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Much of this presentation is based on material from:

1 Scott Lindstrom and BS, “Sixty Years of Douglas-Rachford,”
(2018); in preparation for the special issue of J. Aust. Maths.
Soc. dedicated to Jonathan M. Borwein - as is this talk.
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2-set feasibility problems

For two closed constraint sets A and B in a Hilbert space H,
find a feasible point x ∈ A ∩ B

When the nearest point projection onto each set is readily
computed, the application of a projection algorithm is a
popular method of solution.

Alternating projections [AP], introduced by J. von Neumann
in 1933, is the oldest such method.

Another effective method [D-R], on which we focus, was
introduced by J. Douglas and H. H. Rachford in 1956.
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Projection Methods Alternating Projections [AP] vs. Douglas-Rachford
[D-R]
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Figure: AP; TA,B := PB ◦ PA
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Figure: D-R;
TA,B := 1

2 (Id + RBRA)

Projection algorithm: from prescribed x0 iterate
xn+1 = TA,B(xn),
then (hopefully) x = PA({weak−} limn xn) ∈ A ∩ B.
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AP versus D-R
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Can 0r Can’t

The efficacy of these methods depends on the ease with which
projections onto the constraint sets can be computed,

HOWEVER:



Feasibility Problems and projection methods
Convex constraints - evolution of a theory

Connection with ADMM
Nonconvex Setting

One application in more detail: ODE BVPs
References

2 sets
Cutter methods
Relaxations
N sets

Cutter methods - using projections to a separating hyperplane

S

HS

x

PHS
x

RHS
x

In cases where projection onto the set S is difficult to
compute we may instead try projecting onto a separating
hyperplane, HS .
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Subgradient Projections

x0

In the special case when the constraint set S is a level set of a
convex function f we can try projecting onto the supporting
hyperplane to epi(f ) at (x0, f (x0)).
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Reflection Parameters (relaxed projections)

We could also consider using more general relaxed projections:
RHS

(x)(γ) = (2− γ)(PHS
(x)− x) + x .

S

HS

x

PγHS
x
RγHS

x

Figure: γ = 0
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Figure: γ = 1
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Figure: γ = 3
2
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Or, relaxing the averaging step; or both - but we won’t.

T
(λ)
A,B := (1− λ)Id + λRHB

RHA

Note: T
(0)
A,B = Id

and T
(1)
A,B = RBRA
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Figure: λ = 3
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From 2 sets to N sets.

We can use Douglas-Rachford on a feasibility problem
involving N sets; Ω1 . . .ΩN , to find x ∈ ∩Nk=1Ωk by utilizing
Pierra’s product space method [21]; that is, by applying the
algorithm in HN to the two sets

A := Ω1 × · · · × ΩN

B := {x = (y1, . . . , yN)|y1 = y2 = · · · = yN}
Nicknamed “divide and concur” by Simon Gravel and Veit
Elser (the latter credits the former for the name) [17].

Reflection in A is the “divide” step entailing reflections in each
of the individual constraint sets (eminently parallelizable).
“Concur” is the step of reflecting in the agreement (diagonal)
set B.

Other methods include cyclically anchored variant (CADRA)
[5] and Borwein-Tam method (cyclic D-R) [10].
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Zeros of sums of maximally monotone operators

Theorem 1 (Lions & Mercier)

In [20] Lions and Mercier showed that when A,B are maximal
monotone operators on a H, and A+B is also maximal monotone,
then for all non-zero λ and

TA,Bx := JλB(2JλA − I )x + (I − JλB)x , (1)

the sequence of iterates, xn+1 = TA,Bxn, converges weakly to some
v ∈ H, such that JλAv is a zero of A+ B.
Here, JλF := (Id + λF )−1 is the resolvent operator for λF
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P-L Lions and B. Mercier
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View from convex optimization

If A := ∂f and B := ∂g for convex functions f , g , then
0 ∈ (∂f + ∂g)u means u solves the minimization problem

Find u ∈ argmin
x∈X

(f + g)(x).

