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Much of this presentation is based on material from:

1 Scott Lindstrom and BS, “Sixty Years of Douglas-Rachford,”
(2018); in preparation for the special issue of J. Aust. Maths.
Soc. dedicated to Jonathan M. Borwein - as is this talk.
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Alternating projections
Douglas-Rachford for two sets

Feasibility (constraint satisfaction) problems

For closed constraint sets Ci , i = 1, 2, · · · , n, in a Hilbert
space H, find a feasible point

x ∈ C := ∩ni=1 Ci

When the nearest point projection onto each set is readily
computed, the application of a projection algorithm is a
popular method of solution.

Alternating projections, introduced by J. von Neumann in
1933, is the oldest such method:

(AP) From an initial guess x0 ∈ H, form the iterative sequence

xn+1 = PCnPCn−1 · · ·PC1xn
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Alternating projections
Douglas-Rachford for two sets

Feasibility problems

 

(1) When all Ci are affine sets, von Neumann showed that
xn → PCx0

(2) When all Ci are convex sets Bregman [1965] established that
xn ⇀ PCx0.

(3) In 2002 Hundal gave an example showing that here weak
convergence cannot in general be replace by norm convergence
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Alternating projections
Douglas-Rachford for two sets

Two set feasibility problems

For two set feasibility problems, another effective method, on
which we focus, was introduced by J. Douglas and H. H.
Rachford in 1956.

(D-R) For closed constraint sets A, B and initial guess x0 ∈ H form
the iterative sequence

xn+1 :=
1

2
(Id + RBRA) (xn)

where Id is the identity operator on H and, for a closed set C ,
RC := 2PC − Id is the operator of reflection in C .
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Alternating projections
Douglas-Rachford for two sets

Douglas-Rachford
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Alternating projections
Douglas-Rachford for two sets

Douglas-Rachford

(1) When A and B are both convex sets xn ⇀ x∞ ∈ H with
PAx∞ ∈ A ∩ B

(2) While norm convergence is only ensured when, for example, H
is finite dimensional no example such as that of Hundal for AP
seems known.
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Alternating projections
Douglas-Rachford for two sets

One iteration of AP and D-R
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Figure: AP; TA,B := PBPA
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Figure: D-R;
TA,B := 1

2 (Id + RBRA)

Projection algorithm: from prescribed x0 iterate
xn+1 = TA,B(xn)
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Zeros of sums of maximally monotone operators

D-R was originally considered as a method for locating a zero
for a sum of two monotone operators A and B on H.

In this context Lion and Mercier

proved in 1979
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Zeros of sums of maximally monotone operators

Theorem 1 (Lions & Mercier)

If A and B are maximal monotone operators on a H, with A+ B
also maximal monotone, then for

TA,Bx := JB(2JA − Id)x + (Id − JB)x ,

the sequence of iterates, xn+1 = TA,Bxn, converges weakly to some
v ∈ H, such that JAv is a zero of A+ B.
Here, JF := (Id + F )−1 is the resolvent operator for F
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Connection to the 2-set feasibility problem

Recall: the indicator function for a set C is

ιc : x 7→

{
0 if x ∈ C

∞ otherwise,

So, we see that

x ∈ A ∩ B ⇐⇒ x minimizes ιA∩B = ιA + ιB

Thus, ⇐⇒ 0 ∈ (∂ιA + ∂ιB) (x).

Recalling that for a convex function f the subdifferential ∂f is
a maximal monotone operator we have that
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Connection to the 2-set feasibility problem

we can apply Lions-Mercier’s result with A := ∂ιA and
B := ∂ιB , in which case,

1 A = NA, the normal cone operator

x 7→

{
{y |(y , a− x) ≤ 0 for all a ∈ A} if x ∈ C

∅ otherwise,

2 Similarly, B = NB , and then
3 JA := (Id +A)−1 = (Id + NA)−1 = PA, and
4 JB := (Id + B)−1 = (Id + NB)−1 = PB ,

So, in the Lions-Mercier’s algorithm,

TA,B = JB(2JA − Id) + (Id − JA) =
1

2
(Id + RBRA)
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Remarks

In 2002 Bauschke, Combettes, and Luke gave a direct proof
(employing essentially the same ingredients as those used by
Lions and Mercier) for the weak convergence of the iterates of
1
2 (Id + RBRA).

