamma N_{z}(T)$.

Proof. Without loss of generality we may take $a=1, b=0$ and $\left(x_{n}\right) \in N_{1}^{\prime}(T)$ to have $\left\|x_{n}\right\|=1$. Let $\left(y_{n}\right) \in N_{0}(T)$ be such that $\left\|y_{n}\right\|=1$ and $\operatorname{Re}\left\langle\operatorname{Im} T x_{n}, y_{n}\right\rangle=$ 0 . For any bounded sequence $\left(r_{n}\right)$, let $h_{n}=r_{n} x_{n}+y$; then we have $\left\langle\operatorname{Im} T h_{n}, h_{n}\right\rangle$ $\rightarrow 0$. We show the existence of two such distinct sequences $\left(r_{n}\right)$ for which

$$
\begin{equation*}
\left\langle\operatorname{Re} T h_{n}, h_{n}\right\rangle-z\left\|h_{n}\right\|^{2}=0 \tag{1}
\end{equation*}
$$

for all sufficiently large n. The equations in r_{n} given by (1) are equivalent to

$$
r_{n}^{2}\left(1-z+\varepsilon_{n}\right)+2 r_{n} \operatorname{Re}\left\langle(\operatorname{Re} T-z) x_{n}, y_{n}\right\rangle+\left(\varepsilon_{n}^{\prime}-z\right)=0
$$

where $\varepsilon_{n}=\left\langle\operatorname{Re} T x_{n}, x_{n}\right\rangle-1$ and $\varepsilon_{n}^{\prime}=\left\langle\operatorname{Re} T y_{n}, y_{n}\right\rangle$, both of which tend to zero. Thus the equations in (1) are of the form $A_{n} r_{n}^{2}+B_{n} r_{n}+C_{n}=0$ where A_{n}, B_{n}, C_{n} are real numbers independent of r_{n}.

Let $D_{n}=B_{n}^{2}-4 A_{n} C_{n}$, then

$$
\left.D_{n}=4\left[\operatorname{Re}\langle\operatorname{Re} T-z) x_{n}, y_{n}\right\rangle\right]^{2}+4 z(1-z)+\delta_{n}
$$

where $\delta_{n} \rightarrow 0$. Hence there are positive constants α, β such that for all sufficiently large $n, \alpha \leqslant A_{n}, D_{n} \leqslant \beta$ and $\left|B_{n}\right| \leqslant \beta$. This shows the existence of two distinct sequences solving (1) both of which are bounded and whose differences d_{n} $=\overline{D_{n}} / A_{n}$ are eventually bounded away from zero. Thus we have for both these sequences that $h_{n} \in N_{z}(T)$. Subtraction and the fact that d_{n} is uniformly bounded away from zero gives $\left(x_{n}\right) \in \gamma N_{z}(T)$.

Remark. A simplified version of the above argument applied to a pair of points a, b lying in a line segment in $W(T)$ shows the existence of a real number r and a vector y such that $a=\langle T x, x\rangle, b=\langle T y, y\rangle,\|x\|=\|y\|=1$ and $\langle T(r x+y), r x$ $+y\rangle /\|r x+y\|^{2}=t a+(1-t) b, 0<t<1$, yielding the convexity of $W(T)$. In contrast with the proof of convexity given by Halmos (1967), this argument gives two explicit values of r.

3. Characterization of $W(T)$

Theorem 3. Every element z of $W(T)^{-}$can be characterized as follows.
(i) z is an extreme point of $W(T)^{-}$if and only if $N_{z}(T)$ is a subspace.
(ii) If z is a nonextreme boundary point of $W(T)^{-}$and L the line of support for $W(T)$ passing through z, then (a) $\gamma N_{z}(T)=N_{L}(T)+N_{z}(T)$ and (b) $N_{L}(T)=$ $l_{x}(H)$ if and only if $W(T)^{-} \subset L$.
(iii) If $W(T)^{-}$is not a straight line segment, then z is an interior point of $W(T)^{-}$if and only if $N_{a}^{\prime}(T) \subset \gamma N_{z}(T)$ for all $z \in W(T)^{-}$.

Proof. (i) See Das and Craven (1983) and also Majumdar and Sims (to appear). Also note that the result $N_{z}(T)$ is a subspace when z is an extreme point of $W(T)^{-}$can be deduced as a corollary to Lemma 1 . Homogeneity being obvious, we prove linearity. Let $\left(x_{n}^{(1)}\right),\left(x_{n}^{(2)}\right) \in N_{z}(T)$. Thus $\left(x_{n}^{(1)}\right),\left(x_{n}^{(2)}\right) \in N_{L}(T)$ where L is a line of support for $W(T)$ passing through z. But $N_{L}(T)$ is a subspace. So $\left(x_{n}^{(1)}+x_{n}^{(2)}\right) \in N_{L}(T)$. Now since $\left(x_{n}^{(1)}\right) \in N_{z}(T), i=1.2$ and $\left(x_{n}^{(1)}\right.$ $\left.+x_{n}^{(2)}\right) \in N_{L}(T)$, by Lemma 1 we have $\lim \left\langle(T-z) x_{n}^{(1)}, x_{n}^{(1)}+x_{n}^{(2)}\right\rangle=0$ for $i=1,2$ and hence $\lim \left\langle(T-z)\left(x_{n}^{(1)}+x_{n}^{(2)}\right), x_{n}^{(1)}+x_{n}^{(2)}\right\rangle=0$ as required.
(ii) (a) We first show $N_{a}(T) \subset \gamma N_{z}(T)$ for each $a \in L \cap W(T)^{-}$. Without loss of generality we may take L as the real axis and $\operatorname{Im} W(T) \geqslant 0$. Let $\left(x_{n}\right) \in N_{a}(T)$ and $\left(y_{n}\right) \in N_{b}(T),\left\|y_{n}\right\|=1$ where $b \in L$ is the extreme point of $W(T)^{-}$such that $(a-z) /(z-b) \geqslant 0$. Then $\left(y_{n}\right)$ can be chosen so that $\operatorname{Re}\left\langle y_{n}, x_{n}\right\rangle=0$ and