If, additionally, f := ιA and g := ιB are indicator functions;
recall

ιc : x 7→

{
0 if x ∈ C

∞ otherwise,

then u ∈ argmin(f + g) implies u ∈ A ∩ B (assuming
feasibility).
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How a minimization algorithm becomes a projection algorithm

Phrasing the feasibility problem for A and B as a minimality
problem in this way leads us to apply Lions-Mercier’s result
with A := ∂f and B := ∂g where f := ιA and g := ιB in
which case,

1 ∂f = NA, the normal cone operator

x 7→

{
{y |(y , a− x) ≤ 0 for all a ∈ A} if x ∈ C

∅ otherwise,

2 ∂g = NB ,
3 JA := (Id +A)−1 = (Id + ∂f )−1 = (Id + NA)−1 = PA,
4 JB := (Id + B)−1 = (Id + ∂g )−1 = (Id + NB)−1 = PB ,

and in Lions-Mercier’s algorithm,

TA,B = JλB(2JλA − I ) + (I − JλA) =
1

2
(Id + RBRA)
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Later developments

For TA,B = 1
2RBRA + 1

2 Id = 1
2 (2PB − Id) ◦ (2PA − Id) + 1

2 Id:

Bauschke, Combettes, and Luke [3] were able to give a direct
proof that the iterates weakly converge, avoiding the need
that ∂f + ∂B be maximal monotone in the feasibility setting.

The requirement A+ B be maximally monotone was later
relaxed outside the feasibility setting by Svaiter [23].
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B, C and L
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Definition 2 (Nonexpansivity conditions)

Let D ⊂ H be nonempty and let T : D → H. Then T is

1 nonexpansive if it is Lipschitz continuous with constant 1:

(∀x , y ∈ D) ‖T (x)− T (y)‖ ≤ ‖x − y‖;

2 firmly nonexpansive if

(∀x , y ∈ D) ‖T (x)− T (y)‖2 + ‖(Id− T )(x)− (Id− T )(y)‖2 ≤ ‖x − y‖2;

Key facts:

1 Projections onto a closed convex set in a Hilbert space are firmly nonexpansive.

2 T is nonexpansive if and only if 1
2

(Id + T ) is firmly nonexpansive
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Fejér Monotonicity

Definition 3 (Fejér Monotone)

Where S ⊂ H is nonempty, the sequence xn is said to be Fejér
monotone with respect to S if

(∀y ∈ S) (∀n ∈ N) ‖xn+1 − y‖ ≤ ‖xn − y‖. (2)

See, for example, [2].

Proposition 4

If D is a nonempty subset of H and T : D → D is nonexpansive
with FixT 6= ∅ then the sequence xn+1 = T (xn) with x0 ∈ D is
Fejér monotone with respect to FixT .
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Connection of D-R with ADMM through Duality

Where F and G are convex, proper, lsc and B is linear,
consider the primal problem

p := inf
v∈V
{F (Bv) + G (v)} .

Under sufficient qualification conditions, we can solve p by
solving

d := inf
v∗∈V ∗

{G ∗(−B∗v∗) + F ∗(v∗)} .

See, for example, Borwein’s & Lewis’ Convex Analysis and
Nonlinear Optimization [7, thm 3.3.5].

Applying DR to d is equivalent to applying Uzawa’s
alternating direction method of multipliers [ADMM] to p. See
Gabay’s 1983 book chapter [16] and the survey [19].
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Nonconvex setting: History and independent discovery

Fienup independently discovered DR for nonconvex feasibility
problems (phase retrieval) [15] and it has been popularized by
Veit Elser.

Other names, special instances, and generalizations:

Hybrid Input-Output algorithm (HIO), Fienup’s variant, the
“difference map” [14]
Averaged alternating reflections [4]
Relaxed reflect-reflect [13]
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Advantages

x0

x1

x7

xn for n ≥ 8 PAxn for n ≥ 8
a2

a1

B B
x0

xn for n ≥ 1
a1

a2
R

DR and AP for a doubleton A = {a1, a2} and line B in R2

Over-relaxed projection methods tend to explore the space
more than AP
Out-of-the-box solver: need only to be able to compute
projections and can apply to any constraint satisfaction
problem.
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Theory is scarce

Although often found to work well, theoretical underpinning
for projection methods in the presence of nonconvex
constraint sets is sadly lacking.

Projections onto nonconvex sets are often set valued, and
need no longer be firmly nonexpansive, or even nonexpansive.

