Douglas-Rachford; a very versatile algorithm

Brailey Sims CARMA, University of Newcastle, AUSTRALIA

ACFPTO2018, Chiang Mai, 16-18 July 2018

https://carma.newcastle.edu.au/brailey/

Outline I

Feasibility Problems and projection methods

- 2 sets
- Cutter methods
- Relaxations
- N sets

Convex constraints - evolution

of a theory

- Iterated resolvent operators (Proximal point algorithms)
- Feasibility as minimization
- Key ingredients for the proofs

Connection with ADMM

4 Nonconvex Setting

- History and independent discovery
- Advantages
- A sampling of topics to which D-R has been successfully applied
- 5 One application in more detail: ODE BVPs
 - BVPs and formulation as feasibility problems
 - Illustrative example

References

Much of this presentation is based on material from:

 Scott Lindstrom and BS, "Sixty Years of Douglas-Rachford," (2018); in preparation for the special issue of J. Aust. Maths. Soc. dedicated to Jonathan M. Borwein - as is this talk.

Feasibility Problems and projection methods Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting

2 sets One application in more detail: ODE BVPs References

2-set feasibility problems

- For two closed constraint sets A and B in a Hilbert space H, find a feasible point $x \in A \cap B$
- When the nearest point projection onto each set is readily computed, the application of a projection algorithm is a popular method of solution.
- Alternating projections [AP], introduced by J. von Neumann in 1933, is the oldest such method.
- Another effective method [D-R], on which we focus, was introduced by J. Douglas and H. H. Rachford in 1956.

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References

The players

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

Projection Methods Alternating Projections [AP] vs. Douglas-Rachford [D-R]

Figure: AP; $T_{A,B} := P_B \circ P_A$ Figure: D-R; $T_{A,B} := \frac{1}{2} (Id + R_B R_A)$

• Projection algorithm: from prescribed x_0 iterate $x_{n+1} = T_{A,B}(x_n)$, then (hopefully) $x = P_A(\{weak-\} \lim_n x_n) \in A \cap B$.

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References

AP versus D-R

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

Can Or Can't

- The efficacy of these methods depends on the ease with which projections onto the constraint sets can be computed,
- HOWEVER:

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

Cutter methods - using projections to a separating hyperplane

 In cases where projection onto the set S is difficult to compute we may instead try projecting onto a separating hyperplane, H_S.

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

Subgradient Projections

In the special case when the constraint set S is a level set of a convex function f we can try projecting onto the supporting hyperplane to epi(f) at (x₀, f(x₀)).

2 sets Cutter methods Relaxations N sets

Reflection Parameters (relaxed projections)

We could also consider using more general relaxed projections: $R_{H_S}(x)^{(\gamma)} = (2 - \gamma)(P_{H_S}(x) - x) + x.$

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

Or, relaxing the averaging step; or both - but we won't.

•
$$T_{A,B}^{(\lambda)} := (1 - \lambda)Id + \lambda R_{H_B}R_{H_A}$$

• Note: $T_{A,B}^{(0)} = \text{Id}$
• and $T_{A,B}^{(1)} = R_BR_A$

Convex constraints - evolution of a theory Connection with ADMM Nonconvex Setting One application in more detail: ODE BVPs References 2 sets Cutter methods Relaxations N sets

From 2 sets to N sets.

• We can use Douglas-Rachford on a feasibility problem involving N sets; $\Omega_1 \dots \Omega_N$, to find $x \in \bigcap_{k=1}^N \Omega_k$ by utilizing Pierra's product space method [21]; that is, by applying the algorithm in \mathcal{H}^N to the two sets

• $A := \Omega_1 \times \cdots \times \Omega_N$

• $B := \{x = (y_1, \dots, y_N) | y_1 = y_2 = \dots = y_N\}$

- Nicknamed "divide and concur" by Simon Gravel and Veit Elser (the latter credits the former for the name) [17].
 - Reflection in A is the "divide" step entailing reflections in each of the individual constraint sets (eminently parallelizable).
 - "Concur" is the step of reflecting in the agreement (diagonal) set *B*.
- Other methods include cyclically anchored variant (CADRA)
 [5] and Borwein-Tam method (cyclic D-R) [10].