The requirement A+ B be maximally monotone was relaxed
outside the feasibility setting by Svaiter in 2011.
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Definition 2 (Nonexpansivity conditions)

Let D ⊂ H be nonempty and let T : D → H. Then T is

1 nonexpansive if it is Lipschitz continuous with constant 1:

(∀x , y ∈ D) ‖T (x)− T (y)‖ ≤ ‖x − y‖;

2 firmly nonexpansive if

(∀x , y ∈ D) ‖T (x)− T (y)‖2 + ‖(Id− T )(x)− (Id− T )(y)‖2 ≤ ‖x − y‖2;

Key facts:

1 Projections onto a closed convex set in a Hilbert space are firmly nonexpansive.

2 T is nonexpansive if and only if 1
2

(Id + T ) is firmly nonexpansive
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Zeros of maximal monotone operators
relevance to the two set feasibility problem
Key ingredients for the proofs

Fejér Monotonicity

Definition 3 (Fejér Monotone)

Where S ⊂ H is nonempty, the sequence xn is said to be Fejér
monotone with respect to S if

(∀y ∈ S) (∀n ∈ N) ‖xn+1 − y‖ ≤ ‖xn − y‖.

Proposition 4

If D is a nonempty subset of H and T : D → D is nonexpansive
with FixT 6= ∅ then the sequence xn+1 = T (xn) with x0 ∈ D is
Fejér monotone with respect to FixT .
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D-R is connected with ADMM through Duality

For F and G convex, proper, lsc functions and B a linear, the
primal problem

p := inf
v∈V
{F (Bv) + G (v)} .

can, under suitable qualification conditions, be solved p by
solving the dual problem

d := inf
v∗∈V ∗

{G ∗(−B∗v∗) + F ∗(v∗)} .

See, for example, Borwein’s & Lewis’ Convex Analysis and
Nonlinear Optimization, theorem 3.3.5).
Applying DR to d is equivalent to applying Uzawa’s
alternating direction method of multipliers [ADMM] to p [see
Gabay, chapter (ix), of Studies in mathematics and its
application, 1983, and our survey].
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From 2 sets to N sets.

We can use Douglas-Rachford on a feasibility problem
involving N sets; Ω1 . . .ΩN , to find x ∈ ∩Nk=1Ωk by utilizing
Pierra’s product space method; that is, by applying the
algorithm in HN to the two sets

A := Ω1 × · · · × ΩN

B := {x = (y1, . . . , yN)|y1 = y2 = · · · = yN}
Nicknamed divide and concur by Simon Gravel and Veit Elser
(the latter credits the former for the name) [?GE].

Reflection in A is the “divide” step entailing reflections in each
of the individual constraint sets (eminently parallelizable).
“Concur” is the step of reflecting in the agreement (diagonal)
set B.

Other methods include the cyclically anchored variant
(CADRA) and the Borwein-Tam method (cyclic D-R).
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

D-R in the non-convex cases

Despite a dearth of supporting theory, relaxed projection
methods, and D-R in particular, have proved effective, and
hence a popular off-the-shelf solver, for handling feasibility
problems involving non-convex (including discrete) constraints
provided the relevant projections can be computed.

A contributing factor to this success may be tendency of D-R
to better explore the solution space; often exhibiting spiral
trajectories rather than the more monotone approach to
equilibrium commonly seen with AP.
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

D-R in two non-convex settings

Trajectories for line–(1/2)-sphere Singular set for line–ellipse
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

Discrete constraint sets

The advantage of D-R over AP in the presence of discrete
constraint sets, is nicely illustrated in the case of a doubleton
A = {a1, a2} and a line B in R2.

x0

x1

x7

xn for n ≥ 8 PAxn for n ≥ 8
a2

a1

B B
x0

xn for n ≥ 1
a1

a2
R

DR AP
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

Two applications where the constraints are discrete finite sets

Figure: Solving sudoku puzzles -
Elser. Image source Wikimedia Commons

Figure: Solving incomplete Euclidean
distance matrices for protein
reconstruction.
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

Nonconvex setting: History and Theory

Fienup independently discovered DR, using it for nonconvex
feasibility problems (phase retrieval) in 1982 and more
recently it has been popularized by Veit Elser [2007, 2008],
Borwein, Tan, and Aragón Artacho, among others.