Local convergence established in certain instances (in
particular near isolated feasible points for intersections of
curves and hypersurfaces in Rn) using theory of local
asymptotic stability of almost linear discrete dynamical
systems, and more globally utilizing Lyapunov functions. See
for example; [9], [6], [8], [18], and [11]
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Discrete/Combinatorial settings:
Latin squares

sudoku puzzles

nonograms

matrix completion

Hadamard matrices
Rank minimization
distance matrices

matrix decomposition

Wavelets with constraints

3-SAT

graph coloring

edge colorings
8 queens, 3-SAT, Hamiltonian
paths

Bit retrieval

doubletons and lines (theory)

Connected constraints:
Phase retrieval

Intersections of plane curves and
roots of functions

solving nonlinear systems of
equations

Boundary value ODEs

Regularity and transversality
conditions (theory)
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History and independent discovery
Advantages
A sampling of topics to which D-R has been successfully applied

Two applications where the constraints are discrete finite sets

Figure: Solving sudoku puzzles -
Elser [13]. Image source Wikimedia Commons
[?sudokupicture]

Figure: Solving incomplete Euclidean
distance matrices for protein
reconstruction [1].
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BVPs and formulation as feasibility problems
Illustrative example

Nonlinear ordinary differential equations with boundary values [18]

Consider the problem

y ′′ = f (y ′, y , t) for a ≤ t ≤ b with y(a) = α, y(b) = β

For N ∈ N, let h := (b − a)/(N + 1), and ti := a + hi , for
i = 0, 1, · · · ,N + 1.

So, t1, · · · , tN are a set of equally spaced nodes in [a, b].

Using centered differences we can obtain a numerical
approximation to the solution of the BVP by taking
y(ti ) = ωi , where ω0 = α, ωN+1 = β and for i = 1, · · · ,N

ωi−1 − 2ωi + ωi+1

h2
= f

(
ti , ωi ,

ωi+1 − ωi−1

2h

)
eqn(i)
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Reformulation as a feasibility problem

Let
Ωi := {ω = (ω1, . . . , ωN)|ω satisfies eqn(i)}

then finding
ω ∈ ∩Nk=1Ωk

provides an approximate numerical solution to the BVP..
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Computing projections

For u := (u0, u1, · · · , uN+1) with u0 = α and uN+1 = β,

let Hi (u) = −ui−1 + 2ui − ui+1 + h2f
(
ti , ui ,

ui+1−ui−1

2h

)
,

then projection z := PΩi
(v) satisfies the Lagrangian:

Hi (z) = 0, v − z + λ∇Hi (z) = 0.

so z can be computed by a steepest descent method or by
Newton’s method.
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Example: Heaviside

We consider

y ′′(x) =

{
−1 y(x) < 0

1 y(x) ≥ 0,
(3)

with the boundary conditions y(−1) = −1 and y(1) = 1,
which admits the unique continuous solution:

y(x) =

{
−1

2x
2 + 1

2x x < 0
1
2x

2 + 1
2x x ≥ 0.

(4)
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BVPs and formulation as feasibility problems
Illustrative example

Example: Heaviside

Figure: Newton’s Method cycles for certain starting points (left) while
DR converges (right).
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BVPs and formulation as feasibility problems
Illustrative example

Figure: Relative error and error from true solution for converging DR
iterates for an ellipse and line.

The similarities to the previous figure are unmistakable,

illustrating a frequent feature of the behaviour of D-R.
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BVPs and formulation as feasibility problems
Illustrative example

Thank You!
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[3] Heinz H. Bauschke, Patrick L. Combettes, and D. Russell Luke, Phase
retrieval, error reduction algorithm, and Fienup variants: a view from
convex optimization, J. Opt. Soc. Amer. A 19 (2002), no. 7, 1334–1345.
MR1914365

[4] , Finding best approximation pairs relative to two closed convex
sets in Hilbert spaces, J. Approx. Theory 127 (2004), no. 2, 178–192.
MR2058156



Feasibility Problems and projection methods
Convex constraints - evolution of a theory

Connection with ADMM
Nonconvex Setting

One application in more detail: ODE BVPs
References

References II

[5] Heinz H Bauschke, Dominikus Noll, and Hung M Phan, Linear and strong
convergence of algorithms involving averaged nonexpansive operators,
Journal of Mathematical Analysis and Applications 421 (2015), no. 1,
1–20.