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

Zeros of sums of maximally monotone operators

Theorem 1 (Lions & Mercier)

In [20] Lions and Mercier showed that when A, B are maximal monotone operators on a H, and A + B is also maximal monotone, then for all non-zero λ and

$$T_{\mathcal{A},\mathcal{B}} \times := J_{\mathcal{B}}^{\lambda} (2J_{\mathcal{A}}^{\lambda} - I) \times + (I - J_{\mathcal{B}}^{\lambda}) \times, \qquad (1)$$

the sequence of iterates, $x_{n+1} = T_{\mathcal{A},\mathcal{B}}x_n$, converges weakly to some $v \in H$, such that $J^{\lambda}_{\mathcal{A}}v$ is a zero of $\mathcal{A} + \mathcal{B}$. Here, $J^{\lambda}_{\mathcal{F}} := (\mathrm{Id} + \lambda \mathcal{F})^{-1}$ is the resolvent operator for $\lambda \mathcal{F}$

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

P-L Lions and B. Mercier

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

View from convex optimization

• If $\mathcal{A} := \partial f$ and $\mathcal{B} := \partial g$ for convex functions f, g, then $0 \in (\partial f + \partial g)u$ means u solves the minimization problem

Find $u \in \operatorname*{argmin}_{x \in X} (f + g)(x)$.

• If, additionally, $f := \iota_A$ and $g := \iota_B$ are indicator functions; recall

$$\iota_c: x \mapsto \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise,} \end{cases}$$

then $u \in \operatorname{argmin}(f + g)$ implies $u \in A \cap B$ (assuming feasibility).

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

How a minimization algorithm becomes a projection algorithm

- Phrasing the feasibility problem for A and B as a minimality problem in this way leads us to apply Lions-Mercier's result with $\mathcal{A} := \partial f$ and $\mathcal{B} := \partial g$ where $f := \iota_A$ and $g := \iota_B$ in which case,
 - **(**) $\partial f = N_A$, the normal cone operator

$$x \mapsto egin{cases} \{y | (y, a - x) \leq 0 ext{ for all } a \in A\} & ext{if } x \in C \\ \emptyset & ext{otherwise,} \end{cases}$$

$$\begin{array}{l} \textcircled{0}{2} & \partial g = N_B, \\ \textcircled{0}{3} & J_{\mathcal{A}} := (\mathrm{Id} + \mathcal{A})^{-1} = (\mathrm{Id} + \partial_f)^{-1} = (\mathrm{Id} + N_A)^{-1} = P_A, \\ \textcircled{0}{3} & J_{\mathcal{B}} := (\mathrm{Id} + \mathcal{B})^{-1} = (\mathrm{Id} + \partial_g)^{-1} = (\mathrm{Id} + N_B)^{-1} = P_B, \end{array}$$

• and in Lions-Mercier's algorithm,

$$T_{\mathcal{A},\mathcal{B}} = J_{\mathcal{B}}^{\lambda}(2J_{\mathcal{A}}^{\lambda} - I) + (I - J_{\mathcal{A}}^{\lambda}) = \frac{1}{2}(Id + R_{B}R_{A})$$

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

Later developments

For $T_{A,B} = \frac{1}{2}R_BR_A + \frac{1}{2}\text{Id} = \frac{1}{2}(2P_B - \text{Id}) \circ (2P_A - \text{Id}) + \frac{1}{2}\text{Id}$:

- Bauschke, Combettes, and Luke [3] were able to give a direct proof that the iterates weakly converge, avoiding the need that $\partial f + \partial B$ be maximal monotone in the feasibility setting.
- The requirement A + B be maximally monotone was later relaxed outside the feasibility setting by Svaiter [23].