Lemma 1 gives $\operatorname{Re}\left\langle T y_{n}, x_{n}\right\rangle \rightarrow 0$. Also $\operatorname{Im} W(T) \geqslant 0$ implies $\operatorname{Im} T y_{n} \rightarrow 0$. Let $r_{n}=[(a-z) /(z-b)]^{\frac{1}{2}}\left\|x_{n}\right\|$. Then easy calculations show that with our assumptions $\left\langle T\left(x_{n} \pm r_{n} y_{n}\right), x_{n} \pm r_{n} y_{n}\right\rangle-z\left\|x_{n} \pm r_{n} y\right\|^{2} \rightarrow 0$. That is $\left(x_{n} \pm r_{n} y_{n}\right) \in$ $N_{z}(T)$. As in the proof of Lemma 2, adding these two sequences and using the homogeneity of $N_{z}(T)$ we have $\left(x_{n}\right) \in \gamma N_{z}(T)$. Thus $N_{a}(T) \subset \gamma N_{z}(T)$ for all $a \in L \cap W(T)^{-}$and so we have $N^{L}(T) \subset \gamma N_{z}(T)$. Since $N_{z}(T) \subset N^{L}(T) \subset$ $\gamma N_{z}(T)$, by taking the vector sum of $N_{z}(T)$ with each of these subsets we obtain $\gamma N_{z}(T)=N^{L}(T)+N_{z}(T)$.
(b) As before, if we take L as the real axis, we have $N_{L}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H)\right.$: $\left.\operatorname{Im}\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0\right\}$. Now if $W(T)^{-} \subset L,\left(x_{n}\right) \in l_{\infty}(H)$ implies $\operatorname{Im}\left\langle T x_{n}, x_{n}\right\rangle=0$ and so $\left(x_{n}\right) \in N_{L}(T)$. Hence $N_{L}(T)=l_{\infty}(H)$. Conversely if $W(T)^{-}$is not a subset of L, there exists $\left(x_{n}\right) \in l_{\infty}(H),\left\|x_{n}\right\|=1$ such that $\operatorname{Im}\left\langle T x_{n}, x_{n}\right\rangle$ does not. tend to zero, or equivalently, $\left(x_{n}\right) \notin N_{L}(T)$. Hence $N_{L}(T) \neq l_{\infty}(H)$.
(iii) If z is an interior point of $W(T)^{-}$, by Lemma $2, N_{a}^{\prime}(T) \subset \gamma N_{z}(T)$ whenever $a \in W(T)^{-}$. On the other hand, if z is a boundary point of $W(T)^{-}$, without loss of generality we may take L, the line of support for $W(T)$ passing through z, as the real axis, in which case, $N_{L}(T)=\left\{\left(x_{n}\right) \in l_{\infty}(H): \operatorname{Im}\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0\right\}$. Thus $\gamma N_{z}(T) \subset N_{L}(T)$ since $N_{L}(T)$ is a subspace, but as $W(T)^{-}$does not lie in L, there exists an $a \in W(T)$ such that $\operatorname{Im} a \neq 0$. Hence $N_{a}^{\prime}(T)$ is not a subset of $\gamma N_{z}(T)$.

References

K. C. Das and B. D. Craven (1983), 'Linearity and weak convergence on the boundary of numerical range', J. Austral. Math. Soc. Ser. A 35, 221-226.
M. R. Embry (1970), 'The numerical range of an operator', Pacific J. Math. 32, 647-650.
M. R. Embry (1975), 'Orthogonality and the numerical range.' J. Math. Soc. Japan 27, 405-411.
P. R. Halmos (1967), Hilbert space problem book (Van Nostrand, New York).
S. Majumdar and B. Sims (to appear), 'Subspaces associated with boundary points of the numericarange', J. Austral. Math. Soc. Ser. A.
J. G. Stampfil (1966), 'Extreme points of the numerical range of a hyponormal operator', Michigan Math.J. 13, 87-89.
K. C. Das

Indian Institute of Technology
Karagpur 721302
India
S. Majumdar and Brailey Sims

University of New England Armidale, N.S.W. 2351

Australia

[^0]: © 1986 Australian Mathematical Society $0263-6115 / 86 \$ \mathrm{~A} 2.00+0.00$