[6] Joel Benoist, The douglas-rachford algorithm for the case of the sphere
and the line, J. Glob. Optim. 63 (2015), 363–380.

[7] Jonathan M. Borwein and Adrian S. Lewis, Convex analysis and nonlinear
optimization: Theory and examples, 2nd ed., Springer, 2006.

[8] Jonathan M. Borwein, Scott B. Lindstrom, Brailey Sims, Matthew
Skerritt, and Anna Schneider, Dynamics of the douglas-rachford method
for ellipses and p-spheres, Set-Valued Anal. (2016), 1–19.

[9] Jonathan M. Borwein and Brailey Sims, The douglas-rachford algorithm in
the absence of convexity, Fixed point algorithms for inverse problems in
science and engineering, 2011, pp. 93–109. MR2858834



Feasibility Problems and projection methods
Convex constraints - evolution of a theory

Connection with ADMM
Nonconvex Setting

One application in more detail: ODE BVPs
References

References III

[10] Jonathan M. Borwein and Matthew K. Tam, A cyclic douglas–rachford
iteration scheme, J. Optim. Theory Appl. 160 (2014), 1–29.

[11] Minh N. Dao and Matthew .K. Tam, A lyapunov-type approach to
convergence of the douglas-rachford algorithm (2017).

[12] Jonathan Eckstein and Benar Fux Svaiter, General projective splitting
methods for sums of maximal monotone operators, SIAM Journal on
Control and Optimization 48 (2009), no. 2, 787–811.

[13] Veit Elser, Ti-Yen Lan, and Tamir Bendory, Benchmark problems for
phase retrieval, arXiv preprint arXiv:1706.00399 (2017).

[14] Veit Elser, I. Rankenburg, and P. Thibault, Searching with iterated maps,
Proc. Natl. Acad. Sci. USA 104 (2007), no. 2, 418–423.

[15] James R Fienup, Phase retrieval algorithms: a comparison, Applied optics
21 (1982), no. 15, 2758–2769.



Feasibility Problems and projection methods
Convex constraints - evolution of a theory

Connection with ADMM
Nonconvex Setting

One application in more detail: ODE BVPs
References

References IV

[16] Daniel Gabay, Chapter ix applications of the method of multipliers to
variational inequalities, Studies in mathematics and its applications, 1983,
pp. 299–331.

[17] Simon Gravel and Veit Elser, Divide and concur: A general approach to
constraint satisfaction, Physical Review E 78 (2008), no. 3, 036706.

[18] Bishnu P. Lamichhane, Scott B. Lindstrom, and Brailey Sims, Application
of projection algorithms to differential equations: boundary value
problems, arXiv preprint arXiv:1705.11032 (2017).

[19] Scott B. Lindstrom and Brailey Sims, Survey: Sixty years of
douglas-rachford (2018 (in preparation)).

[20] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two
nonlinear operators, SIAM J. Numer. Anal. 16 (1979), no. 6, 964–979.
MR551319

[21] Guy Pierra, Decomposition through formalization in a product space,
Mathematical Programming 28 (1984), no. 1, 96–115.



Feasibility Problems and projection methods
Convex constraints - evolution of a theory

Connection with ADMM
Nonconvex Setting

One application in more detail: ODE BVPs
References

References V

[22] Jonathan E Spingarn, Partial inverse of a monotone operator, Applied
mathematics and optimization 10 (1983), no. 1, 247–265.

[23] Benar F. Svaiter, On weak convergence of the douglas–rachford method,
SIAM J. on Control and Opt. 49 (2011), no. 1, 280–287.


	Feasibility Problems and projection methods
	2 sets
	Cutter methods
	Relaxations
	N sets

	Convex constraints - evolution of a theory 
	Iterated resolvent operators (Proximal point algorithms)
	Feasibility as minimization
	Key ingredients for the proofs

	Connection with ADMM
	Nonconvex Setting
	History and independent discovery
	Advantages
	A sampling of topics to which D-R has been successfully applied

	One application in more detail: ODE BVPs
	BVPs and formulation as feasibility problems
	Illustrative example

	References