B, C and L

terated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

Definition 2 (Nonexpansivity conditions)

Let $D \subset H$ be nonempty and let $T : D \rightarrow H$. Then T is

1 *nonexpansive* if it is Lipschitz continuous with constant 1:

$$(\forall x, y \in D) \quad \|T(x) - T(y)\| \le \|x - y\|;$$

firmly nonexpansive if

$$(\forall x, y \in D) ||T(x) - T(y)||^2 + ||(Id - T)(x) - (Id - T)(y)||^2 \le ||x - y||^2;$$

Key facts:

1 Projections onto a closed convex set in a Hilbert space are firmly nonexpansive.

2 T is nonexpansive if and only if $\frac{1}{2}(Id + T)$ is firmly nonexpansive

Iterated resolvent operators (Proximal point algorithms) Feasibility as minimization Key ingredients for the proofs

Fejér Monotonicity

Definition 3 (Fejér Monotone)

Where $S \subset H$ is nonempty, the sequence x_n is said to be Fejér *monotone* with respect to S if

$$(\forall y \in S) \ (\forall n \in \mathbb{N}) \ \|x_{n+1} - y\| \le \|x_n - y\|.$$

See, for example, [2].

Proposition 4

If D is a nonempty subset of H and $T : D \to D$ is nonexpansive with $\operatorname{Fix} T \neq \emptyset$ then the sequence $x_{n+1} = T(x_n)$ with $x_0 \in D$ is Fejér monotone with respect to $\operatorname{Fix} T$.

Connection of D-R with ADMM through Duality

• Where F and G are convex, proper, lsc and B is linear, consider the primal problem

$$\mathbf{p} := \inf_{v \in V} \left\{ F(Bv) + G(v) \right\}.$$

 Under sufficient qualification conditions, we can solve p by solving

$$\mathbf{d} := \inf_{v^* \in V^*} \left\{ G^*(-B^*v^*) + F^*(v^*) \right\}.$$

See, for example, Borwein's & Lewis' *Convex Analysis and Nonlinear Optimization* [7, thm 3.3.5].

• Applying DR to **d** is equivalent to applying Uzawa's alternating direction method of multipliers [ADMM] to **p**. See Gabay's 1983 book chapter [16] and the survey [19].

History and independent discovery Advantages A sampling of topics to which D-R has been successfully applied

Nonconvex setting: History and independent discovery

- Fienup independently discovered DR for nonconvex feasibility problems (phase retrieval) [15] and it has been popularized by Veit Elser.
- Other names, special instances, and generalizations:
 - Hybrid Input-Output algorithm (HIO), Fienup's variant, the "difference map" [14]
 - Averaged alternating reflections [4]
 - Relaxed reflect-reflect [13]

History and independent discovery Advantages A sampling of topics to which D-R has been successfully applied

Advantages

DR and AP for a doubleton $A = \{a_1, a_2\}$ and line B in \mathbb{R}^2

- Over-relaxed projection methods tend to explore the space more than AP
- Out-of-the-box solver: need only to be able to compute projections and can apply to any constraint satisfaction problem.

History and independent discovery Advantages A sampling of topics to which D-R has been successfully applied

Theory is scarce

- Although often found to work well, theoretical underpinning for projection methods in the presence of nonconvex constraint sets is sadly lacking.
- Projections onto nonconvex sets are often set valued, and need no longer be firmly nonexpansive, or even nonexpansive.
- Local convergence established in certain instances (in particular near isolated feasible points for intersections of curves and hypersurfaces in ℝⁿ) using theory of local asymptotic stability of almost linear discrete dynamical systems, and more globally utilizing Lyapunov functions. See for example; [9], [6], [8], [18], and [11]

History and independent discovery Advantages A sampling of topics to which D-R has been successfully applied

Discrete/Combinatorial settings:

- Latin squares
- sudoku puzzles
- nonograms
- matrix completion
 - Hadamard matrices
 - Rank minimization
 - distance matrices
- matrix decomposition
- Wavelets with constraints
- 3-SAT
- graph coloring
 - edge colorings
 - 8 queens, 3-SAT, Hamiltonian paths
- Bit retrieval
- doubletons and lines (theory)