Other names, special instances, and generalizations:

Hybrid Input-Output algorithm (HIO), Fienup’s variant, the
“difference map”
Averaged alternating reflections
Relaxed reflect-reflect [2017]
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

Theory is scarce

Although often found to work well, theoretical underpinning
for projection methods in the presence of nonconvex
constraint sets is sorely lacking.

Projections onto nonconvex sets are often set valued, and
need no longer be firmly nonexpansive, or even nonexpansive.

Local convergence established in certain instances (in
particular near isolated feasible points for intersections of
curves and hypersurfaces in Rn) using theory of local
asymptotic stability of almost linear discrete dynamical
systems, and more globally utilizing Lyapunov functions.
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Practice and Observations
History and theory
A sampling of topics to which D-R has been successfully applied

Discrete/Combinatorial settings:
Latin squares

sudoku puzzles

nonograms

matrix completion

Hadamard matrices
Rank minimization
distance matrices

matrix decomposition

Wavelet construction

3-SAT

graph coloring

edge colorings
8 queens, 3-SAT, Hamiltonian
paths

Bit retrieval

doubletons and lines (theory)

Connected constraints:
Phase retrieval

Intersections of plane curves and
roots of functions

solving nonlinear systems of
equations

Boundary value ODEs

Regularity and transversality
conditions (theory)
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Wavelet construction via projection methods

Material extracted from:
1 David Franklin, Projection Algorithms for Non-separable

Wavelets and Clifford Fourier Analysis, PhD dissertation,
University of Newcastle, October 2018, supervisor: Jeff
Hogan,

and represents joint work by David, Jeff and Matt Tam.

1 While the real goal, successfully implemented, is to use
projection methods to construct higher dimensional wavelets
with desirable properties, we content ourselves by illustrating
the ideas in 1-dimension.
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Wavelets

1 Recall: A 1-dimensional wavelet is a function ψ : R→ R
whose dyadically dilated integer translates form an
orthonormal basis for L2(R,C); that is,{

ψj ,k(x) := 2−j/2ψ(x/2j − k) : j ∈ Z, k ∈ Z
}

is an orthonormal basis for L2(R,C).

2 The name wavelet derives from
∫
R ψ(x)dx = 0, so the

amount of ψ above 0, ‘sea-level’, is balanced by that below -
required for the sequence of Fourier coefficients, (〈f , ψj ,k〉), to
be in `2(Z× Z).

3 We aim to construct a wavelet with desired properties, in
particular with compact support.
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The scaling function

1 we begin by seeking a suitable scaling function; a function
φ ∈ L2(R,C) with {φ(x − k) : k ∈ Z} an orthonormal set and
φ(x/2) in the subspace it generates; that is,

φ(x/2) =
∑
k∈Z

akφ(x − k), for some (ak) ∈ `2(Z). (1)

2 Or equivalently, taking the Fourier transform of both sides,

φ̂(2ξ) = m0(ξ)φ̂(ξ), where m0(ξ) :=
1

2

∑
k∈Z

ake
−2πikξ (2)
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3

Proposition 5

φ is compactly supported (without loss of generality on [0,M − 1])
iff m0 is a trigonometric polynomial (of degree M − 1); specifically,

m0(ξ) :=
1

2

M−1∑
k=0

ake
−2πikξ.

From this, the requirement that {φ(x − k) : k ∈ Z} is orthonormal,
and Plancherel’s theorem we can deduce

Corollary 6

m0(0) = |φ̂(0)| = 1, and |m0(ξ)|2 + |m0(ξ + 1/2)|2 = 1.
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Cascade algorithm – determining φ from m0

1 Importantly, proposition 5 and the scaling equation (1) allows
us to determine φ from a knowledge of m0 via the cascade
algorithm:

1 For φ supported on [0,M − 1], let
v = (φ(0), φ(1), · · · , φ(M − 1)) then (1) reduces to v = Av
where

Aij =

{
a2i−j when 2i − j ∈ {0, . . . ,M − 1},
0 otherwise.