Connected constraints:

- Phase retrieval
- Intersections of plane curves and roots of functions
- solving nonlinear systems of equations
- Boundary value ODEs
- Regularity and transversality conditions (theory)

History and independent discovery Advantages A sampling of topics to which D-R has been successfully applied

Two applications where the constraints are discrete finite sets

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Figure: Solving sudoku puzzles -Elser [13]. Image source Wikimedia Commons [?sudokupicture]

Figure: Solving incomplete Euclidean distance matrices for protein reconstruction [1].

BVPs and formulation as feasibility problems Illustrative example

Nonlinear ordinary differential equations with boundary values [18]

• Consider the problem

y'' = f(y', y, t) for $a \le t \le b$ with $y(a) = \alpha, y(b) = \beta$

- For $N \in \mathbb{N}$, let h := (b a)/(N + 1), and $t_i := a + hi$, for $i = 0, 1, \dots, N + 1$.
- So, t_1, \dots, t_N are a set of equally spaced nodes in [a, b].
- Using centered differences we can obtain a numerical approximation to the solution of the BVP by taking $y(t_i) = \omega_i$, where $\omega_0 = \alpha$, $\omega_{N+1} = \beta$ and for $i = 1, \dots, N$

$$rac{\omega_{i-1}-2\omega_i+\omega_{i+1}}{h^2} \;=\; f\left(t_i,\omega_i,rac{\omega_{i+1}-\omega_{i-1}}{2h}
ight)\; ext{eqn(i)}$$

BVPs and formulation as feasibility problems Illustrative example

Reformulation as a feasibility problem

Let

$$\Omega_i := \{ \omega = (\omega_1, \dots, \omega_N) | \omega \text{ satisfies } eqn(i) \}$$

then finding

$$\omega \in \cap_{k=1}^{N} \Omega_k$$

provides an approximate numerical solution to the BVP..

BVPs and formulation as feasibility problems Illustrative example

Computing projections

• For
$$u := (u_0, u_1, \cdots, u_{N+1})$$
 with $u_0 = \alpha$ and $u_{N+1} = \beta$,

• let
$$H_i(u) = -u_{i-1} + 2u_i - u_{i+1} + h^2 f\left(t_i, u_i, \frac{u_{i+1} - u_{i-1}}{2h}\right)$$
,

• then projection $z := P_{\Omega_i}(v)$ satisfies the Lagrangian:

$$H_i(z) = 0, \quad v - z + \lambda \nabla H_i(z) = 0.$$

• so z can be computed by a steepest descent method or by Newton's method.

BVPs and formulation as feasibility problems Illustrative example

Example: Heaviside

We consider

$$y''(x) = \begin{cases} -1 & y(x) < 0\\ 1 & y(x) \ge 0, \end{cases}$$
(3)

with the boundary conditions y(-1) = -1 and y(1) = 1, which admits the unique continuous solution:

$$y(x) = \begin{cases} -\frac{1}{2}x^2 + \frac{1}{2}x & x < 0\\ \frac{1}{2}x^2 + \frac{1}{2}x & x \ge 0. \end{cases}$$
(4)

BVPs and formulation as feasibility problems Illustrative example

Example: Heaviside

Figure: Newton's Method cycles for certain starting points (left) while DR converges (right).

BVPs and formulation as feasibility problems Illustrative example

Figure: Relative error and error from true solution for converging DR iterates for an ellipse and line.

- The similarities to the previous figure are unmistakable,
- illustrating a frequent feature of the behaviour of D-R.

BVPs and formulation as feasibility problems Illustrative example

Thank You!

References I

- Francisco J. Aragón Artacho, Jonathan M. Borwein, and Matthew K. Tam, *Douglas-Rachford feasibility methods for matrix completion problems*, ANZIAM J. 55 (2014), no. 4, 299–326. MR3257300
- [2] Heinz H. Bauschke and Patrick L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Second, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2017. With a foreword by Hédy Attouch. MR3616647
- [3] Heinz H. Bauschke, Patrick L. Combettes, and D. Russell Luke, *Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization*, J. Opt. Soc. Amer. A **19** (2002), no. 7, 1334–1345. MR1914365
- [4] _____, Finding best approximation pairs relative to two closed convex sets in Hilbert spaces, J. Approx. Theory 127 (2004), no. 2, 178–192. MR2058156

References II

- [5] Heinz H Bauschke, Dominikus Noll, and Hung M Phan, Linear and strong convergence of algorithms involving averaged nonexpansive operators, Journal of Mathematical Analysis and Applications 421 (2015), no. 1, 1–20.
- [6] Joel Benoist, *The douglas-rachford algorithm for the case of the sphere and the line*, J. Glob. Optim. **63** (2015), 363–380.
- [7] Jonathan M. Borwein and Adrian S. Lewis, *Convex analysis and nonlinear optimization: Theory and examples*, 2nd ed., Springer, 2006.
- [8] Jonathan M. Borwein, Scott B. Lindstrom, Brailey Sims, Matthew Skerritt, and Anna Schneider, *Dynamics of the douglas-rachford method* for ellipses and p-spheres, Set-Valued Anal. (2016), 1–19.
- [9] Jonathan M. Borwein and Brailey Sims, *The douglas-rachford algorithm in the absence of convexity*, Fixed point algorithms for inverse problems in science and engineering, 2011, pp. 93–109. MR2858834

References III

- [10] Jonathan M. Borwein and Matthew K. Tam, A cyclic douglas-rachford iteration scheme, J. Optim. Theory Appl. 160 (2014), 1–29.
- [11] Minh N. Dao and Matthew .K. Tam, A lyapunov-type approach to convergence of the douglas-rachford algorithm (2017).
- [12] Jonathan Eckstein and Benar Fux Svaiter, General projective splitting methods for sums of maximal monotone operators, SIAM Journal on Control and Optimization 48 (2009), no. 2, 787–811.
- [13] Veit Elser, Ti-Yen Lan, and Tamir Bendory, *Benchmark problems for phase retrieval*, arXiv preprint arXiv:1706.00399 (2017).
- [14] Veit Elser, I. Rankenburg, and P. Thibault, *Searching with iterated maps*, Proc. Natl. Acad. Sci. USA **104** (2007), no. 2, 418–423.
- [15] James R Fienup, *Phase retrieval algorithms: a comparison*, Applied optics 21 (1982), no. 15, 2758–2769.

References IV

- [16] Daniel Gabay, Chapter ix applications of the method of multipliers to variational inequalities, Studies in mathematics and its applications, 1983, pp. 299–331.
- [17] Simon Gravel and Veit Elser, Divide and concur: A general approach to constraint satisfaction, Physical Review E 78 (2008), no. 3, 036706.
- [18] Bishnu P. Lamichhane, Scott B. Lindstrom, and Brailey Sims, Application of projection algorithms to differential equations: boundary value problems, arXiv preprint arXiv:1705.11032 (2017).
- [19] Scott B. Lindstrom and Brailey Sims, Survey: Sixty years of douglas-rachford (2018 (in preparation)).
- [20] P.-L. Lions and B. Mercier, *Splitting algorithms for the sum of two nonlinear operators*, SIAM J. Numer. Anal. **16** (1979), no. 6, 964–979. MR551319
- [21] Guy Pierra, Decomposition through formalization in a product space, Mathematical Programming 28 (1984), no. 1, 96–115.

- [22] Jonathan E Spingarn, Partial inverse of a monotone operator, Applied mathematics and optimization 10 (1983), no. 1, 247–265.
- [23] Benar F. Svaiter, On weak convergence of the douglas-rachford method, SIAM J. on Control and Opt. 49 (2011), no. 1, 280–287.