(3)

2 So, finding an eigenvector of A corresponding to the
eigenvalue 1 determines φ on Z.

3 Now, for each n and ` ∈ N, successive application of (1)
determines φ(n2−`). Since the dyadic rationals are dense in R,
this is enough to specify a continuous φ on [0,M − 1].
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Construction of ψ from φ

1 Having constructed φ from knowing m0 we build our wavelet
by taking ψ(x/2) to lie in the subspace generated by
{φ(x − k) : k ∈ Z} leading to an analogue of the scaling
equation (1) for ψ,

ψ(x/2) =
∑
k∈Z

bkφ(x − k), for some (bk) ∈ `2(Z), (4)

ensuring ψ inherits many properties from φ.

2 Taking the Fourier transform of both sides,

ψ̂(2ξ) = m1(ξ)φ̂(ξ), where m1(ξ) :=
1

2

∑
k∈Z

bke
−2πikξ
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Compact support

1 As for phi we deduce that
1 ψ is compactly supported on [0,M − 1] iff m1 is a

trigonometric polynomial;

m1(ξ) :=
1

2

M−1∑
k=0

bke
−2πikξ.

2 In which case, we can use (4) in the cascade algorithm to
determine ψ if m0 (and hence φ) and m1 are known.

3 So, our construction of a wavelet is reduced to determining
suitable functions m0 and m1.
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Constraints on m1

1 We also deduce,

|m1(ξ)|2 + |m1(ξ + 1/2)|2 = 1, (5)

m0(ξ)m1(ξ) + m0(ξ + 1/2)m1(ξ + 1/2) = 0, (6)
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Matrix formulation

1 Define the matrix-valued function

U(ξ) =

[
m0(ξ) m1(ξ)

m0(ξ + 1/2) m1(ξ + 1/2)

]
(7)

Then we see that the conclusion of corollary (6) and
conditions (5) and (6) will be satisfied if and only if U(ξ) is
unitary for all ξ.

2 Further

U(0) =

[
1 0
0 z

]
, where z = m1(1/2), so |z | = 1 (8)
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In this guise, our quest to construct a wavelet is reduced to finding
a function-valued 2× 2 matrix U(ξ) such that:

1 U(ξ + 1/2) = JU(ξ) where J is the elementary matrix

J =

[
0 1
1 0

]
ensures the structure of U(ξ) given in (7),

2 U(ξ) is unitary for all ξ,

3 U(0) =

[
1 0
0 z

]
,

4
d l

dξl
U(ξ)

∣∣∣∣
ξ=0

is diagonal for 0 ≤ l ≤ D

ensures that ψ has its first D derivatives continuous and
bounded,

5 m0(ξ) has no zeros on the set [−1
4 ,

1
4 ]

ensures the integer shifts of φ are orthogonal.
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Back to a feasibility problem

A FEASIBILITY PROBLEM!
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The feasibility problem

1 Since the entries of U(ξ) are trigonometric polynomials of
degree M, so of the form

U(ξ) =
M−1∑
k=0

Ake
2πikξ, with Ak ∈ C2×2,

it U(ξ) is completely determined by its values at 2M − 1
points in [0, 1).
So, the problem can be further reduced to considering a
solution space whose elements are ensembles of 2M − 1 2× 2
constant complex matrices.

2 Further projections onto the sets corresponding to constraints
(1) to (4) are readily computed. For example, if A ∈ C2×2 has
singular value decomposition A = USV then P(A) := UV ∗ is
a projection onto the set of unitary matrices.
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The feasibility problem

1 Thus, our problem is amenable to the use of projection
algorithms, in particular AP and D-R, with different starting
points leading to potentially different wavelets.

2 Note: we choose to check that constraint (5) is satisfied
post-priori.

3 This has been implemented in MATLAB and numerous trials
undertaken.



Feasibility Problems and projection methods
Historical interlude
D-R and ADMM

Extension of D-R from two to N sets
Nonconvex Setting

Wavelet construction via projection methods
References

Experimental results

Scaling function φ(x) and associated wavelet ψ(x) with support
0 ≤ x ≤ 5, discovered by product D-R
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Experimental results

1 Trials were conducted using an ensemble of 100 randomly

generated starting points in
(
C2×2

)M
and with M = 6.

2 In all 100 trials, product D-R converged, leading to the
construction of a wavelet.

3 This should be contrasted to a 57% success rate for proximal
alternating linear minimization – the most commonly used of
the traditional methods (and a 54% success rate for AP).
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